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A New Collocation Algorithm for Solving
Even-Order Boundary Value Problems via
a Novel Matrix Method
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Abstract. This paper is dedicated to presenting and analyzing a numer-
ical algorithm for the solution of even-order boundary value problems.
The proposed solutions are spectral and they depend on introducing a
new matrix of derivatives of certain shifted Legendre polynomial basis,
along with the application of the collocation method. The nonzero ele-
ments of the introduced matrix are expressed in terms of the well-known
harmonic numbers. Numerical examples provide favorable comparisons
with other existing methods and ascertain the efficiency and applicabil-
ity of the proposed algorithm.
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1. Introduction

We consider the even-order boundary value problems:

u(2n) (x) = f (x,u(x)) , x ∈ [a, b] , (1)

u(r)(a) = αr, u(r)(b) = βr, r = 0, 1, . . . , n − 1, (2)

where u(x) =
(
u(x), u′(x), . . . , u(q)(x)

)
, 0 ≤ q ≤ 2n − 1 and αr, βr are finite

real constants.
We assume that f : [a, b] × R

q+1 → R is continuous at least in the
interior of the domain of interest and it is Lipschitzian in u, which means
that there exist nonnegative constants Lk, k = 0, . . . , q, such that, for any
u1,u2 in R

q+1, the following inequality holds:

|f (x,u1) − f (x,u2)| ≤
q∑

k=0

Lk

∣
∣
∣u(k)

1 (x) − u
(k)
2 (x)

∣
∣
∣ .

Moreover, we assume that the conditions for the existence and uniqueness of
solution of Problems (1)–(2) in a certain appropriate domain of [a, b] ×R

q+1
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are satisfied [4] and that the solution u(x) is differentiable with continuity up
to what is necessary.

Even-order boundary value problems (BVPs) arise in a variety of dif-
ferent areas of applied mathematical, engineering and applied physics, in the
study of astrophysics, hydrodynamic and hydro magnetic stability, fluid dy-
namics, astronomy, beam and long-wave theory (see [10,16]).

For example, eighth-order differential equations occur in torsional vi-
bration of uniform beams [7] and in the motion of a circular cylindrical shell
subjected to a load that is not symmetric about the axis of the shell [33].
They also occur in the study of the instability setting in an infinite horizon-
tal layer of fluid, which is heated from below and is subject to the action
of rotation. When this instability is ordinary convection, it can be modeled
by a sixth-order ordinary differential equation; when the instability sets in
as overstability, it can be modeled by an eighth-order ordinary differential
equation [36].

High even-order BVPs can be involved also when a uniform magnetic
field is applied across the fluid in the same direction as gravity. In this case
ordinary convection and overstability yield, respectively, a 10th-order and a
12th-order differential equation [36]. Twizell et al. [38] developed numerical
methods for eigenvalue problems of 8th-,10th- and 12th- orders arising in
thermal instability.

In chemistry, differential equations are used in chemical kinetics, quan-
tum mechanics and transport phenomena such as diffusion.

In most cases, this type of problems cannot be solved analytically; thus
only approximate solutions can be expected. For this reason many numer-
ical methods have been proposed in the literature. Some of these methods
are finite difference and finite-element methods [11,18], perturbation and ho-
motopy perturbation methods (see [26] and references therein), differential
transform methods [28], variational iteration methods [32], collocation meth-
ods [13–15], spectral methods [12,23], etc.

Finite difference and finite-element methods are based on local repre-
sentations of functions, usually by low-order polynomials. However, when a
finite difference method has high order or when it is applied to a high-order
differential equation, a large number of points are required, and the assigned
boundary conditions may be insufficient. On the other hand, low-order finite-
difference formulations are often inaccurate, particularly on coarse grids.

In the past decades, spectral methods [9,25] have emerged as a valid
alternative to those methods. The basic idea of spectral methods is to use a
set of basis functions ψi, i = 0, . . . , N , also called trial or expansion approxi-
mating functions (very smooth and global such as polynomials), to represent
the solution to a problem as a truncated series

∑N
i=0 aiψi(x) where ai are the

unknown coefficients.
Finite-element methods are similar in philosophy to spectral algorithms.

The major difference is that the trial functions for spectral methods are
usually polynomials of high degree, and this assures higher accuracy with
respect to finite-element methods. The main advantage of spectral meth-
ods is that for problems with smooth solutions they converge exponentially
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fast compared to algebraic convergence rates for finite difference and finite-
element methods and with a degree of accuracy that local methods cannot
match. A spectral method is characterized by a specific way to determine the
coefficients. For instance, in collocation methods the numerical approxima-
tion uN (x) of the solution u(x) to a problem is required to satisfy exactly
the given differential equation in a discrete set of points, called collocation
nodes, of the interval (a, b). The choice of appropriate spectral represen-
tation depends on the type of the differential equation and on the kind
of boundary conditions involved in the problem. In recent years, spectral
methods are extensively used to solve two-point boundary value problems
of high orders. For example, in the series of papers [3,19,20], the authors
obtained spectral solutions of high-even and high-odd order BVPs based on
the application of Galerkin and Petrov–Galerkin methods. The algorithms in
these articles were suitable for handling linear BVPs in one and two dimen-
sions.

Operational matrices of derivatives of various orthogonal polynomials
are utilized for handling several types of differential equations. For exam-
ple, Abd-Elhameed [2] and Doha et al. [22] used Galerkin and tau matrices
of derivatives to solve the singular Lane-Emden differential equations. More-
over, Abd-Elhameed in [1] has developed and used a novel harmonic numbers
matrix of derivatives to solve linear and nonlinear sixth-order BVPs. Recently,
Napoli and Abd-Elhameed in [31] used certain matrices of derivatives for the
solution of initial value problems.

In this paper, we aim to solve even-order BVPs using a new collo-
cation algorithm via introducing a novel matrix of derivatives of a certain
combination of Legendre polynomials. This matrix generalizes the matrix of
derivatives introduced in [1] for the solution of sixth-order BVPs. In [1], the
author employed a matrix of derivatives along with the two spectral meth-
ods, namely Petrov–Galerkin and collocation methods for handling linear and
nonlinear equations. In fact, the so-called Petrov–Galerkin method is utilized
for solving linear equations while the collocation method is utilized for solv-
ing nonlinear equations. In the present paper, we use a unified collocation
algorithm for handling linear and nonlinear even-order BVPs of type (1)–(2).
The basis functions are special orthogonal polynomials related to Legendre
polynomials.

The outline of the paper is the following: in Sect. 2 we review neces-
sary background and definitions; in Sect. 3 we introduce a new matrix of
derivatives of certain combination of Legendre polynomials; in Sect. 4 the
proposed algorithm for solving general even-order boundary value problems
is described in detail; Sect. 5 is devoted to the study of the convergence of the
proposed method. Finally, in Sect. 6, we investigate numerically the proposed
algorithm by solving some illustrative examples of some even-order bound-
ary value problems. The results are compared with the approximate solutions
obtained by other existing methods. A reliable good accuracy is obtained in
all the considered cases.
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2. Preliminaries and Used Formulae

In this section we recall some well-known definitions and properties which
will be useful hereafter.

Definition 1. The n-th harmonic number Hn is the sum of the reciprocals of
the first n natural numbers:

Hn =
n∑

i=1

1
i
, n = 1, 2, . . . , (3)

and H0 = 0.

Based on their definition, the harmonic numbers satisfy the following
recurrence relation:

Hn = Hn−1 +
1
n

, n ≥ 1,

and the three-term recurrence relation:

(2n − 1)Hn−1 − (n − 1)Hn−2 = nHn, n ≥ 2. (4)

Definition 2. The Legendre polynomials Pn(x), n ≥ 0 can be defined over the
interval [−1, 1] by the recursive formulas [9]

{
P0(x) = 1, P1(x) = x,
(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), n ≥ 1.

(5)

An important property of the Legendre polynomials is that they are
orthogonal with respect to the L2 inner product on the interval [−1, 1]:

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n + 1
δmn,

where δmn is the well-known Kronecker delta function.
The shifted Legendre polynomials P ∗

n are defined on [a, b]:

P ∗
n(x) = Pn

(
2x − b − a

b − a

)
,

and they are orthogonal on [a, b] in the sense that
∫ b

a

P ∗
n(x)P ∗

m(x) dx =
b − a

2n + 1
δmn. (6)

Moreover, they are a complete sequence in L2[a, b], for any compact interval
[a, b] [30].

Let us denote by J
(k)
i (x) the k times repeated integration of P ∗

i (x):

J
(k)
i (x) =

∫ ∫
· · ·

∫

︸ ︷︷ ︸
k times

P ∗
i (x) dxdx · · · dx︸ ︷︷ ︸

k times

.

The following theorem holds [1]:
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Theorem 1.

J
(k)
i (x) =

(b − a)k

22k

k∑

m=0

(
k

m

)
(−1)m

(
i + k − 2m + 1

2

)
Γ(i − m + 1

2 )
Γ(i + k − m + 3

2 )

P ∗
i+k−2m(x) + πk−1(x),

where

πk−1(x) =
{

a polynomial of degree k − 1 at most if i < k,
0 if i ≥ k.

3. A New Matrix of Derivatives

In this section, we will construct a novel matrix of derivatives for handling
even-order BVPs. For this purpose, consider the set of basis functions defined
as

ψi,n(x) = (x − a)n(b − x)nP ∗
i (x), i = 0, 1, 2, . . . (7)

From (5), it is clear that the three-term relation is satisfied:

ψi,n(x) =
2i − 1

i

2x − b − a

b − a
ψi−1,n(x) − i − 1

i
ψi−2,n(x), i ≥ 2. (8)

Observe that ψi,n(x) are orthogonal polynomials in L2
w(a, b) with respect to

the weight function w(x) = [(x − a)(b − x)]−2n. In fact, relation (6) yields
the orthogonality relation for {ψi,n(x)}i≥0:

∫ b

a

ψi,n(x)ψj,n(x)
(x − a)2n(b − x)2n

dx =
b − a

2i + 1
δij .

It can also be easily verified that ψi,n(x) forms a complete orthogonal system
in L2

w(a, b).
The following theorem expresses the derivative of the polynomials ψi,n

(x) in terms of the polynomials ψk,n(x), k = 0, . . . , i − 1.

Theorem 2. Let ψi,n(x), i = 0, 1, 2, . . . be the polynomials defined in (7). The
following relation holds:

ψ′
i,n(x) =

2
b − a

i−1∑

k=0
(i+k)odd

(2k + 1)(1 + 2nHi − 2nHk)ψk,n(x) + ηi,n(x), (9)

where Hi are the harmonic numbers defined in (3), and

ηi,n(x) = n(x − a)n−1(b − x)n−1

{
a + b − 2x, i even,
a − b, i odd.

Proof. Let us suppose [a, b] = [−1, 1]. In this case ψi,n(x) = (1 − x2)nPi(x)
and

ηi,n(x) = −2n(1 − x2)n−1

{
x, i even,
1, i odd.
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By induction on i, we will show that

ψ′
i,n(x) =

i−1∑

k=0
(i+k)odd

(2k + 1)(1 + 2nHi − 2nHk)ψk,n(x) + ηi,n(x). (10)

It is easy to prove that for i = 1 the (10) is true. Let us suppose that relation
(10) is valid for i and (i − 1). Now we use the same technique as in [1]: by
differentiating (8) and by using (4) and the induction hypothesis, relation
(10) can be obtained after performing some lengthy manipulations.

Finally, relation (9) can be obtained after some calculations, by replacing

x in (10) by
2x − b − a

b − a
. �

Let us denote ψ(x) = [ψ0,n(x), ψ1,n(x), . . . , ψN,n(x)].

Corollary 1. The first derivative of ψ(x) can be written as

ψ′(x) = ψ(x)S + ηn(x), (11)

where ηn(x) = (η0,n(x), η1,n(x), . . . , ηn,N (x)), and S = (si,j) is an (N + 1) ×
(N + 1) upper triangular matrix defined as

si,j =

{ 2
b − a

(2j + 1)(1 + 2nHi − 2nHj), i < j, (i + j) odd,

0, otherwise.

Remark 1. It is worthy here to mention that relation (11) for n = 0 reduces
to

ψ′(x) = ψ(x)S. (12)

In this case, S is the operational matrix of derivatives of the shifted Legendre
polynomials defined on [a, b] which is derived and employed in a variety of
papers. Bolek [8] derived this operational matrix for [a, b] ≡ [−1, 1].

Corollary 2. The r-th derivative of ψ(x), r = 0, . . . , 2n + N, is

ψ(r)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ(x)Sr +
r−1∑

j=0

Sr−j−1η(j)
n (x), r = 1 . . . , N,

r−1∑

j=0

Sr−j−1η(j)
n (x), r > N,

(13)

with S0 = I.

4. A Collocation Algorithm for Handling the Even-Order
BVPs

This section is devoted to describing the suggested collocation algorithm
for solving even-order two-point BVPs. The harmonic numbers matrix of
derivatives introduced in Sect. 3 will be employed for this purpose.
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4.1. Homogeneous Boundary Conditions

Suppose that the boundary conditions are homogeneous, that is

u(r)(a) = u(r)(b) = 0, r = 0, . . . , n − 1. (14)

Let Hn
w(a, b) be the weighted Sobolev space

Hn
w(a, b) =

{
v ∈ L2

w(a, b) : for 0 ≤ k ≤ n, v(k) ∈ L2
w(a, b)

}
,

where the last derivative is in the sense of distributions (see [9]).
Let us define the following subspace of Hn

w(a, b):

Hn
0,w(a, b) =

{
v ∈ Hn

w(a, b) : for 0 ≤ j ≤ n − 1, v(j)(a) = v(j)(b) = 0
}

.

Any function u(x) ∈ Hn
0,w(a, b) can be expanded in terms of the orthogonal

functions ψi,n(x)

u(x) =
∞∑

i=0

aiψi,n(x), (15)

with

ai =
2i + 1
b − a

∫ b

a

u(x) ψi,n(x)
(x − a)2n(b − x)2n

dx. (16)

Let u(x) be the solution of (1), (14) and let us suppose u(x) ∈ Hn
0,w(a, b). If

N is large enough, we can consider an approximate solution to u(x) in the
form

u(x) ≈ uN (x) =
N∑

i=0

ai ψi,n(x). (17)

Observe that uN (x) satisfies the boundary conditions (14).
If we put

AT = [a0, a1, . . . , aN ] ,

then uN (x) = ψ(x)A and the differential equation (1) can be written as

ψ(2n)(x)A = f
(
x,ψ(x)A,ψ′(x)A, . . . ,ψ(q)(x)A

)
. (18)

Let {xj}N
j=0 be (N + 1) distinct points in [a, b]. In order to find numerical

approximations to the solution of Problems (1)–(14), we enforce (18) to be
satisfied exactly at xj , j = 0, . . . , N :

ψ(2n)(xj)A = f
(
xj ,ψ(xj)A,ψ′(xj)A, . . . ,ψ(q)(xj)A

)
, j = 0, . . . , N.

(19)
Equation (19) constitutes a system of (N + 1) equations in the unknowns
a0, . . . , aN . It can be written as

ΩA = F (A), (20)

where

Ω =

⎡

⎢
⎢
⎣

ψ
(2n)
0,n (x0) · · · ψ

(2n)
N,n (x0)

...
...

ψ
(2n)
0,n (xN ) · · · ψ

(2n)
N,n (xN )

⎤

⎥
⎥
⎦ ,
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and

F (A) =

⎡

⎢
⎢
⎢
⎣

f
(
x0,ψ(x0)A,ψ′(x0)A, . . . ,ψ(q)(x0)A

)

...
f
(
xN ,ψ(xN )A,ψ′(xN )A, . . . ,ψ(q)(xN )A

)

⎤

⎥
⎥
⎥
⎦

.

Since the polynomials ψ
(2n)
i,n (x), i = 0, . . . , N , are orthogonal, they are linearly

independent and form a basis for the space of polynomials of degree at most
N . Hence, the (N + 1) vectors

[
ψ
(2n)
0,n (x0), . . . , ψ

(2n)
0,n (xN )

]
,
[
ψ
(2n)
1,n (x0), . . . , ψ

(2n)
1,n (xN )

]
, . . . ,

[
ψ
(2n)
N,n (x0), . . . , ψ

(2n)
N,n (xN )

]

are linearly independent so that Ω is a nonsingular matrix.
Observe that if ωij = ψ

(2n)
j−1,n(xi−1), i, j = 1, . . . , N + 1, are the entries

of Ω, then ωi,1 = (−1)n(2n)! for i = 1, . . . , N + 1. Also, if the nodes are
symmetric with respect to (a + b)/2, then

ωi,j = (−1)j+1ωN−i+2,j , i = 1, . . . , N + 1, j = 2, . . . , N + 1.

Observe that Ω depends on n, N and on {xj}N
j=0.

In order to study system (20), we analyze the behavior of
∥
∥Ω−1

∥
∥

∞ for
different values of n, N and different sets of points in [a, b] = [0, 1] (the zeros
of Chebyshev polynomials of first kind (Cheb I), the zeros of Chebyshev
polynomials of second kind (Cheb II), the zeros of Legendre polynomials
(Legen), equidistant points in [a, b] (EqPts)). A deeper theoretical study will
be done in the future.

Tables 1, 2 and 3 show the numerical results.

Theorem 3. Suppose that f is Lipschitzian in u, with nonnegative constants
Lk. If T =

∥
∥Ω−1

∥
∥

∞
∑q

k=0 Lk < 1, then the system (20) has a unique solution
which can be calculated by an iterative method

A(μ+1) = G
(
A(μ)

)
, μ = 1, 2, . . . (21)

with A(0) fixed and

Table 1. Different values of
∥
∥Ω−1

∥
∥

∞ for n = 4

n = 4
∥
∥Ω−1

∥
∥

∞

N = 2 N = 4 N = 10 N = 15 N = 20

Cheb I 2.48 × 10−5 3.45 × 10−5 2.54 × 10−5 2.48 × 10−5 2.48 × 10−5

Cheb II 2.48 × 10−5 2.73 × 10−5 2.48 × 10−5 2.48 × 10−5 2.48 × 10−5

Legen 2.48 × 10−5 2.53 × 10−5 2.48 × 10−5 2.48 × 10−5 2.48 × 10−5

Eqpts 2.48 × 10−5 2.49 × 10−5 2.48 × 10−5 2.48 × 10−5 2.48 × 10−5
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Table 2. Different values of
∥
∥Ω−1

∥
∥

∞ for n = 5

n = 5
∥
∥Ω−1

∥
∥

∞

N = 2 N = 4 N = 10 N = 15 N = 20

Cheb I 2.76 × 10−7 3.72 × 10−7 2.89 × 10−7 2.76 × 10−7 2.76 × 10−7

Cheb II 2.76 × 10−7 3.01 × 10−7 2.75 × 10−7 2.76 × 10−7 2.75 × 10−7

Legen 2.76 × 10−7 2.84 × 10−7 2.76 × 10−7 2.76 × 10−7 2.76 × 10−7

Eqpts 2.76 × 10−7 2.78 × 10−7 2.76 × 10−7 2.76 × 10−7 2.76 × 10−7

Table 3. Different values of
∥
∥Ω−1

∥
∥

∞ for n = 6

n = 6
∥
∥Ω−1

∥
∥

∞

N = 2 N = 4 N = 10 N = 15 N = 20

Cheb I 2.08 × 10−9 2.75 × 10−9 2.26 × 10−9 2.09 × 10−9 2.09 × 10−9

Cheb II 2.08 × 10−9 2.27 × 10−9 2.10 × 10−9 2.09 × 10−9 2.09 × 10−9

Legen 2.09 × 10−9 2.16 × 10−9 2.09 × 10−9 2.09 × 10−9 2.09 × 10−9

Eqpts 2.08 × 10−9 2.11 × 10−9 2.09 × 10−9 2.09 × 10−9 2.09 × 10−9

G(A) = Ω−1F (A).

Moreover,
∥
∥
∥A − A(μ)

∥
∥
∥

∞
≤ Tμ

1 − T

∥
∥
∥A(1) − A(0)

∥
∥
∥

∞
. (22)

Proof. If Ω is invertible, then the system in (20) can be written in the form

A = Ω−1F (A) .

Putting G(A) = Ω−1F (A), we have A = G (A) . Then, ∀ fixed N , if X1,X2 ∈
R

N+1,

G (X1) − G (X2) = Ω−1 [F (X1) − F (X2)]

and

‖G (X1) − G (X2)‖∞ ≤ ∥
∥Ω−1

∥
∥

∞

q∑

k=0

Lk ‖X1 − X2‖∞ .

Hence, if T < 1, G is contractive. The proof goes on with usual techniques.
�

Remark 2. From Tables 1, 2 and 3, the hypothesis
∥
∥Ω−1

∥
∥

∞
∑q

k=0 Lk < 1 of
Theorem 3 can be satisfied at least for n = 4, 5, 6, for N less than or equal
to 20 and when the nodes {xj}N

j=0 are the Chebyshev and Legendre zeros or
equidistant points in [a, b].
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Remark 3. Under the hypothesis of Theorem 3, if ν is the number of iterations
required by method (21) for a fixed tolerance, let A(ν) =

[
a
(ν)
0 , a

(ν)
1 , . . . , a

(ν)
N

]

be the solution of system (20). Let us denote by uν,N (x) the numerical solu-
tion of Problems (1)–(2)

uν,N (x) =
N∑

i=0

a
(ν)
i ψi,n(x).

Then, for all x ∈ (a, b),

uN (x) − uν,N (x) =
N∑

i=0

(
ai − a

(ν)
i

)
ψi,n(x) = ψ(x)

(
A − A(ν)

)
,

and

|uN (x) − uν,N (x)| ≤ T ν

1 − T

∥
∥
∥A(1) − A(0)

∥
∥
∥

∞
(b − a)2n,

since |P ∗
j (x)| ≤ 1, for x ∈ [a, b] (see [9]).

Remark 4. If f is linear, that is f (x,u(x)) =
∑2n−1

i=0
hi(x)u(i)(x) + g(x),

then system (19) is linear too

2n∑

i=0

hi(xj)ψ(i)(xj)A = −g(xj), j = 0, . . . , N,

with h2n(x) = −1. In matrix form:

HA = G,

with G = [g(x0), . . . , g(xN )]T and

H =

⎛

⎜
⎝

u0(x0) · · · uN (x0)
...

. . .
...

u0(xN ) · · · uN (xN )

⎞

⎟
⎠ ,

where ui(xk) =
∑2n

j=0
hj(xk)ψ(j)

i (xk).

4.2. Nonhomogeneous Boundary Conditions

If the boundary conditions are nonhomogeneous as in (2), then the problem
can be easily transformed into an equivalent problem subject to homogeneous
boundary conditions [21] by the transformation:

U(x) = u(x) +
2n−1∑

i=0

cix
i,

where ci, i = 0, . . . , 2n − 1 are constants to be determined such that

U (r)(a) = U (r)(b) = 0 r = 0, . . . , n − 1.
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To this aim, we solve the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n−1∑

i=r

i!
(i − r)!

ai−rci = −αr, r = 0, . . . , n − 1,

2n−1∑

i=r

i!
(i − r)!

bi−rci = −βr, r = 0, . . . , n − 1,

which can be written alternatively in the matrix form

M c = γ,

where c = (c0, . . . , c2n−1)
T , γ = (α0, . . . , αn−1, β0, . . . , βn−1)

T and the ele-
ments mij , i, j = 1, . . . 2n of M are defined as follows:

for i even

mij =

⎧
⎨

⎩

0, 1 ≤ j < i
2 ,

(j − 1)!
(
j − i

2

)
!

bj− i
2 , i

2 ≤ j ≤ 2n,

and for i odd,

mij =

⎧
⎨

⎩

0, 1 ≤ j ≤ i−1
2 ,

(j − 1)!
(
j − i+1

2

)
!
aj− i+1

2 , i−1
2 < j ≤ 2n.

Let Q(x) =
∑2n−1

i=0
cix

i. Now we solve the problem
{

U (2n) (x) = f (x, (U − Q)(x)) , x ∈ [a, b] ,
U (r)(a) = U (r)(b) = 0, r = 0, . . . , n − 1,

(23)

where

(U − Q)(x) =
(
u(x) − Q(x), u′(x) − Q′(x), . . . , u(q)(x) − Q(q)(x)

)
,

0 ≤ q ≤ 2n − 1.

5. Convergence of the Method

In this section, we will investigate the convergence analysis of the presented
method.

Suppose that
u(x) = (x − a)n(b − x)ng(x), (24)

with g(x) ∈ Cn[a, b] and |g(n)(x)| ≤ M , for all x ∈ [a, b], and M a positive
integer.

First we will derive an upper bound for the considered shifted Legendre
expansion (15).

Theorem 4. The expansion coefficients ai in (15) satisfy the inequality

|aj | ≤ M(b − a)n

jn−1
, j ≥ n, (25)

and the series (15) converges uniformly to u(x) in the L2
w norm.
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Proof. From (25) and (7), if u(x) is defined as in (24), we have

aj =
2j + 1
b − a

∫ b

a

u(x)P ∗
j (x)

(x − a)n(b − x)n
dx =

2j + 1
b − a

∫ b

a

g(x)P ∗
j (x) dx. (26)

Now we integrate the right-hand side of (26) by parts n times. For i ≥ n, if
we make use of Theorem 1, we get

aj = (−1)n 2j + 1
b − a

∫ b

a

g(n)(x)I(n)(x)dx,

where

I(n)(x) =
(b − a)n

22n

n∑

�=0

(
n




)
(−1)�

(
j + n − 2
 + 1

2

)
Γ(j − 
 + 1

2 )
Γ(j + n − 
 + 3

2 )
P ∗

j+n−2�(x).

Since |P ∗
j (x)| ≤ 1, for x ∈ [a, b] [9], it is easy to show that the following

inequality holds:

|I(n)(x)| ≤ (b − a)n

22n

n∑

�=0

(
n




) ∣
∣
∣
∣
∣

(
j + n − 2
 + 1

2

)
Γ(j − 
 + 1

2 )
Γ(j + n − 
 + 3

2 )

∣
∣
∣
∣
∣
.

Hence

|aj | ≤ M
(j + 1

2
)(b − a)n

22n−1

n∑

�=0

(
n

�

)
j + n − 2� + 1

2

(j − � + 1
2

+ n)(j − � + 1
2

+ n − 1) · · · (j − � + 1
2
)

= M
(b − a)n

22n−1

n∑

�=0

(
n

�

)
1

∏n−1
s=0
s �=�

(j − � + n − s + 1
2
)

≤ M
(b − a)n

22n−1

n∑

�=0

(
n

�

)
1

(j − � + 1
2
)n−1

≤ M
(b − a)n

2n

n∑

�=0

(
n

�

)
1

(2j − 2� + 1)n−1
<

L(b − a)n

jn−1
.

The uniform convergence of the series follows from (25) and the completeness
of system {ψi,n(x)}i≥0. �

Theorem 5. For all n ≥ 0, the following upper bound holds:

‖u − uN‖w ≤ M(b − a)n+ 1
2

2
√

n − 1Nn−1
. (27)

Proof.

‖u − uN‖2w =
∞∑

j=N+1

b − a

2j + 1
a2

j .

From Theorem 4

‖u − uN‖2w < (b − a)
∞∑

j=N+1

M2(b − a)2n

(2j + 1)j2n−1
<

M2(b − a)2n+1

2

∞∑

j=N+1

1
j2n−1

.
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From the integral test for the convergence of the series, we know that the
series

∑∞
i=1

1
i2n−1 is convergent for n > 1 and for the remainder Rn =∑∞

i=N+1
1

i2n−1 , the following inequality holds:

RN ≤
∫ ∞

N

1
x2n−1

dx.

Hence

‖u − uN‖2w ≤ M2(b − a)2n+1

4(n − 1)N2n−2
,

and

‖u − uN‖w ≤ M(b − a)n+ 1
2

2
√

n − 1Nn−1

and the thesis follows. �

In order to study the convergence of the method, we first prove the
following Lemma.

Lemma 1. Under the hypothesis of Theorem 3, for all N the error ‖uN −
uν,N‖w converges to zero as ν → ∞.

Proof. From Remark 3, since limν→∞ a
(ν)
i = ai, i = 0, . . . , N , for all N we

get

lim
ν→∞ ‖uN − uν,N‖w = 0.

�

Theorem 6. Under the hypothesis of Theorem 3,

lim
ν→∞
N→∞

‖u − uν,N‖w = 0,

where u and uν,N are, respectively, the exact and the numerical solution of
Problems (1)–(2).

Proof. If uN (x) is defined as in (17), we get

‖u − uν,N‖w ≤ ‖u − uN‖w + ‖uN − uν,N‖w.

The result follows from Theorem 5 and Lemma 1. �

6. Numerical Examples

Now we present some numerical results obtained by applying the proposed
method, which we call LegBVP method, to find numerical approximations
of the solutions of some test problems. As the true solutions are known, we
considered the error function e(x) = |u(x) − uν,N (x)| where uν,N (x) is the
approximate solution. As collocation points we used the zeros of Chebyshev
polynomials of second kind.

All computations are carried out using Mathematica, ver. 10. Particu-
larly, the nonlinear system (18) is solved by the NSolve routine. For systems
of algebraic equations, NSolve computes a numerical Gröbner basis using
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an efficient monomial ordering, then uses eigensystem methods to extract
numerical roots.

In most cases analogous results are obtained by using equidistant points
or the zeros of Chebyshev polynomials of the first kind.

Example 1. The computation of diffusion and reaction inside a small porous
catalyst sphere (a pellet) is an important problem in chemical engineering.
The goal is to predict the overall reaction rate, or the mass transfer into and
out of the pellet. Suppose that the spherical pellet of radius rp is isothermal
and that within the pellet a substance (platinum) is distributed in order to
catalyze the dehydrogenation of cyclohexane. The conservation of mass in a
spherical region 0.1 ≤ r ≤ rp is modeled by the boundary value problem [17]:

⎧
⎪⎪⎨

⎪⎪⎩

D

[
1
r2

d
dr

(
r2

dc

dr

)]
= kg(c),

c(0.1) = 10
sinh(0.1φ)
c0 sinh(φ)

, c(1) = c0,
(28)

where c is the concentration of cyclohexane, D is the diffusion constant, k is

the reaction rate constant, φ = rp

√
k
D , while the reaction rate function g(c)

defines the dependence on concentration.
By substituting r/rp → R, c(r)/c(rp) → C(R), Problem (28) can be

written in the following dimensionless form:
⎧
⎪⎨

⎪⎩

d2C

dR2
+

2
R

dC

dR
= φ2g(C),

C(0.1) = 10
sinh(0.1φ)
sinh(φ)

, C(1) = 1,
(29)

where

C =
concentration of cyclohexane

concentration of cyclohexane at the surface of the sphere
.

Assume that the diameter of the pellet is 5 mm and the temperature
700 K. At 700 K the realistic parameter values are k = 4 s−1, D = 0.05 cP2/s
so that φ ≈ 2.236.

If g(C) = C, the analytic solution is

C(R) =
sinh(φR)
sinh(φ)

.

The maximum absolute errors for different values of N by LegBVP method
are compared with the ones obtained by using the Matlab tool Chebfun [24].
They are displayed in Table 4.

Example 2 [5,27,34]. Consider the following eighth-order boundary value
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(8)(x) + xu(x) = −(48 + 15x + x3)ex, x ∈ [0, 1],
u(0) = 0, u(1) = 0,
u′(0) = 1, u′(1) = −e,
u′′(0) = 0, u′′(1) = −4e,
u′′′(0) = −3, u′′′(1) = −9e.

(30)



MJOM A New Collocation Algorithm for Solving Even-Order Page 15 of 20 170

Table 4. Maximum absolute error in Problem (29)

Error in LegBVP Chebfun

N = 10 N = 16

7.4066 × 10−14 3.0531 × 10−16 6.7525 × 10−15

Table 5. Absolute errors and comparisons for Problem (30)

x Method in [27] Method in [34] Method in [5] LegBVP LegBVP

N = 4 N = 8

0.1 3.73 × 10−9 5.62 × 10−10 1.63 × 10−10 2.17 × 10−13 6.23 × 10−18

0.2 6.61 × 10−9 4.88 × 10−9 1.63 × 10−9 1.93 × 10−12 1.94 × 10−18

0.3 2.33 × 10−8 1.37 × 10−8 4.90 × 10−9 4.13 × 10−12 1.08 × 10−17

0.4 5.17 × 10−8 2.29 × 10−8 8.46 × 10−9 3.04 × 10−12 1.40 × 10−17

0.5 9.76 × 10−8 2.71 × 10−8 1.01 × 10−8 1.98 × 10−12 2.34 × 10−17

0.6 1.78 × 10−6 2.38 × 10−8 8.68 × 10−9 6.37 × 10−12 1.03 × 10−17

0.7 6.03 × 10−12 1.49 × 10−8 5.15 × 10−9 2.53 × 10−12 1.99 × 10−17

0.8 1.83 × 10−8 5.54 × 10−8 1.76 × 10−9 3.1 × 10−4 6.06 × 10−17

The analytic solution is u (x) = x(1 − x)ex .
The absolute errors obtained by using the proposed algorithm LegBVP

for N = 4 and N = 8 are compared with those obtained by applying the
three methods:

• Adomian decomposition method in [27].
• Non-polynomial spline technique in [34].
• Reproducing kernel space in [5].

As we can see from Table 5, we obtain smaller error by using LegBVP method
than by applying the above mentioned methods even when N is small.

Example 3. Consider the nonlinear tenth-order boundary value problem [29]:
{

u(10)(x) − u′′′(x) = 2exu2(x), x ∈ [0, 1],
u(i)(0) = (−1)i, u(i)(1) = (−1)i

e , i = 0, . . . , 4.
(31)

The exact solution of the above problem is u (x) = e−x .
The proposed method compares favorably with the quintic B-spline col-

location method presented in [29], as Table 6 shows.
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Table 6. Absolute errors and comparisons for Problem (31)

x Method in [29] LegBVP
N = 2

0.1 4.82 × 10−6 4.69 × 10−16

0.2 2.44 × 10−6 7.01 × 10−15

0.3 1.48 × 10−5 1.99 × 10−14

0.4 1.78 × 10−5 2.37 × 10−14

0.5 1.23 × 10−5 1.02 × 10−14

0.6 4.78 × 10−6 5.99 × 10−15

0.7 4.59 × 10−6 7.74 × 10−15

0.8 5.72 × 10−6 4.52 × 10−15

0.9 2.23 × 10−6 1.99 × 10−14

Table 7. Absolute errors and comparisons for Problem (32)

x Method in [28] LegBVP
N = 2

0.1 7.51 × 10−14 1.21 × 10−16

0.2 2.77 × 10−12 2.91 × 10−15

0.3 1.73 × 10−13 8.95 × 10−15

0.4 5.02 × 10−11 5.80 × 10−15

0.5 9.34 × 10−11 1.06 × 10−14

0.6 1.28 × 10−10 1.99 × 10−14

0.7 1.39 × 10−10 4.23 × 10−15

0.8 1.23 × 10−10 3.56 × 10−14

0.9 7.45 × 10−11 1.10 × 10−13

1.0 1.95 × 10−11 1.42 × 10−14

Example 4. Consider the linear twelfth-order boundary value problem [28,
35,37]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(12)(x) + xu(x) = −(120 + 23x + x3)ex, x ∈ [0, 1],
u(0) = 0, u(1) = 0,
u′(0) = 1, u′(1) = −e,
u′′(0) = 0, u′′(1) = −4e,
u′′′(0) = −3, u′′′(1) = −9e,
u(4)(0) = −8, u(4)(1) = −16e,
u(5)(0) = −15, u(5)(1) = −25e.

(32)

The exact solution u (x) = x(1 − x)ex .
In Table 7, we compare the results obtained by the proposed method for

N = 2, with those obtained by the application of the differential transform
method developed in [28]. The table shows that our results are more accurate
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Table 8. Comparison between different methods for Problem (32)

Best error Method in [37] Method in [35] Method in [37] LegBVP
N = 2

E 2.7 × 10−3 7.38 × 10−9 1.39 × 10−10 1.10 × 10−13

Table 9. Absolute errors and comparisons for Problem (5)

x Method in [28] Method in [6] LegBVP
N = 4

0.1 4.11 × 10−15 7.93 × 10−16 0.00
0.2 1.30 × 10−13 2.21 × 10−14 3.33 × 10−16

0.3 6.75 × 10−13 1.11 × 10−13 1.30 × 10−14

0.4 1.53 × 10−12 2.46 × 10−13 6.59 × 10−14

0.5 1.98 × 10−12 3.12 × 10−13 1.48 × 10−13

0.6 1.57 × 10−12 2.43 × 10−13 1.89 × 10−13

0.7 7.17 × 10−13 1.15 × 10−13 1.45 × 10−13

0.8 1.42 × 10−13 1.40 × 10−14 5.53 × 10−14

0.9 4.16 × 10−15 1.97 × 10−14 2.26 × 10−14

1.0 1.22 × 10−15 2.26 × 10−13 9.46 × 10−14

than those in [28]. In addition, in Table 8, we display the best absolute errors
obtained by different methods.

Example 5. Consider the nonlinear twelfth-order boundary value problem [6,
28] {

u(12)(x) = 2exu2(x) + u(3)(x), x ∈ [0, 1],
u(k)(0) = (−1)k, u(k)(1) = (−1)ke−1, k = 0, . . . , 5.

(33)

The analytic solution of the above problem is u (x) = e−x .
The proposed method compares favorably with the methods presented

in [28] and [6], as Table 9 shows.

7. Conclusions

In this paper we have obtained new numerical solutions for general even-order
two-point boundary value problems. The basic idea behind the suggested
solutions is to introduce matrix of derivatives as a certain combination of
Legendre polynomials along with the application of the collocation spectral
method. Given a set of (N +1) distinct points in (a, b), the true solution u(x)
of the problem is approximated by a polynomial uN (x) of degree (2n + N).
uN (x) is the truncated series expansion of u(x) in terms of orthogonal poly-
nomials related to Legendre polynomials. The coefficients of the expansion
are determined by requiring that the differential equation is satisfied exactly
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at the (N +1) given points. Convergence and error analysis of the expansion
has been carefully studied. Numerical examples support theoretical results
and show that high accuracy in the approximation is achieved with small
values of N .
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