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Sharp Bounds for the Ratio of Modified
Bessel Functions
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Abstract. Let Iν(x) be the modified Bessel functions of the first kind
of order ν, and Sp,ν(x) = Wν(x)2 − 2pWν(x) − x2 with Wν(x) =
xIν(x)/Iν+1(x). We achieve necessary and sufficient conditions for the
inequality Sp,ν(x) < u or Sp,ν(x) > l to hold for x > 0 by estab-
lishing the monotonicity of Sp,ν(x) in x ∈ (0, ∞) with ν > −3/2. In
addition, the best parameters p and q are obtained to the inequality

Wν(x) < (>)p +
√

x2 + q2 for x > 0. Our main achievements improve
some known results, and it seems to answer an open problem recently
posed by Hornik and Grün (J Math Anal Appl 408:91–101, 2013).
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1. Introduction

Bessel functions as the solutions of Bessel’s equations occur frequently in ad-
vanced studies in applied mathematics, physics, and engineering. The modi-
fied Bessel function of the first kind of order ν, denoted by Iν (x) as usual (cf.
[30, page 77], is a particular solution of the following second-order differential
equation:

x2y′′ (x) + xy′ (x) − (x2 + ν2)y (x) = 0, (1.1)

which is explicitly expressed by the infinite series

Iν (x) =
∞∑

n=0

(x/2)2n+ν

n!Γ (ν + n + 1)
=

(x/2)ν

Γ (ν + 1)

∞∑

n=0

(x/2)2n

n! (ν + 1)n

(1.2)
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for any x ∈ R and ν ∈ R\{−1,−2, . . .}, where (a)n is the Pochhammer
symbol defined by

(a)n = a (a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)

for any n ∈ N with (a)0 = 1 for a �= 0,−1,−2, . . ..
It follows from [30, page 79] that Iν satisfies the recurrence relations

xI ′
ν (x) + νIν (x) = xIν−1 (x) , (1.3)

xI ′
ν (x) − νIν (x) = xIν+1 (x) , (1.4)

which implies that
xI ′

ν (x)
Iν (x)

=
xIν−1 (x)

Iν (x)
− ν =

xIν+1 (x)
Iν (x)

+ ν.

It is worth pointing out that the ratio xIν (x) /Iν+1 (x) plays an important
role in finite elasticity [26,27] and epidemiological models [18,19], while an-
other ratio Iν+1 (x) /Iν (x) has also appeared in probability and statistics
[9,11,24] with various applications in chemical kinetics [2,17], optics [28] and
signal processing [14]. For convenience, for any x > 0 and p + |q| ≥ 0 in the
context we write by

Wν (x) =
xIν (x)
Iν+1 (x)

, Ap,q (x) = p +
√

x2 + q2 ,

Rν (x) =
Iν+1 (x)
Iν (x)

, Gp,q (x) =
x

p +
√

x2 + q2
.

Obviously, Wν (x) = x/Rν (x).
Amos in 1974 first showed the bounds Gp,q (x) for the ratio Rν (x) (cf.

formulas (11) and (16) in [3]) that for x, ν ≥ 0 there hold

Gν+1,ν+1 (x) < Rν (x) < Gν,ν+2 (x) , (1.5)
Gν+1/2,ν+3/2 (x) < Rν (x) < Gν+1/2,ν+1/2 (x) . (1.6)

For this reason, Gp,q (x) is called Amos-type bound for Rν (x) by Hornik and
Grün in [12]. For ν > −1 and p + |q| ≥ 0 it is easily seen that

Wν (x) < (>) Ap,q (x) ⇐⇒ Rν (x) > (<) Gp,q (x) . (1.7)

So, one also calls Ap,q (x) as Amos-type bound for Wν (x), and these inequal-
ities (1.7) above are called Amos-type ones.

In 1984, Simpson and Spector gave an alternative type inequality in-
volving the ratio Wν (x) as follows:

Wν (x)2 − (2ν + 1) Wν (x) − (x2 + ν +
1
2
) > 0, ∀ν ≥ 0, (1.8)

for details to see Theorem 2 in [26]. For this, such an inequality similar to
(1.8) is called as Simpson–Spector-type inequality for Wν (x). It is clear that
Simpson–Spector-type inequality (1.8) can be written that for ν ≥ 0,

A
ν+1/2,

√
(ν+1/2)(ν+3/2)

(x) = ν +
1
2

+

√

x2 +
(

ν +
1
2

)(
ν +

3
2

)
< Wν (x) .

(1.9)
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We would like to remark that Neuman in [21, Proposition 5] presented
another Simpson–Spector-type inequality for Wν (x) as follows:

Wν (x)2 − (2ν + 1) Wν (x) −
(

x2 + ν +
1
2

)
< ν +

3
2
, ∀ν > −3

2
, (1.10)

which extended the range of order ν from [0,∞) to (−1,∞) such that the
first inequality of (1.6) holds. A companion one of (1.10) is due to Baricz and
Neuman (cf. [4, Theorem 2.2]):

Wν (x)2 − 2νWν (x) − x2 > 4 (ν + 1) , for all ν > −2, (1.11)

which indicates that the second inequality in (1.5) holds for ν > −1.
Recently, Hornik and Grün [12] systematically investigated the lower

and upper bounds for the modified Bessel functions ratio Rν = Iν+1/Iν

based on various results mentioned above and other involving achievements,
for examples, [20], [33, E1. (A.5)], [16, Theorem 1.1], [25, Formulas (22) and
(61)], [15]. They showed that the lower bound in (1.6) and upper bound in
(1.5) for ν > −1 are the best, and further extended the range of the inequality
(1.9) from ν ≥ 0 to ν ≥ −1/2. Moreover, they pointed out that the range
of −1 < ν < −1/2 deserves further investigation such that the inequality
Rν (x) < (>) Gp,q (x) holds for x > 0.

Other results concerning Amos-type inequality or Simpson–Spector-
type inequality can be found in [5–8,22] and references, therein.

Motivated by Hornik and Grün’s work and recent results mentioned
above, the main aim of this paper is to study the monotonicity of the function

x 
→ Sp,ν (x) = Wν (x)2 − 2pWν (x) − x2 (1.12)

on (0,∞) for ν > −3/2 by way of some power series expressions, and pro-
vide the necessary and sufficient conditions for the Simpson–Spector type
inequality Sp,ν (x) < u or Sp,ν (x) > l for any x > 0. The second aim is to
determine the best parameters p and q such that the Amos-type inequality
Wν (x) < (>) Ap,q (x) holds for x ∈ (0,∞), which in fact give new proofs of
those inequalities mentioned previously and answers an open problem posted
by Hornik and Grün [12].

The rest of the paper is organized as follows. We first give some auxiliary
lemmas in Sect. 2. In Sect. 3, we are devoted to dealing with the monotonic-
ity of Sp,ν(x) in accordance with the different ranges of p, and use it to
establish the necessary and sufficient conditions such that Simpson-Spector
type inequalities hold for ν > −3/2. In the last section, we give sharp con-
stants p and q satisfying the Amos-type inequality Wν (x) < (>) Ap,q (x) for
ν > −3/2, and present some new Amos-type bounds Gp,q (x) for Rν(x) in
the case of −1 < ν < −1/2.

2. Some Lemmas

To prove our results, we need to present some auxiliary lemmas. The first
lemma is crucial which first appeared in [29, (3.5)] (see also [13]).
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Lemma 2.1. Let Iν be the modified Bessel functions of the first kind of order
ν given by (1.2). Then, we have

Iu (x) Iν (x) =
1

Γ (u + 1) Γ (ν + 1)

∞∑

n=0

(u + ν + n + 1)n

n! (u + 1)n (ν + 1)n

(x

2

)2n+u+ν

,

(2.1)

Iν (x)2 =
1

Γ (ν + 1)2

∞∑

n=0

(2ν + n + 1)n

n! (ν + 1)2n

(x

2

)2n+2ν

. (2.2)

The following two lemmas are powerful tools to treat the monotonicity
of ratios between two power series.

Lemma 2.2. [10] Let A (t) =
∑∞

k=0 aktk and B (t) =
∑∞

k=0 bktk be two real
power series converging on (−r, r) for some r > 0 with bk > 0 for all k. If
the sequence {ak/bk} is increasing (or decreasing) for all k, then the function
t 
→ A (t) /B (t) is also increasing (or decreasing) on (0, r).

Lemma 2.3. ([31], [32, Corollary 2.3]) Let A (t) =
∑∞

k=0 aktk and B (t) =∑∞
k=0 bktk be two real power series converging on R with bk > 0 for all k.

If for certain m ∈ N, the non-constant sequence {ak/bk} is increasing (or
decreasing) for 0 ≤ k ≤ m and decreasing (or increasing) for k > m, then
there is a unique t0 ∈ (0,∞) such that the function A/B is increasing (or
decreasing) on (0, t0) and decreasing (or increasing) on (t0,∞).

Remark 2.4. The condition in [32, Corollary 2.3] that “the non-constant se-
quence {ak/bk} is increasing (or decreasing) for 0 ≤ k ≤ m and decreasing
(or increasing) for k ≥ m” contains the two special cases: ak/bk = a0/b0 for
0 ≤ k ≤ m and ak/bk = am/bm for k ≥ m. In the two cases, the conclu-
sion of Yang et al. [32, Corollary 2.3] is obviously not true. Consequently,
the range of k that “0 ≤ k ≤ m” should be modified as “ 0 ≤ k < m”, or
replaced “k ≥ m” by “k > m”. The same modification should also apply to
[32, Theorem 2.1].

Lemma 2.5. [23, Problems 85, 94] If two given sequences {an}n≥0 and
{bn}n≥0 satisfy the following conditions:

bn > 0,
∞∑

n=0

bntn converges for all values of t, and lim
n→∞

an

bn
= s;

then
∑∞

n=0 antn must be convergent for all values of t too, and

lim
t→∞

∑∞
n=0 antn

∑∞
n=0 bntn

= s.
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3. Monotonicity of Sp,ν and Simpson–Spector-Type
Inequalities

In this section, we are devoted to investigating the monotonicity of Sp,ν(x)
in accordance with the different ranges of p, and use it to attain Simpson–
Spector-type inequalities. Let

f1 (x) := x2Iν (x)2 − 2pxIν (x) Iν+1 (x) − x2Iν+1 (x)2 ,

f2 (x) := Iν+1 (x)2 .

Then Sp,ν (x) can be expressed by

Sp,ν (x) =
x2Iν (x)2 − 2pxIν (x) Iν+1 (x) − x2Iν+1 (x)2

Iν+1 (x)2
=

f1 (x)
f2 (x)

.

Combining the formulas (2.1) and (2.2) yields

f1 (x) = x2Iν (x)2 − 2pxIν (x) Iν+1 (x) − x2Iν+1 (x)2

=
4

Γ (ν + 1)2

∞∑

n=0

(2ν + n + 1)n

n! (ν + 1)2n

(x

2

)2n+2ν+2

− 4p

Γ (ν + 2) Γ (ν + 1)

∞∑

n=0

(2ν + n + 2)n

n! (ν + 2)n (ν + 1)n

(x

2

)2n+2ν+2

−
(x

2

)2 4
Γ (ν + 2)2

∞∑

n=0

(2ν + n + 3)n

n! (ν + 2)2n

(x

2

)2n+2ν+2

=
4

Γ (ν + 1)2
ν − p + 1

ν + 1

(
x2

4

)ν+1

+
4

Γ (ν + 1)2

(
x2

4

)ν+1

×
∞∑

n=1

(2ν + n + 2)n

n! (ν + 1)2n

(2ν − 2p + 1) n − (2ν + 1) (p − ν − 1)
(2n + 2ν + 1) (n + ν + 1)

(
x2

4

)n

:=
1

Γ (ν + 1)2

(
x2

4

)ν+1 ∞∑

n=0

an

(
x2

4

)n

,

where

an = 4
(2ν − 2p + 1) n + (2ν + 1) (ν + 1 − p)

(2n + 2ν + 1) (n + ν + 1)
(2ν + n + 2)n

n! (ν + 1)2n
. (3.1)

In a similar way, we have

f2 (x) = Iν+1 (x)2 =
1

Γ (ν + 1)2

∞∑

n=0

(2ν + n + 3)n

n! (ν + 1)2n+1

(x

2

)2n+2ν+2

=
1

Γ (ν + 1)2

(
x2

4

)ν+1 ∞∑

n=0

bn

(
x2

4

)n

,

where

bn =
2

(n + ν + 1) (n + 2ν + 2)
(2ν + n + 2)n

n! (ν + 1)2n
. (3.2)
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Therefore,

Sp,ν (x) =
f1 (x)
f2 (x)

=
1

Γ(ν+1)2

(
x2

4

)ν+1∑∞
n=0 an

(
x2

4

)n

1
Γ(ν+1)2

(
x2

4

)ν+1∑∞
n=0 bn

(
x2

4

)n =
∑∞

n=0 an

(
x2/4

)n

∑∞
n=0 bn (x2/4)n ,

and
an

bn
= 2

n + 2ν + 2
2n + 2ν + 1

((2ν − 2p + 1) n + (2ν + 1) (ν + 1 − p)) . (3.3)

It is easily seen that

Sp,ν (0) = lim
x→0

f1 (x)
f2 (x)

=
a0

b0
= 4 (ν + 1) (ν + 1 − p) , (3.4)

and from Lemma 2.5, it is deduced that

Sp,ν (∞) = lim
x→∞

f1 (x)
f2 (x)

= lim
n→∞

an

bn
=

⎧
⎨

⎩

−∞, if p > ν + 1
2 ,

ν + 1
2 , if p = ν + 1

2 ,
∞, if p < ν + 1

2 .
(3.5)

To determine the monotonicity of Sp,ν , by Lemmas 2.2 and 2.3, it suffices to
observe the monotonicity of the sequence {an/bn}. To that end, we observe

an+1

bn+1
− an

bn
= −2 (p − hn (ν)) , (3.6)

where

hn (ν) = (2ν + 1)
2n2 + 4 (ν + 1) n + ν (2ν + 3)
(2n + 2ν + 1) (2n + 2ν + 3)

.

A simple computation yields

hn+1 (ν) − hn (ν) =
2 (2ν + 1) (2ν + 3)

(2n + 2ν + 1) (2n + 2ν + 3) (2n + 2ν + 5)

=

⎧
⎨

⎩

> 0, if ν > −1/2,
> 0, if − 3/2 < ν < −1/2 and n = 0,
< 0, if − 3/2 < ν < −1/2 and n ≥ 1,

(3.7)

which shows that for ν > −1/2,

ν = h0 (ν) < hn (ν) < h∞ (ν) = ν +
1
2
, n ≥ 0; (3.8)

and for −3/2 < ν < −1/2,

ν = h0 (ν) < hn (ν) < h1 (ν) =
(2ν + 1) (ν + 2)

2ν + 5
, n = 0, 1; (3.9)

ν +
1
2

= h∞ (ν) < hn (ν) < h1 (ν) =
(2ν + 1) (ν + 2)

2ν + 5
, n ≥ 1. (3.10)

We are now in a position to discuss the monotonicity of Sp,ν in accor-
dance with the different cases of ν and p.

Case 1. While ν ≥ −1/2, it can be divided into three subcases to discuss.
Subcase 1.1. If p ≥ ν + 1/2, from relations (3.6) and (3.8), then it

is clearly seen that an+1/bn+1 − an/bn ≤ 0 for all n ≥ 0, which means
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that the sequence {an/bn}n≥0 is decreasing. By Lemma 2.2, it follows that
x 
→ f1 (x) /f2 (x) is decreasing on (0,∞). Therefore,

−∞, if p > ν + 1
2

ν + 1
2 , if p = ν + 1

2

}
= lim

n→∞
an

bn
= lim

x→∞
f1 (x)
f2 (x)

<
f1 (x)
f2 (x)

< lim
x→0

f1 (x)
f2 (x)

=
a0

b0
= 4 (ν + 1) (ν + 1 − p) .

Subcase 1.2. If p ≤ ν, similarly, we have an+1/bn+1 − an/bn ≥ 0 for
n ≥ 0, that is to say, then the sequence {an/bn}n≥0 is increasing. By Lemma
2.2, it follows that x 
→ f1 (x) /f2 (x) is increasing on (0,∞). Hence,

4 (ν + 1) (ν − p + 1) = lim
x→0

f1 (x)
f2 (x)

<
f1 (x)
f2 (x)

< lim
x→∞

f1 (x)
f2 (x)

= ∞.

Subcase 1.3. If ν < p < ν + 1/2, as mentioned previously then the
sequence {hn (ν)}n≥0 is increasing, so {p − hn (ν)}n≥0 is decreasing. This
together with

p − h0 (ν) = p − ν > 0 and p − h∞ (ν) = p −
(

ν +
1
2

)
< 0

reveals that there is an n0 ≥ 1 such that p − hn (ν) > 0 for 0 ≤ n ≤ n0, and
p − hn (ν) < 0 for n ≥ n0. Combining with (3.6) yields that the sequence
{an/bn} is decreasing for 0 ≤ n ≤ n0 and increasing for n ≥ n0. By Lemma
2.3, it is deduced that there is an x0 > 0 such that f1/f2 is decreasing on
(0, x0) and increasing on (x0,∞). Thus,

λp,ν =
f1 (x0)
f2 (x0)

<
f1 (x)
f2 (x)

< lim
x→0

f1 (x)
f2 (x)

= 4 (ν + 1) (ν − p + 1) , ∀x ∈ (0, x0) ,

(3.11)

λp,ν =
f1 (x0)
f2 (x0)

≤ f1 (x)
f2 (x)

< lim
x→∞

f1 (x)
f2 (x)

= ∞, ∀x ∈ (x0,∞) ,

which implies that
f1 (x)
f2 (x)

≥ λp,ν , ∀x ∈ (0,∞) .

We now summarize these results above. More precisely, we have

Theorem 3.1. Let Sp,ν be defined on (0,∞) by (1.12) for ν > −1/2. Then we
have

(i) If p > ν + 1/2, then the function Sp,ν is decreasing from (0,∞) onto
(−∞, 4 (ν + 1) (ν + 1 − p)).

(ii) If p = ν + 1/2, then the function Sp,ν is decreasing from (0,∞) onto
(ν + 1/2, 2 (ν + 1)).

(iii) If ν < p < ν + 1/2, then there is an x0 > 0 such that Sp,ν is decreasing
on (0, x0) and increasing on (x0,∞), with the estimate

λp,ν ≤ Sp,ν (x) < ∞,

where λp,ν = Sp,ν (x0), x0 is a unique solution of the equation Sp,ν (x) =
0 on (0,∞).
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(iv) If p ≤ ν, then one has that the function Sp,ν is increasing from (0,∞)
onto (4 (ν + 1) (ν + 1 − p) ,∞).

Remark 3.2. It is well known that W−1/2 (x) = x coth x, so we easily check
that Theorem 3.1 is also true for ν = −1/2.

Thanks to Theorem 3.1 together with the remark above, we immediately
conclude the following statement.

Theorem 3.3. Let ν ≥ −1/2. Then, we have
(i) Sp,ν (x) < u holds for all x > 0 if and only if u ≥ 4 (ν + 1) (ν + 1 − p)

and p ≥ ν + 1/2;
(ii) l < Sp,ν (x) holds for all x > 0 if and only if

l ≤ L1 (p, ν) =

⎧
⎨

⎩

ν + 1
2 , if p = ν + 1

2 ,
λp,ν > 0, if ν < p < ν + 1

2 ,
4 (ν + 1) (ν + 1 − p) , if p ≤ ν,

(3.12)

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation
Sp,ν (x) = 0 on (0,∞).

Case 2. While −3/2 < ν < −1/2, as shown previously the sequence
{hn (ν)}n≥0 is increasing for n = 0, 1 and decreasing for n ≥ 1. Then, we
have

h0 (ν) = ν < ν +
1
2

= h∞ (ν) < hn (ν) ≤ h1 (ν) =
(2ν + 1) (ν + 2)

2ν + 5
.

We now distinguish four subcases to discuss.
Subcase 2.1. If p ≥ maxn≥0 (hn (ν)) = (2ν + 1) (ν + 2) / (2ν + 5), from

relations (3.6), (3.9) and (3.10), we clearly see that an+1/bn+1 − an/bn ≤ 0
for n ≥ 0, that is, the sequence {an/bn}n≥0 is decreasing, and so is f1/f2 on
(0,∞) due to Lemma 2.2. Therefore,

−∞ = lim
x→∞

f1 (x)
f2 (x)

<
f1 (x)
f2 (x)

< lim
x→0

f1 (x)
f2 (x)

=
a0

b0
= 4 (ν + 1) (ν + 1 − p)

for all x > 0.
Subcase 2.2. If p ≤ minn≥0 (hn (ν)) = ν, then we clearly have an+1/

bn+1 − an/bn ≥ 0 for n ≥ 0, which implies that the sequence {an/bn}n≥0 is
increasing, and so is f1/f2 on (0,∞) due to Lemma 2.2. It follows that

4 (ν + 1) (ν + 1 − p) =
a0

b0
= lim

x→0

f1 (x)
f2 (x)

<
f1 (x)
f2 (x)

< lim
x→∞

f1 (x)
f2 (x)

= ∞
hold for all x > 0.

Subcase 2.3. If ν = h0 (ν) < p ≤ h∞ (ν) = ν +1/2, from (3.6), (3.9) and
(3.10), then we have

a1

b1
− a0

b0
= −2 (p − ν) < 0,

an+1

bn+1
− an

bn
= −2 [p − hn (ν)] > 0, for n ≥ 1. (3.13)

This shows that the sequence {an/bn}n≥0 is decreasing only for n = 0, 1; and
increasing for n ≥ 1. By Lemma 2.3, there exists an x0 > 0 such that f1/f2
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is decreasing on (0, x0) and increasing on (x0,∞), and so we have that for
x ∈ (0, x0),

λp,ν =
f1 (x0)
f2 (x0)

<
f1 (x)
f2 (x)

< lim
x→0

f1 (x)
f2 (x)

= 4 (ν + 1) (ν + 1 − p)

and for x ∈ (x0,∞),

λp,ν =
f1 (x0)
f2 (x0)

<
f1 (x)
f2 (x)

< lim
x→∞

f1 (x)
f2 (x)

=
{

ν + 1
2 , if p = ν + 1/2,

∞, if ν < p < ν + 1/2;

or

λp,ν ≤ f1 (x)
f2 (x)

<

{
2ν + 2, if p = ν + 1/2,
∞, if ν < p < ν + 1/2.

Subcase 2.4. If ν + 1/2 = h∞ (ν) < p < h1 (ν) = (2ν + 1) (ν + 2) /(2ν
+5), from (3.13), we see that the sequence {an/bn} is decreasing for n = 0, 1.
Note that {hn (ν)}n≥1 is decreasing, so {p − hn (ν)}n≥1 is increasing, which
together with the facts that

p − h1 (ν) = p − (2ν + 1) (ν + 2)
2ν + 5

< 0 and p − h∞ (ν) = p −
(

ν +
1
2

)
> 0

reveals that there is an n1 > 1 such that p − hn (ν) < 0 for 1 ≤ n ≤ n1,
and p − hn (ν) > 0 for n ≥ n1. Combining (3.6) we see that the sequence
{an/bn} is increasing for 1 ≤ n ≤ n1 and decreasing for n ≥ n1. It thus can
be seen that the sequence {an/bn} is decreasing for n = 0, 1 and increasing
for 1 ≤ n ≤ n0 then decreasing for n ≥ n0.

Obviously, we are not able to describe the monotone pattern of f1/f2

by directly using Lemmas 2.2 and 2.3. However, we can show that

− ∞ <
f1 (x)
f2 (x)

< lim
x→0

f1 (x)
f2 (x)

=
a0

b0
, ∀x > 0. (3.14)

In fact, for any n ≥ 1, we have
an

bn
− a0

b0

=
2(n + 2ν + 2)

2n + 2ν + 1
((2ν − 2p + 1)n + (2ν + 1)(ν + 1 − p)) − 4(ν + 1)(ν + 1 − p)

= − 2n

2n + 2ν + 1
(p (2n + 2ν + 1) − (2ν + 1) n − (ν + 1) (2ν − 1))

< − 2n

2n + 2ν + 1

[(
(ν +

1

2
)(2n + 2ν + 1) − (2ν + 1) n − (ν + 1) (2ν − 1)

)]

= −n
2ν + 3

2n + 2ν + 1
< 0,

where the inequality holds due to −3/2 < ν < −1/2 and ν + 1/2 < p <
(2ν + 1) (ν + 2) / (2ν + 5). This implies that an/bn ≤ a0/b0 for any n ≥ 0.
Since bn > 0 for n ≥ 0, we have

f1 (x)
f2 (x)

=
∑∞

n=0 an

(
x2/4

)n

∑∞
n=0 bn (x2/4)n <

∑∞
n=0 (a0/b0) bn

(
x2/4

)n

∑∞
n=0 bn (x2/4)n =

a0

b0
.
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On the other hand, it is evident that

lim
x→∞

f1 (x)
f2 (x)

= lim
n→∞

an

bn
= sgn (2ν − 2p + 1) ∞ = −∞,

which proves (3.14).
By summarizing the subcases 2.1–2.4, we conclude the following results.

Theorem 3.4. For −3/2 < ν < −1/2, let Sp,ν be defined by (1.12).

(i) If p ≥ (2ν + 1) (ν + 2) / (2ν + 5), then the function Sp,ν is decreasing
from (0,∞) onto (−∞, 4 (ν + 1) (ν + 1 − p)).

(ii) If ν + 1/2 < p < (2ν + 1) (ν + 2) / (2ν + 5), then we always have

−∞ < Sp,ν (x) < 4 (ν + 1) (ν − p + 1) , ∀x > 0.

(iii) If p = ν + 1/2, then there exists an x0 > 0 such that Sp,ν is decreasing
on (0, x0) and increasing on (x0,∞) with the estimates

λp,ν ≤ Sp,ν (x) < 2ν + 2, ∀x > 0,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation
S′

p,ν (x) = 0 on (0,∞).
(iv) If ν < p < ν + 1/2, then there is an x0 > 0 such that Sp,ν is decreasing

on (0, x0), and increasing on (x0,∞) with

λp,ν ≤ Sp,ν (x) < ∞, ∀x > 0,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation
S′

p,ν (x) = 0 on (0,∞).
(v) If p ≤ ν, then one has that the function Sp,ν is increasing from (0,∞)

onto (4 (ν + 1) (ν + 1 − p) ,∞).

Theorem 3.5. Let −3/2 < ν < −1/2. Then, we have

(i) the inequality Sp,ν (x) < u holds for all x > 0 if and only if u ≥
4 (ν + 1) (ν + 1 − p) and p ≥ ν + 1/2;

(ii) the inequality l < Sp,ν (x) holds for all x > 0 if and only if

l ≤ L2 (p, ν) =
{

λp,ν , if ν < p ≤ ν + 1
2 ,

4 (ν + 1) (ν + 1 − p) , if p ≤ ν,

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation
S′

p,ν (x) = 0 on (0,∞).

On the basis of Theorems 3.3 and 3.5, we immediately obtain the fol-
lowing corollary.

Corollary 3.6. Let ν > −3/2. Then the inequality Sp,ν (x) < u holds for all
x > 0 if and only if u ≥ 4 (ν + 1) (ν + 1 − p) and p ≥ ν + 1/2.

Remark 3.7. In particular, by taking p = ν+1/2 and u = 4 (ν + 1) (ν + 1 − p)
we deduce (1.10) which was first proved in [21, Proposition 5].
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Corollary 3.8. Let ν > −3/2. Then the inequality l < Sp,ν (x) holds for all
x > 0 if and only if

l ≤ L (p, ν) =

⎧
⎪⎪⎨

⎪⎪⎩

ν + 1
2 , if p = ν + 1

2 , ν > − 1
2 ,

λp,ν , if p = ν + 1
2 , 3

2 < ν < − 1
2 ,

λp,ν , if ν < p < ν + 1
2 ,

4 (ν + 1) (ν + 1 − p) , if p ≤ ν,

(3.15)

where λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′
p,ν (x) =

0 on (0,∞).

Remark 3.9. Taking p = ν + 1/2 and l = L (p, ν) for ν > −1/2 in Corollary
3.8, we derive inequality (1.8) proved in [26]. Letting p = ν and l = L (p, ν)
yields inequality (1.11) for ν > −3/2. We claim that inequality (1.11) is valid
for ν > −2, which suffices to show that the sequence {an/bn}n≥0 is increasing
for ν > −2 by Lemma 2.2. Indeed, if p = ν > −2, then we have

b0 =
1

(ν + 1)2
> 0, b1 =

2
(ν + 1)2 (ν + 2)

> 0

and bn > 0 for n ≥ 2, and
a1

b1
− a0

b0
= 0,

a2

b2
− a1

b1
=

4
2ν + 5

> 0,

an+1

bn+1
− an

bn
=

4n (n + 2ν + 2)
(2n + 2ν + 1) (2n + 2ν + 3)

> 0 for n ≥ 2.

4. Amos-Type Inequalities for Wν (x)

In this section, we mainly are devoted to showing the necessary and sufficient
conditions for the Amos-type inequality

Wν (x) =
xIν (x)
Iν+1 (x)

< (>)p +
√

x2 + q2 = Ap,q (x) , ∀x > 0. (4.1)

Similar to [12, Theorem 1], we have the following lemma.

Lemma 4.1. Let ν > −3/2 and p ∈ R, q ≥ 0. If Amos-type inequality (4.1)
holds for all x > 0, then it is necessary to ensure

p ≥ (≤)ν +
1
2
, and p + q ≥ (≤)2 (ν + 1) .

Proof. Using the asymptotic formulas

Iν (x) ∼
(x

2

)ν

/Γ (ν + 1) as x → 0, (4.2)

Iν (x) ∼ ex

√
2πx

(
1 − 4ν2 − 1

1! (8x)

)
as x → ∞ (4.3)

listed in [1, page 375 and 377], we have

xIν (x)
Iν+1 (x)

−
(
p +

√
x2 + q2

)
∼ x

(
x
2

)ν
/Γ (ν + 1)

(
x
2

)ν+1
/Γ (ν + 2)

−
(
p +

√
x2 + q2

)

−→ 2 (ν + 1) − (p + q) , as x → 0,
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and

xIν (x)
Iν+1 (x)

−
(
p +

√
x2 + q2

)
∼

x ex√
2πx

(
1 − 4ν2−1

8x

)

ex√
2πx

(
1 − 4(ν+1)2−1

8x

) −
(
p +

√
x2 + q2

)

=
x
(
8x − 4ν2 + 1

)

8x − (2ν + 3) (2ν + 1)
− p −

√
x2 + q2 −→ ν +

1
2

− p, as x → ∞.

Therefore, it is an important observation that if the inequality (4.1) holds for
all x > 0, then we get

− (p + q) ≤ (≥) 0 and ν +
1
2

− p ≤ (≥) 0,

which proves the desired assertion. �

Lemma 4.2. For any ν > −2, the function x 
→ Wν (x) is increasing from
(0,∞) onto (2ν + 2,∞).

Proof. The monotonicity of Wν on (0,∞) has been proven in [4, Theorem
2.2], and it suffices to show Wν (0+) = 2ν +2 and Wν (∞) = ∞, which easily
follow from the asymptotic formulas (4.2) and (4.3). In fact, utilizing the
expansion (1.2), we have

Wν (x) =
xIν (x)
Iν+1 (x)

∼ x (x/2)ν
/Γ (ν + 1)

(x/2)ν+1
/Γ (ν + 2)

= 2 (ν + 1) as x → 0,

Wν (x) =
xIν (x)
Iν+1 (x)

∼ x → ∞ as x → ∞.

�

4.1. The Necessary and Sufficient Conditions for Wν (x) < (>)Ap,q (x)

Theorem 4.3. Let ν > −3/2. Then, the following inequality

Wν (x) < p +
√

x2 + p2 + u = A
p,
√

p2+u
(x) (4.4)

holds for all x > 0 if and only if (p, u) ∈ Ω with

Ω =
{

ν +
1
2

≤ p ≤ 2 (ν + 1) , u ≥ 4 (ν + 1) (ν + 1 − p)
}

∪{p > 2 (ν + 1) , u ≥ −p2
}

.

Furthermore, for all x > 0, we have

min
(p,u)∈Ω

A
p,
√

p2+u
(x) = ν +

1
2

+

√

x2 +
(

ν +
3
2

)2

. (4.5)

Proof. If the inequality (4.7) holds for all x > 0, then by Lemma 4.1, we
have

(p, u) ∈
{

p ≥ ν +
1
2
, p2 + u ≥ 0, p +

√
p2 + u ≥ 2(ν + 1)

}
:= D1.
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Hence, it suffices to show D1 = Ω. Indeed, D1 can be written as

D1 =
{

ν +
1
2

≤ p ≤ 2 (ν + 1) , p2 + u ≥ 0, p +
√

p2 + u ≥ 2 (ν + 1)
}

∪
{

p ≥ max
(

ν +
1
2
, 2 (ν + 1)

)
, p2 + u ≥ 0, p +

√
p2 + u ≥ 2 (ν + 1)

}

:= D11 ∪ D12.

It is obvious that

D12 =
{
p > 2 (ν + 1) , p2 + u ≥ 0

}
.

While p ≤ 2 (ν + 1), the inequality p +
√

p2 + u ≥ 2 (ν + 1) is equivalent to

u ≥ 4 (ν + 1) (ν + 1 − p) ,

which implies

p2 + u ≥ p2 + 4 (ν + 1) (ν + 1 − p) = (2ν + 2 − p)2 ≥ 0.

Therefore,

D11 =
{

ν +
1
2

≤ p ≤ 2 (ν + 1) , u ≥ 4 (ν + 1) (ν + 1 − p)
}

,

which realizes the necessity.
Let us now prove the sufficiency. If (p, u) ∈ D11, that is, ν + 1/2 ≤ p ≤

2 (ν + 1) and u ≥ 4 (ν + 1) (ν + 1 − p), by considering

Sp,ν (x) =
(
Wν (x) − p +

√
x2 + p2 + u

)(
Wν (x) − p −

√
x2 + p2 + u

)

and Wν (x) > 2 (ν + 1) ≥ p due to Lemma 4.2, we have Wν (x) − p +√
x2 + p2 + u > 0 for all x > 0. This means that the inequality Sp,ν (x) < u

holds for all x > 0 is equivalent to Wν (x) < A
p,
√

p2+u
(x) for all x > 0 due

to Theorem 3.6.
On the other hand, we claim that

min
(p,u)∈D11

A
p,
√

p2+u
(x) = Aν+1/2,ν+3/2 (x) = ν +

1
2

+

√

x2 + (ν +
3
2
)2.

In fact, for the case of (p, u) ∈ D11, we get

A
p,
√

p2+u
(x) = p +

√
x2 + p2 + u ≥ p +

√
x2 + p2 + 4 (ν + 1)2 − 4 (ν + 1) p

= p +
√

x2 + (2ν + 2 − p)2 := Bp (x) .

It is easy to check that p 
→ Bp (x) is increasing on R, then we have

Bp (x) ≥ Bν+1/2 (x) = ν +
1
2

+

√

x2 +
(

ν +
3
2

)2

= Aν+1/2,ν+3/2 (x) .

To our aim, it remains to prove that (4.7) holds for all x > 0 if (p, u) ∈
D12 =

{
p > 2 (ν + 1) , p2 + u ≥ 0

}
. It is easy to see that

A
p,
√

p2+u
(x) = p +

√
x2 + p2 + u > 2 (ν + 1) + x,
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which implies

min
(p,u)∈D12

A
p,
√

p2+u
(x) = 2 (ν + 1) + x.

A simple computation gives

min
(p,u)∈D12

A
p,
√

p2+u
(x) − min

(p,u)∈D11

A
p,
√

p2+u
(x)

= 2 (ν + 1) + x −
⎛

⎝ν +
1
2

+

√

x2 +
(

ν +
3
2

)2
⎞

⎠

= x +
(

ν +
3
2

)
−
√

x2 +
(

ν +
3
2

)2

> 0.

Then we conclude that for (p, u) ∈ D12, the inequality Wν (x) < A
p,
√

p2+u
(x)

also holds for all x > 0. This also proves (4.5) and the proof is completed.
�

Setting p2 + u = q2, the above theorem can be equivalently stated as
follows.

Theorem 4.4. Let ν > −3/2 and p ∈ R, q ≥ 0. Then the inequality

Wν (x) < p +
√

x2 + q2 = Ap,q (x) (4.6)

holds for all x > 0 if and only if (p, q) ∈ Ω∗, where

Ω∗ =
{

p ≥ ν +
1
2

and p + q ≥ 2 (ν + 1)
}

.

Furthermore, we have

min
(p,q)∈Ω∗

Ap,q (x) = Av+1/2,v+3/2 (x) .

Remark 4.5. Clearly, when ν > −1 and p + q ≥ 0, Theorem 4.4 implies that
another Amos-type inequality Rν (x) > Gp,q (x) holds for x > 0 if and only if
(p, q) ∈ Ω∗ with max(p,q)∈Ω∗ Gp,q (x) = Gv+1/2,v+3/2 (x), which is Theorem 3
in [12]. Here, we in fact give a new proof of this theorem.

As shown in the proof of Theorem 4.3, if p < 2 (ν + 1) , then Wν (x)−p+√
x2 + p2 + u > 0 for all x > 0, which means that the inequality l < Sp,ν (x)

is equivalent to A
p,
√

p2+l
(x) < Wν (x) if p2 + l ≥ 0. Therefore, from Theorem

3.8, we immediately get

Theorem 4.6. Let ν > −3/2. Then the following inequality

A
p,
√

p2+l
(x) = p +

√
x2 + p2 + l < Wν (x) (4.7)
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holds for all x > 0 if and only if (p, l) ∈ Δ1 ∪ Δ2 ∪ Δ3, where

Δ1 :=

{

−
(

ν +
1
2

)2

≤ l ≤ ν +
1
2
, p = ν +

1
2
, ν ≥ −1

2

}

,

Δ2 :=
{

−p2 ≤ l ≤ λp,ν , ν < p < ν +
1
2

}
,

Δ3 :=
{−p2 ≤ l ≤ 4 (ν + 1) (ν + 1 − p) , p ≤ ν

}

with λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′
p,ν (x) = 0

on (0,∞) with p2 + λp,ν ≥ 0 for ν < p < ν + 1/2. Moreover,

max
(p,l)∈Δ1

A
p,
√

p2+l
(x) = ν +

1
2

+

√

x2 +
(

ν +
1
2

)(
ν +

3
2

)
, (4.8)

max
(p,l)∈Δ3

A
p,
√

p2+l
(x) = ν +

√
x2 + (ν + 2)2. (4.9)

Proof. By Lemma 4.1, a necessary condition for the inequality A
p,
√

p2+l
(x) <

Wν (x) to hold for all x > 0 is stated to be

(p, l) ∈
{

p ≤ ν +
1
2
, p2 + l ≥ 0, p +

√
x2 + p2 + l ≤ 2 (ν + 1)

}

=
{

p ≤ ν +
1
2
, p2 + l ≥ 0, l ≤ 4 (ν + 1) (ν + 1 − p)

}
:= D2.

Let
Δ11 :=

{
l ≤ ν + 1

2 , p = ν + 1
2 , ν ≥ − 1

2

}
,

Δ12 :=
{
l ≤ λp,ν , p = ν + 1

2 , 3
2 < ν < − 1

2

}
,

Δ′
2 :=

{
l ≤ λp,ν , ν < p < ν +

1
2

}
,

Δ′
3 := {l ≤ 4 (ν + 1) (ν + 1 − p) , p ≤ ν} .

Then, by Theorem 3.8 the inequality A
p,
√

p2+l
(x) < Wν (x) holds for all

x > 0 if and only if

(p, l) ∈ (Δ11 ∪ Δ12 ∪ Δ′
2 ∪ Δ′

3) ∩ D2.

(i) From (3.14) we see that λν+1/2 < ν + 1/2 and

p2 + l ≤ (
ν + 1

2

)2 +
(
ν + 1

2

)
=
(
ν + 1

2

) (
ν + 3

2

)
< 0

for any −3/2 < ν < −1/2, which means that Δ12 ∩ D2 = Φ. While
Δ11 ∩ D2 = Δ1 is obvious, hence (Δ11 ∪ Δ12) ∩ D2 = Δ1. In addition,
for all (p, l) ∈ Δ1, we have

A
p,
√

p2+l
(x) = ν +

1
2

+

√

x2 +
(

ν +
1
2

)2

+ l

≤ ν +
1
2

+

√

x2 +
(

ν +
1
2

)2

+
(

ν +
1
2

)
,

which proves (4.8).
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(ii) From (3.11) and (3.14) it reveals that λp,ν < 4 (ν + 1) (ν + 1 − p), which
indicates that Δ′

2 ∩ D2 = Δ2.
(iii) It is obvious that Δ′

3 ∩ D2 = Δ3. For all (p, l) ∈ Δ3, we deduce that

A
p,
√

p2+l
(x) = p +

√
x2 + p2 + l

≤ p +
√

x2 + p2 + 4 (ν + 1) (ν + 1 − p) = Bp (x) .

As mentioned in the proof of Theorem 4.3, the function p 
→ Bp (x) is
increasing on R, and therefore, for p ≤ ν,

Bp (x) ≤ Bν (x) = ν +
√

x2 + (ν + 2)2,

which proves (4.9). Thus, we complete the proof of this theorem.

�

Let p2 + l = q2. Then the above theorem can be equivalently stated as
follows.

Theorem 4.7. Let ν > −3/2 and p ∈ R, q ≥ 0. Then the following inequality

Ap,q (x) = p +
√

x2 + q2 < Wν (x) (4.10)

holds for all x > 0 if and only if (p, q) ∈ Δ∗
1 ∪ Δ∗

2 ∪ Δ∗
3, where

Δ∗
1 :=

{

p = ν +
1
2
, q ≤

√(
ν +

1
2

)(
ν +

3
2

)
, ν ≥ −1

2

}

,

Δ∗
2 :=

{
ν < p < ν +

1
2
, p2 + λp,ν ≥ 0, q ≤

√
p2 + λp,ν

}
,

Δ∗
3 := {p ≤ ν, q ≤ 2ν + 2 − p}

here λp,ν = Sp,ν (x0), and x0 is a unique solution of the equation S′
p,ν (x) = 0

on (0,∞). Furthermore, we have

max
(p,q)∈Δ∗

1

Ap,q (x) = A
v+1/2,

√
(ν+1/2)(ν+3/2)

(x) ,

max
(p,q)∈Δ∗

3

Ap,q (x) = Av,v+2 (x) .

Remark 4.8. If the conditions “ν > −1 and p+ q ≥ 0” are added to Theorem
4.7, then we deduce that another Amos-type inequality Rν (x) < Gp,q (x)
holds for x > 0 if and only if (p, q) ∈ Δ∗

1 ∪ Δ∗
2 ∪ Δ∗

3.
Clearly, the assertions that inequality Rν (x) < Gp,q (x) holds for x > 0

if (p, q) ∈ Δ∗
i (i = 1, 2, 3) correspond to Theorems 9, 10 (v ≥ −1/2) and 6

in [12], respectively. From this it is easy to see that Theorem 4.7 under the
conditions “ν > −1 and p + q ≥ 0” improves Hornik and Grün’s results in
[12] and solves the open problem posted by them.

Additionally, letting u, l = 4 (ν + 1) (ν + 1 − p) in Theorems 4.3 and
4.6, we have



MJOM Sharp Bounds for the Ratio Page 17 of 22 169

Corollary 4.9. Let ν > −3/2. Then the double inequality

p1 +
√

x2 + (2ν + 2 − p1)
2

< Wν (x) < p2 +
√

x2 + (2ν + 2 − p2)
2

hold for x > 0 if and only if p1 ≤ ν and p2 ≥ ν + 1/2.

Remark 4.10. The above corollary contains two rational bounds for Wν (x).
Indeed, if taking p1 = ν, −∞ and p2 = ν + 1/2, 2ν + 2, then by the mono-
tonicity of p 
→ Bp (x) mentioned in the proof of Theorem 4.3, we have

2ν + 2 < ν +
√

x2 + (ν + 2)2 < Wν (x)

< ν +
1
2

+

√

x2 +
(

ν +
3
2

)2

< 2ν + 2 + x

for all x > 0.

4.2. Some Computable Lower Bounds Ap,q (x) for Wν (x) if −3/2 < ν <
p < ν + 1/2

Although the necessary and sufficient conditions for Wν (x) > Ap,q (x) or
Rν (x) < Gp,q (x) to hold for x > 0 have been given in Theorem 4.7, the
maximal q =

√
p2 + λp,ν for ν < p < ν + 1/2 is related to a variable λp,ν . As

shown in Sect. 3, λp,ν = Sp,ν (x0) for ν < p < ν+1/2, where x0 is a unique so-
lution of the equation S′

p,ν (x) = 0 on (0,∞) and λp,ν < 4 (ν + 1) (ν − p + 1).
In general, λp,ν is not computable, and it is of practical value to find some
lower bounds for λp,ν by elementary functions.

In [12, Theorem 7], Hornik and Grün presented a class of new upper
bounds Gp,q∗

ν(p) (x) for Rν (x) for −1 < v < p < min (v + 1/2, 2v + 1) := pb
ν ,

where
q∗
ν (p) =

√
2 (ν + 1/2 − p) +

√
(p + 1) (2ν + 1 − p). (4.11)

It is undoubted that
{
Gp,q∗

ν(p) (x) : −1 < v < p < pb
ν

}

⊆
{

G
p,
√

p2+λp,ν
(x) : −1 < ν < p < ν +

1
2
, p2 + λp,ν ≥ 0

}
,

but we are not able to check it. In this subsection, by the definition of λp,ν and
an/bn given in (3.3) we give some easily computable lower bounds Ap,q (x)
for Wν (x) if −3/2 < ν < p < ν + 1/2, and compare with Ap,q∗

ν(p) (x) in the
case of v > −1.

Corollary 4.11. Let ν ≥ −1/2. Then, for ν < p < ν + 1/2 the inequality

Ap,ξp
(x) = p +

√
x2 + ξ2

p < Wν (x) (4.12)

holds for all x > 0 with

ξp =
√

(2ν + 3 − p)2 − (3ν + 11/2);

For ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 5) < ν + 1/2, we have

Ap,θp
(x) = p +

√
x2 + θ2

p < Wν (x) (4.13)
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for all x > 0, where

θp =
√

(2ν + 3 − p)2 − (2ν + 5). (4.14)

Proof. We first prove that if −1/2 ≤ ν < p < ν + 1/2, then
an

bn
≥ c (p) = (2ν + 3) (2ν + 1 − 2p) + ν +

1
2

> 0

hold for all n ≥ 0. For this, we write an/bn given in (3.3) as

an

bn
= (n + 2ν + 2) (2ν + 1 − 2p) +

(
ν +

1
2

)
2n + 4ν + 4
2n + 2ν + 1

.

Then, by a simple calculation we obtain
a0

b0
− c (p) = 4 (ν + 1) (ν + 1 − p) −

(
(2ν + 3) (2ν + 1 − 2p) + ν +

1
2

)

=
1
2

(4p − 2ν + 1) >
1
2

(4ν − 2ν + 1) = ν +
1
2

≥ 0,

and for n ≥ 1,
an

bn
− c (p) = (n − 1) (2ν + 1 − 2p) +

(
ν +

1
2

)
2ν + 3

2n + 2ν + 1
> 0.

Thus,

λp,ν =
f1 (x0)
f2 (x0)

=
∑∞

n=0 an

(
x2

0/4
)n

∑∞
n=0 bn (x2

0/4)n >

∑∞
n=0 c (p) bn

(
x2

0/4
)n

∑∞
n=0 bn (x2

0/4)n = c (p) ,

and

p2 + λp,ν > p2 + c (p) = p2 + (2ν + 3) (2ν + 1 − 2p) + ν +
1
2

= ξ2
p,

which proves (4.12) due to Theorem 4.7.
Similarly, we easily check that

a0

b0
− a1

b1
= 2 (p − ν) > 0,

and for n ≥ 2,
an

bn
− a1

b1
= (n − 1) (2ν + 1 − 2p) − (2ν + 1)

n − 1
2n + 2ν + 1

≥ (n − 1)
(

2ν + 1 − 2
(ν + 2) (2ν + 1)

(2ν + 5)

)
− (2ν + 1)

n − 1
2n + 2ν + 1

= 2 (2ν + 1)
(n − 1) (n − 2)

(2ν + 5) (2n + 2ν + 1)
≥ 0.

Therefore, we have

λp,ν =
f1 (x0)
f2 (x0)

=
∑∞

n=0 an

(
x2

0/4
)n

∑∞
n=0 bn (x2

0/4)n >

∑∞
n=0 (a1/b1) bn

(
x2

0/4
)n

∑∞
n=0 bn (x2

0/4)n =
a1

b1
,

and

p2 + λp,ν > p2 +
a1

b1
= p2 + (2ν + 3) (2ν − 2p + 1) + 2ν + 1 = θ2

p,

which proves (4.13). �
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Remark 4.12. Since p + ξp > 0, Corollary 4.11 implies a new upper bound
Gp,ξp

(x) for Rν (x) for −1/2 ≤ ν < p < ν+1/2. However, the bound Gp,ξp
(x)

is weaker than Gp,q∗
ν(p) (x) for −1/2 ≤ ν < p < ν +1/2 given in [12, Theorem

7]. In fact, we have

q∗
ν (p)2 − ξ2

p =
(√

2 (ν + 1/2 − p) +
√

(p + 1) (2ν + 1 − p)
)2

−
[
(2ν + 3 − p)2 − (3ν + 11/2)

]

= 2
√

2 (ν + 1/2 − p)
√

(p + 1) (2ν + 1 − p)

−1
2

(2p − 4ν − 3) (2p − 2ν − 1)

:= Φ1 (p) − Φ2 (p) ,

Φ2
1 (p) − Φ2

2 (p) =
1
2

(
ν +

1
2

− p

)
Φ3 (p) ,

where

Φ3 (p) = 8p3 − 4 (10ν + 11) p2

+2
(
32ν2 + 60ν + 15

)
p − (4ν + 7) (4ν − 1) (2ν + 1) .

Since

Φ′′
3 (p) = 8 (6p − 10ν − 11) < 8

(
6
(

ν +
1
2

)
− 10ν − 11

)
= −32 (ν + 2) < 0,

and

Φ3 (ν) = (6ν + 7) (2ν + 1) > 0,

Φ3

(
ν +

1
2

)
= 4 (2ν + 3) (2ν + 1) > 0,

by the property of the concave function we have that for −1/2 < v < p <
v + 1/2,

Φ3 (p) >
v + 1/2 − p

1/2
Φ3 (ν) +

p − ν

1/2
Φ3

(
ν +

1
2

)
> 0,

which implies that q∗
ν (p) − ξp > 0, and so Gp,q∗

ν(p) (x) < Gp,ξp
(x) for x > 0.

Similarly, for ν < p < ν + 1/2 there exist some ν ∈ (−3/2,−1/2) such
that p2 + λp,ν is positive and explicitly characterized. For example, from
Subcase 2.3, we see that for n ≥ 0,

an

bn
− a1

b1
= (n − 1) (2ν + 1 − 2p) − (2ν + 1)

n − 1
2n + 2ν + 1

≥ 0.

Then for ν ∈ (−3/2,−1/2) the inequality (4.13) also holds for x > 0 but the
parameter p has to satisfy

θ2
p = (2ν + 3 − p)2 − (2ν + 5) ≥ 0,

that is, v < p ≤ 2ν +3−√
2ν + 5 < ν +1/2. This can be stated as a corollary.
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Corollary 4.13. Let −3/2 < ν < −1/2 and ν0 = 2ν + 3 − √
2ν + 5 . Then,

for ν < p ≤ ν0 < ν + 1/2 the inequality (4.13) also holds for all x > 0. In
particular, while −1 < ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 3) < ν0, we have

Rν (x) <
x

p +
√

x2 + θ2
p

= Gp,θp
(x) , ∀x > 0. (4.15)

Proof. It remains to prove (4.15). To this end, it suffices to determine the
range of p such that p+ θp ≥ 0. We easily verify that the function p 
→ p+ θp

is decreasing on (ν, ν0], and

(p + θp)|p=ν = 2 (ν + 1) > 0, and (p + θp)|p=ν0
= ν0 < 0,

which means that there exists a unique p0 = (ν + 2) (2ν + 1) / (2ν + 3) such
that p + θp ≥ 0 for p ∈ (ν, p0], and p + θp < 0 for p ∈ (p0, ν0]. Consequently,
for −1 < ν < p ≤ p0 the inequality (4.13) is equivalent to another Amos-type
one, that is, (4.15) holds for x > 0. This completes the proof. �

Remark 4.14. Corollary 4.13 gives another new upper bound Gp,θp
(x) for

Rν (x) when ν < p ≤ (ν + 2) (2ν + 1) / (2ν + 3) and −1 < ν < −1/2. Clearly,
the set of bounds Gp,θp

(x) can be divided into two parts:

{Gp,θp
(x)}

=
{
Gp,θp

(x) : ν < p ≤ 2ν + 1
} ∪

{
Gp,θp

(x) : 2ν + 1 < p ≤ (ν+2)(2ν+1)
(2ν+3)

}
.

Comparing Gp,θp
(x) with Gp,q∗

ν(p) (x), we find that

Gp,q∗
ν(p) (x) < Gp,θp

(x)

for ν < p < 2ν +1 < 0. This shows that the Hornik and Grün’s upper bound
Gp,q∗

ν(p) (x) in [12, Theorem 7] is superior to Gp,θp
(x) for ν < p ≤ 2ν + 1,

while the upper bound Gp,θp
(x) for 2ν + 1 < p ≤ (ν + 2) (2ν + 1) / (2ν + 3)

is a new one.
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