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Abstract. In this paper, we establish the existence of a positive solution
to { −M+

λ,Λ(D2u) = μk(x)f(u)
uα − ηh(x)uq in Ω

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
n, n ≥ 1. Under certain condi-

tions on k, f and h, using viscosity sub- and super solution method with
the aid of comparison principle, we establish the existence of a unique
positive viscosity solution. This work extends and complements the ear-
lier works on semilinear and singular elliptic equations with sublinear
nonlinearity.
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1. Introduction

The goal of this paper is to establish the existence of a positive solution to{
−M+

λ,Λ(D2u) = μk(x)f(u)
uα − ηh(x)uq in Ω

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
n, n ≥ 1 is a smooth bounded domain, 0 < α, q < 1 and μ, η are

nonnegative parameters and M+
λ,Λ is the extremal Pucci’s operator, defined

below. We will specify the conditions on k, f and h later. For a given λ,Λ
satisfying 0 < λ ≤ Λ < ∞, extremal Pucci’s operator is defined as follows:

M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei,

where eis are the eigenvalues of M and M ∈ Sn×n, where Sn×n is the set of
all n × n real symmetric matrices. In case when λ = Λ = 1, it is easy to see
that
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M+
λ,Λ(D2u) = Δu.

There have been a good amount of research works for singular semilinear
elliptic equations of type

⎧⎨
⎩

−Δu = μk(x)f(u)
uα − ηh(x)uq in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(1.2)

where α > 0. These problems arise in several branches of engineering and
sciences and also have interesting applications such as steady state of thin
films [1,2], modeling of MEMS devices [21]. There is a vast literature on
this subject, but we just name those article which are closely related to this
article. Crandall et al. [12] studied (1.2) for the existence of a solution in case
when μf(u) = 1 and η = 0. Lazer and Mackenna [19] also dealt with the case
μf(u) = 1 and η = 0 in (1.2) and established the existence and regularity
results for the solution at the boundary.

Recently, Yijing and Wu [29] established the existence of a solution to
(1.2), where q > 1 and ηh(x) = −γ > 0 and μf(u) = 1. Their precise theorem
says that ∃ γ∗ > 0 such that (1.2) has a solution for all γ ∈ (0, γ∗) and no
solution for γ > γ∗ see also [10,11]. Very recently, Yijing [30] established the
existence of a solution to (1.2) in case when μf(u) = 1 and η = −1 and α > 1.
There are several other interesting papers in this direction which deals with
similar type of singular equations as (1.2), see for instance [5,6,18,20,27,28]
and the references therein.

We remark that recently fully nonlinear elliptic equations with singu-
larity has been considered in [16], where the authors showed the existence,
uniqueness and regularity of the solutions up to the boundary. When q = 1 in
(1.1), then this kind of equations are studied in [16] and for the choice of
k(x) = 0 in (1.1), this equation reduces to the equation considered in [22].
There have been also a good amount of interest on the existence and regu-
larity questions to equations involving extremal Pucci’s operator, see [14,15],
where authors obtained Hölder estimate for the gradient of positive viscosity
solutions of a class of fully nonlinear elliptic equations, including the extremal
Pucci’s equations without singular nonlinearity and see also Theorem 2 [16],
where authors obtained the regularity for the solutions of (1.1) up to the
boundary when η = 0. For the existence of eigenvalue, maximum principle
and related regularity questions to fully nonlinear homogeneous operators
and for the Dirichlet problem for singular fully nonlinear operators, we refer
to [3,4]. For the recent developments on this area, we refer to survey paper
[26]. Now, in the context of above research works, it is natural to ask whether
can we obtain the existence of a positive solution to an equation which in-
volves extremal Pucci’s operator and singular and sublinear nonlinearity?
The aim of this paper is to answer this question. More precisely, we establish
the existence of a positive viscosity solution of (1.1). Due to nondivergence
nature of the operator and singular and sublinear nonlinearity occurring in
(1.1), it is of much interest to study (1.1), where the standard tools are not
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applicable. We use the viscosity sub- and super solution method and com-
parison principle to establish the existence of a unique viscosity solution to
(1.1) under certain conditions on k, f and h and using standard arguments,
we show the nonexistence of the solution to (1.1). We consider the cases
f(0) > 0, f(0) = 0, and f(0) < 0, separately for the existence of a positive
viscosity solution. There is a lot of research works for the existence of positive
solutions to semilinear elliptic equations (1.2) in these cases but as far as our
understanding goes, there is not much work available for equations involving
extremal Pucci’s operator with singular and sublinear nonlinearity.

This work complements and extends earlier research works on singular
elliptic equations due to the following:

(i) In contrast to [30], this work establishes the existence of a solution to
(1.1) which involves extremal Pucci’s operator and where η > 0 and
0 < α < 1. This work complements the work of [30] even for fully
nonlinear equations in the sense of viscosity solution.

(ii) This work extends the work of [9–11,19,29] and many others to extremal
Pucci’s equation in the framework of viscosity solution at least in case
when 0 < α < 1, 0 < q < 1.

We organize this paper as follows. Section 2 deals with the preliminaries and
the auxiliary results which are needed in the proof of our main results. In Sect.
3, we state and prove the existence of a unique viscosity solution to (1.1). We
also show the monotonicity of the solution with respect to the parameter η.
Section 4 deals with the case f(0) = 0. In Sect. 5, we establish the existence
of a positive solution in case f(0) < 0. We establish a nonexistence result in
Sect. 6. Finally, two examples illustrating the main results are constructed in
Sect. 7.

2. Preliminaries and Auxiliary Results

We begin this section with the basic definitions and auxiliary results which
have been used in this paper.

Definition 2.1. A function u ∈ C(Ω) is an Ln-viscosity subsolution (superso-
lution) of (1.1) in Ω if for all φ ∈ W 2,n

loc (Ω) and a point x at which u − φ has
local maximum (minimum) we have⎧⎨

⎩
ess lim infy→x(−M+

λ,Λ(D2φ) − μk(y)f(u)
uα + ηh(y)uq) ≤ 0,

(ess lim supy→x(−M+
λ,Λ(D2φ) − μk(y)f(u)

uα + ηh(y)uq) ≥ 0).
(2.1)

When a function satisfies an equation or inequality in the Ln-viscosity
sense, then we will simply say that equation or inequality holds in the vis-
cosity sense.

From the definition of Pucci’s extremal operator, it is easy to see that

M+
λ,Λ(−M) = −M−

λ,Λ(M) (2.2)
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and

M+
λ,Λ(M) + M−

λ,Λ(N) ≤ M+
λ,Λ(M + N) ≤ M+

λ,Λ(M)

+M+
λ,Λ(N), ∀M,N ∈ Sn×n. (2.3)

Lemma 2.2. (Lemma 2.2 [22]) Let Ω be a regular domain and let u ∈ W 2,n
loc (Ω)

∩ C(Ω̄) be a nonnegative solution to

M−
λ,Λ(D2u) + c(x)u ≤ 0 in Ω, (2.4)

with c(x) ∈ L∞(Ω). Then either u vanishes identically in Ω or u(x) > 0 for
all x ∈ Ω. Moreover, in the latter case for any x0 ∈ ∂Ω such that u(x0) = 0,
then

lim sup
t→0

u(x0 − tν) − u(x0)
t

< 0,

where ν is the outer normal to ∂Ω.

Theorem 2.3. (Theorem 5 [16]) Let fk → f in Ln(Ω). Suppose that uk is
Ln-viscosity solution of{ −M+

λ,Λ(D2uk) = fk in Ω
uk = 0 on ∂Ω,

(2.5)

and the sequence uk is bounded in L∞(Ω). Then a subsequence of {uk} con-
verges uniformly to a function u which satisfies{ −M+

λ,Λ(D2u) = f in Ω
u = 0 on ∂Ω.

(2.6)

The following eigenvalue problem is considered in [23], see also [7].

Theorem 2.4. [Theorem 1.1 [23]] Let us consider the following boundary value
problem ⎧⎨

⎩
−M+

λ,Λ(D2u) = μu in Ω
u > 0 in Ω
u = 0 on ∂Ω.

(2.7)

Then there exists φ ∈ W 2,p
loc (Ω) ∩ C(Ω̄) for all p < ∞ and μ+

1 > 0 such that
(φ, μ+

1 ) is a solution of (2.7). Furthermore, any other solution of (2.7) is of
the form (μ+

1 , kφ) for k > 0.

The following theorem is a consequence of the characterization of the
eigenvalue; see [23] for the complete details.

Theorem 2.5. If u ∈ W 2,n
loc (Ω) ∩ C(Ω̄) is a solution of{ M+

λ,Λ(D2u) + ηu ≥ 0 in Ω
u ≤ 0 on ∂Ω,

(2.8)

for some η < μ+
1 , then u ≤ 0 in Ω.
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3. Existence of a Positive Solution

Let us consider Equation (1.1), where we assume that k, f and h are nonneg-
ative continuous functions unless otherwise stated and μ, η are nonnegative
parameters. Since the problem under consideration is fully nonlinear and sin-
gular in nature, we regularize this problem and use the notion of the viscosity
solution to prove the existence of a viscosity solution by passing the limit in
the sequence of solutions to the regularized problem corresponding to (1.1).
Let us consider the following regularized problem corresponding to (1.1):

(Sδ)

{
−M+

λ,Λ(D2u) = μk(x)f(u)
(u+δ)α − ηh(x)uq in Ω

u = 0 on ∂Ω,

for each δ > 0. We denote the solution of Sδ by uδ and if δ = 1
n , then the

solution will be denoted by un and equation by Sn instead of u 1
n

and S 1
n
,

respectively. We start by proving the following comparison lemma, which is
valid for all δ ≥ 0, which will be used later in the paper.

Lemma 3.1. Suppose h, k are nonnegative continuous functions on Ω and f
is a nonnegative nonincreasing continuous function. Let u, v ∈ C(Ω̄) satisfy
the following inequation in the viscosity sense

M+
λ,Λ(D2u) + μ

k(x)f(u)
(u + δ)α

− ηh(x)uq ≤ 0 ≤ M+
λ,Λ(D2v)

+μ
k(x)f(v)
(v + δ)α

− ηh(x)vq in Ω

and u ≥ v on ∂Ω. Further, if either u ∈ W 2,n
loc or v ∈ W 2,n

loc then u ≥ v in Ω̄.

Proof. We prove this lemma by method of contradiction. Let us consider

A = {x ∈ Ω : v(x) > u(x)}.

If A �= φ, then A is an open set and also

M+
λ,Λ(D2u) + μ

k(x)f(u)
(u + δ)α

− ηh(x)uq − M+
λ,Λ(D2v) − μ

k(x)f(v)
(v + δ)α

+ ηh(x)vq ≤ 0 in A.

That is,

M+
λ,Λ(D2u) − M+

λ,Λ(D2v) + μk(x)
[

f(u)
(u + δ)δ

− f(v)
(v + δ)α

]

+ηh(x)(vq − uq) ≤ 0 in A.

As f is a nonnegative nonincreasing function, the second and third terms are
nonnegative on A and therefore we get the following

M+
λ,Λ(D2u) − M+

λ,Λ(D2v) ≤ 0 in A,

which implies

M−
λ,Λ(D2(u − v)) ≤ 0 in A.
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Now, as u = v on ∂A, so by the maximum principle, see (Corollary 3.7(2) [8]),
we get u ≥ v in A, which contradicts the definition of A and hence the lemma
is proved.

Lemma 3.1 implies that positive solutions un of Sn form an increasing
sequence because un and un+1 satisfy

M+
λ,Λ(D2un+1) + μ k(x)f(un+1)

(un+1+
1

n+1 )α − ηh(x)uq
n+1 = 0 ≤ M+

λ,Λ(D2un)

+μ k(x)f(un)

(un+ 1
n+1 )α − ηh(x)uq

n.
(3.1)

The following theorem establishes the existence of a viscosity solution to the
regularized problem.

Theorem 3.2. Suppose that h and k are bounded nonnegative continuous func-
tions such that infΩ k > 0 and f is a nonnegative, nonincreasing continuous
function with f(0) > 0. Then for any positive 0 < δ < 1, there exists a
unique solution uδ of Sδ. Furthermore, there are positive constants m, M
independent of δ such that

mφ ≤ uδ ≤ Mφ + φβ , (3.2)

where 0 < β < 1 and φ is defined in Theorem 2.4.

Proof. Since f(0) > 0, so by the continuity of f, we can find an ε > 0 such
that f(s) > 0 for s ∈ [0, ε]. Let us define a constant c = infs∈[0,ε] f(s) > 0.
Choose m > 0 sufficiently small such that

mq ≤ μ infΩ k(x)c
(m‖φ‖L∞(Ω) + 1)α(μ+

1 ‖φ‖L∞(Ω) + η‖h‖L∞(Ω)‖φq‖L∞(Ω))
,

and m‖φ‖L∞(Ω) ≤ ε, where φ is defined in Theorem 2.4, which is always
possible as cμ infΩ k > 0. This value of m satisfies

mμ+
1 φ(x) ≤ infΩ k(x)cμ

(mφ(x) + δ)α
− sup

Ω
h(x)mqφq(x) for x ∈ Ω.

That is,

−M+
λ,Λ(D2mφ) ≤ k(x)μf(mφ)

(mφ + δ)α
− h(x)(mφ)q in Ω.

Thus u = mφ is a subsolution of the problem Sδ.
Let us consider v = Mφ + φβ , where β < max{ 2

(α+1) , 1}, and again φ is
the eigenfunction from Theorem 2.4. After differentiating twice, we get

D2v = MD2φ + β(β − 1)φβ−2Dφ ⊗ Dφ + βφβ−1D2φ,

where x ⊗ x is an n × n matrix with (i, j)-entry xixj . Let us calculate
{

M+
λ,Λ(D2v)+ μk(x)f(v)

(v+δ)α −ηh(x)vq = M+
λ,Λ(MD2φ+β(β−1)φβ−2Dφ ⊗ Dφ

+βφβ−1D2φ) + μk(x)f(Mφ+φβ)
(Mφ+φβ+δ)α − ηh(x)(Mφ + φβ)q.

(3.3)
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Now, using Inequalities (2.2),(2.3) to (3.3) and noting that φ is an eigenfunc-
tion, we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M+
λ,Λ(D

2v)+ μk(x)f(v)
(v+δ)α −ηh(x)vq ≤ M+

λ,Λ(MD2φ)+M+
λ,Λ(β(β−1)φβ−2Dφ ⊗ Dφ)

+M+
λ,Λ(βφβ−1D2φ) + μk(x)f(Mφ+φβ)

(φβ)α

−ηh(x)(Mφ + φβ)q

= −Mμ+
1 φ − β(1 − β)φβ−2λ|Dφ|2 − βμ+

1 φβ

+μk(x)f(Mφ+φβ)
(φβ)α − ηh(x)(Mφ + φβ)q.

(3.4)
Here in the last inequality, we have used that

M+
λ,Λ(β(β − 1)φβ−2Dφ ⊗ Dφ) = −β(1 − β)λ|Dφ|2φβ−2,

which is a consequence of (2.2), β − 1 < 0 and the fact that Dφ ⊗ Dφ has
|Dφ|2 as the only nontrivial eigenvalue. From (3.3), we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M+
λ,Λ(D

2v) + μk(x)f(v)
(v+δ)α − ηh(x)vq ≤ −Mμ+

1 φ +
[
μk(x)f(Mφ + φβ)φ−αβ+2−β

−β(1 − β)λ|Dφ|2
]
φβ−2−ηh(x)(Mφ + φβ)q

≤ −Mμ+
1 φ +

[
μk(x)f(0)φ−αβ+2−β

−β(1 − β)λ|Dφ|2
]
φβ−2−ηh(x)(Mφ + φβ)q.

(3.5)
The last inequality follows because f is nonincreasing function and Mφ+φβ ≥
0. Further, since φ = 0 on ∂Ω, and φ ∈ C1(Ω̄) so by Lemma 2.2, there exist
a neighbourhood, say N of ∂Ω and a constant L > 0 such that

|Dφ| ≥ L > 0,

in N . So we can find some constant C > 0 such that

β(1 − β)φβ−2λ|Dφ|2 ≥ Cφβ−2 in N. (3.6)

Now, since 2−β > αβ and φ = 0 on ∂Ω, so from (3.5) and (3.6), we can find
M > 0 such that

M+
λ,Λ(D2v) +

μk(x)f(v)
(v + δ)α

− ηh(x)vq ≤ 0 in N. (3.7)

On the other hand, in Ω\N , by choosing M > 0 large enough in (3.5), we
find that v satisfies (3.7) also in Ω\N . Thus v satisfies Equation (3.7) in
Ω and therefore v is a supersolution of Sδ. Now by using subsolution u and
supersolution v, constructed above and applying monotone iteration method,
we find a solutions uδ of Sδ which vanishes on ∂Ω. Furthermore, we can choose
M large enough such that (3.2) is also satisfied. Also, by using regularity
results of [24](see Theorem 3.1 and also Theorem 2.1, Theorem 4.1 [25]), we
find that uδ ∈ W 2,n

loc (Ω).

Theorem 3.3. Under the assumptions of Theorem 3.2, there exists a unique
solution u of (1.1).
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Proof. Let us choose a sequence δn = 1
n and corresponding solutions un

obtained in the above theorem. As un satisfies the following equation

0 = M+
λ,Λ(D2un) +

μk(x)f(un)(
un + 1

n

)α − ηh(x)uq
n ≤ M+

λ,Λ(D2un)

+
μk(x)f(un)(
uq

n + 1
n+1

)α − ηh(x)uq
n.

So we have

M+
λ,Λ(D2un+1) +

μk(x)f(un+1)(
un+1 + 1

n+1

)α − ηh(x)uq
n+1 = 0 ≤ M+

λ,Λ(D2un)

+
μk(x)f(un)(
un + 1

n+1

)α − ηh(x)uq
n

in Ω. Therefore by Lemma 3.1, we find that un is a monotonic increasing
sequence satisfying Inequality (3.2). Further, by using the standard diagonal
argument and Theorem 2.3, we find a subsequence {unk

} which converges
uniformly to a function u which solves (1.1). Since the sequence is monotonic
increasing, so {un} converges to u. The uniqueness of the viscosity solution
follows by the standard arguments. This completes the proof.

Below, we show the monotonicity properties of the solution of (1.1) with
respect to η.

Proposition 3.4. Let u1 and u2 be positive solutions of (1.1) corresponding
to η1 and η2, respectively, where 0 < η1 < η2. Then u2 ≤ u1 in Ω.

Proof. Let us consider a set A = {x ∈ Ω : u2(x) > u1(x)}. If A = φ, then
we are done. So we suppose that A �= φ and observe that

M+
λ,Λ(D2u1) +

μk(x)f(u1)
uα

1

− η2h(x)uq
1 ≤ 0 = M+

λ,Λ(D2u2)

+
μk(x)f(u2)

uα
2

− η2h(x)uq
2.

This implies that

M+
λ,Λ(D2u1)−M+

λ,Λ(D2u2)+μk(x)
[
f(u1)
uα

1

− f(u2)
uα

2

]
+ η2h(x)[uq

2 − uq
1] ≤ 0.

Since f is nonincreasing function so the last two terms are nonnegative on
A, we get

M−
λ,Λ(D2(u1 − u2)) ≤ 0 in A,

and u1 = u2 on ∂A. An application of maximum principle, see (Corollary
3.7(2) [8]) yields that u1 ≥ u2 in A, which implies that A = φ and hence the
proposition is proved. �

In the above theorem, we have shown the existence of a unique positive
solution to (1.1) under the condition f(0) > 0. Now the question is what
happens if f(0) = 0 and f(0) < 0. Next, we discuss these two cases.
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4. Case f(0) = 0.

As we have assumed that f is nonnegative and nonincreasing in Theorem3.3
and f(0) = 0, so this implies that f ≡ 0 and therefore (1.1) reduces to the
following equation{−M+

λ,Λ(D2u) = −ηh(x)uq in Ω
u = 0 on ∂Ω.

(4.1)

It is clear that u ≡ 0 is a solution of (4.1). Further, any nonnegative solution
of (4.1), by maximum principle, is u ≡ 0. Thus this problem cannot have a
positive solution.

Remark 4.1. We remark that all the above results also hold if we replace
M+

λ,Λ by fully nonlinear operator

F : Ω × R × R
n × S(n) −→ R, (4.2)

satisfying the following conditions (i)–(iii) for some γ ≥ 0 and for all u, v ∈ R,
p, q ∈ R

n and M,N ∈ Sn×n.

(i)

M−
λ,Λ(M − N) − γ|p − q| − γ|u − v| ≤ F (x, u, p,M) − F (x, v, q,N)

≤ M+
λ,Λ(M − N) + γ|p − q| + γ|u − v|,

(ii) F (x, tu, tp, tM) = tF (x, u, p,M) for all t ≥ 0,
(iii) F is convex in (u, p,M) and satisfies the following comparison principle.

Let u, v ∈ C(Ω̄) be Ln viscosity sub and supersolution of F = 0 and one of u

or v is in W 2,n
loc (Ω) and u ≤ v on ∂Ω, then u ≤ v in Ω.

Under the above assumptions on F, the existence of eigenfunction is
available in [23], and consequently the maximum principle is given by Theo-
rem 2.5.

Next, we discuss the case f(0) < 0.

5. Case f(0) < 0

As we are dealing with the case f(0) < 0, so we assume that f : [0,∞) −→ R

instead of f : [0,∞) −→ [0,∞). We consider the following problem with
singular nonlinearity{−M+

λ,Λ(D2u) = k(x)f(u)
uα − ηh(x)uq in Ω

u = 0 on ∂Ω,
(5.1)

where 0 < η < 1 and k, h are nonnegative continuous functions with k ∈
L∞(Ω) and positive on a subset of positive measure of Ω, f : [0,∞) −→ R is
a bounded continuous function such that f(0) < 0, 0 ≤ h(x) ≤ k(x) ∀ x ∈ Ω.
Let us consider

Ωδ = {x ∈ Ω : d(x, ∂Ω) > δ},
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where d(x, ∂Ω) represents the distance of the point x from the boundary ∂Ω.
For each δ > 0, let us consider the following problem{−M+

λ,Λ(D2vδ) + c1vδ = (k(x) − c2h(x))χΩδ
in Ω

vδ = 0 on ∂Ω,
(5.2)

where χΩδ
denotes the characteristic function of the set Ωδ, c1 = η‖h‖L∞(Ω)/β

and 0 < c2 = η/β < 1 with β = 2
1+α . By Theorem 2.1 [17], there exists solu-

tion vδ of (5.2) and also

‖vδ‖C1,σ(Ω̄) ≤ C‖k(x) − c2h(x)‖L∞(Ω) for δ > 0.

Furthermore, since (k(x) − c2h(x))χΩδ
≥ 0 so vδ ≥ 0. We also know that

(k − c2h)χΩδ
→ (k − c2h)χΩ in Lp(Ω) for all p ∈ [1,∞) as δ → 0 and C1,σ is

compactly embedded in C1. So there is a subsequence of vδ which converges
to v in C1 as δ → 0 and by the stability result for viscosity solution, see
Theorem 3.8 [13], v satisfies{−M+

λ,Λ(D2v) + c1v = k(x) − c2h(x) in Ω.

v = 0 on ∂Ω.
(5.3)

Since by assumption k(x) − c2h(x) ≥ 0, so by maximum principle v ≥ 0.
Since v = 0 on ∂Ω and v ≥ 0 so by the Höpf type lemma, see (Theorem 2.2
[17]), there exists a neighbourhood say N ⊂ Ω̄ of ∂Ω such that

ε = inf{|Dv(x)| | x ∈ N} > 0. (5.4)

Furthermore, since vδ → v in C1(Ω̄) as δ → 0, so we can find a δ1 such that
for 0 < δ < δ1, we have

sup
N

| |Dvδ(x)|−|Dv(x)| | ≤ sup
N

|Dvδ(x)−Dv(x)|≤sup
Ω̄

|Dvδ(x)−Dv(x)| <
ε

2
.

In particular, for all x ∈ N , we have

− ε

2
< |Dvδ(x)| − |Dv(x)| <

ε

2
,

or

|Dv(x)| − ε

2
< |Dvδ(x)|.

So by Equation (5.4), we find that
ε

2
≤ inf{|Dvδ(x)| | x ∈ N} for 0 < δ < δ1.

Further, we can choose δ2 > 0 sufficiently small such that

Ω̄\Ωδ = Ω̄ ∩ Ωc
δ ⊂ N, ∀ 0 < δ < δ2. (5.5)

Since we also have vδ(x) = 0 on ∂Ω for all δ so choose a 0 < δ3 < min{δ1, δ2}
such that

0 ≤ vδ3(x) ≤ sup
Ω̄δ3

vδ3 for x ∈ Ω̄\Ωδ3 . (5.6)

Let us fix δ3 and denote it by δ, that is, δ = δ3. Let us also set

a = min
Ω̄δ

vδ and A = max
Ω̄δ

vδ.
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So we have following

min{|Dvδ(x)| : x ∈ Ω̄\Ωδ} > ε
2 .

0 ≤ vδ(x) ≤ A for x ∈ Ω̄\Ωδ.
(5.7)

Here we also have vδ ≥ ε
2δ on ∂Ωδ, see [9]. So by maximum principle, we get

vδ ≥ ε
2δ in Ω̄δ. Now we will present the following existence theorem.

Theorem 5.1. Let f : [0,∞) −→ R is a bounded continuous function and
f(0) < 0, 0 < α < 1 and 1−α

2 < q ≤ 1. Let us set β = 2
α+1 . If f(tβ) ≥

−λβ(β−1)ε2

4‖k‖L∞ + βt := −M + βt on [0, a], and if f(tβ) ≥ 2βt on [a,A], then
(5.1) has at least one positive solution.

Proof. The idea of the proof is to truncate the function around origin. Let
us set g(t) = f(t)t−α and for each n ∈ N, define

gn(t) =

{
g(t), if t ≥ ρn,

max{g(ρn), g(t)}, 0 < t ≤ ρn,
(5.8)

where {ρn} is a decreasing sequence of positive real numbers such that ρn → 0
as n → ∞. As limt→0+ g(t) = −∞, so each gn = g(ρn) on some interval (0, ρ′],
and so gn can be extended to have the value g(ρn) at 0. Now we will consider
the following truncated boundary value problem{−M+

λ,Λ(D2w) = k(x)gn(w) − ηh(x)wq in Ω
w = 0 on ∂Ω,

(5.9)

and show that it has a positive solution by constructing a positive subsolution
and an appropriately ordered supersolution. Let us take u = vβ

δ , where δ > 0
fixed as in the discussion before the statement of the theorem, and after
differentiating twice we get

D2u = β(β − 1)vβ−2
δ Dvδ ⊗ Dvδ + βvβ−1

δ D2vδ,

where again x ⊗ x is an n × n matrix with ij-entry (xixj) and x = (x1, x2,
. . . , xn).

−M+
λ,Λ(D2u) = −M+

λ,Λ(β(β − 1)vβ−2
δ Dvδ ⊗ Dvδ + βvβ−1

δ D2vδ).

Now using (2.3), we obtain

−M+
λ,Λ(D2u) ≤ −M−

λ,Λ(β(β − 1)vβ−2
δ Dvδ ⊗ Dvδ) − M+

λ,Λ(βvβ−1
δ D2vδ).

Since vδ is a solution of (5.2) and Dvδ ⊗Dvδ has |Dvδ|2 as the only nontrivial
eigenvalue so we get

−M+
λ,Λ(D2u) ≤ −λβ(β − 1)vβ−2

δ |Dvδ|2 + βvβ−1
δ

[
(k − c2h)χΩδ

− c1vδ

]
.

(5.10)
One can rewrite

βvβ−1
δ c2hχΩδ

= βvβ−1
δ c2hχΩδ

+ βvβ−1
δ c2hχΩ\Ωδ

− βvβ−1
δ c2hχΩ\Ωδ

.
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Now since c2 = η
β and χΩδ

(x) + χΩ\Ωδ
(x) = 1 ∀ x ∈ Ω, so we have

βvβ−1
δ c2hχΩδ

= βc2hvβ−1
δ (χΩδ

+ χΩ\Ωδ
) − vβ−1

δ ηhχΩ\Ωδ

= ηhvβ−1
δ − vβ−1

δ ηhχΩ\Ωδ
.

(5.11)

From (5.10), (5.11) and noting that c1 = η
β ‖h‖L∞(Ω) ≥ η

β h, we find that

−M+
λ,Λ(D2u) ≤ −λβ(β − 1)vβ−2

δ |Dvδ|2 + βvβ−1
δ kχΩδ

+ vβ−1
δ ηhχΩ\Ωδ

− ηhvβ−1
δ

[
1 + vδ

]
.

(5.12)

Further, sine 0 < βq − β + 1 < 1 and vδ ≥ 0, so

vβq−β+1
δ < 1 + vδ.

So from (5.12) and noting that β − 2 = −βα, |Dvδ|2 ≥ ε2

4 and k ≥ h, we
obtain

−M+
λ,Λ(D2u) ≤ −λβ(β − 1)vβ−2

δ |Dvδ|2 + βvβ−1
δ kχΩδ + vβ−1

δ ηhχΩ\Ωδ
− ηh(vβ

δ )q

≤
[
− λβ(β−1)ε2

4‖k‖L∞(Ω)
χ{x∈Ω: 0≤vδ(x)≤a}

+βvδχ{x∈Ω : a≤vδ(x)≤A} + βvδχΩ\Ωδ

]
k(vδ)

−α − ηh(vβ
δ )q.

(5.13)
By (5.7), we know that for x ∈ Ω\Ωδ, we have 0 ≤ vδ(x) ≤ A, so

βvδχΩ\Ωδ
≤ βvδχ{x∈Ω :0≤vδ(x)≤a} + βvδχ{x∈Ω : a≤vδ(x)≤A}.

Consequently, we have

−M+
λ,Λ(D2u) ≤

[(
− λβ(β−1)ε2

4‖k‖L∞(Ω)
+ βvδ

)
χ{x∈Ω: 0≤vδ(x)≤a}

+
(
2βvδ

)
χ{x∈Ω : a≤vδ(x)≤A}

]
k(vδ)−α

−ηh(vβ
δ )q

≤ k(x)f(vβ
δ )

(vβ
δ )α

− ηh(vβ
δ )q

= k(x)f(u)
uα − ηh(x)uq.

(5.14)

Thus u = vβ
δ is a subsolution of (5.9) for each n. Since f is a bounded

continuous and f(0) < 0, so we can find a positive constant C satisfying
C ≥ maxt≥0 f(t)t−α. Let v be a solution of{−M+

λ,Λ(D2v) = k(x)C in Ω
v = 0 on ∂Ω,

(5.15)

which again exists by Lemma 3.1 [13]. This v works as a supersolution for
(5.9) and therefore we have a supersolution v and a subsolution u of (5.9).
Further, also note that

k(x)C = k(x)maxt≥0 f(t)t−α

≥ k(x)maxt≥0 f(t)t−α − h(x)tq,

for any t ≥ 0. Since u ≥ 0, so

k(x)C ≥ k(x)f(u)u−α − h(x)uq. (5.16)
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Thus, in view of (5.16) and (5.15) we get

− M+
λ,Λ(D2v) = k(x)C

≥ k(x)f(u)u−α − h(x)uq

≥ −M+
λ,Λ(D2u) (by (5.14)), (5.17)

that is,

− M+
λ,Λ(D2u) ≤ −M+

λ,Λ(D2v) in Ω

M+
λ,Λ(D2v) − M+

λ,Λ(D2u) ≤ 0 in Ω

M−
λ,Λ(D2(v − u)) ≤ 0 in Ω. (5.18)

Again, since v − u = 0 on ∂Ω, so by maximum principle, see (Corollary
3.7(2) [8]), we get u ≤ v in Ω. Now, for each n ∈ N, let wn be a solution of
(5.9) satisfying u ≤ wn ≤ v. Note that we have an L∞ upper bound for wn

and strictly positive lower bound. Now using W 2,n-interior estimate, see [24]
and compact embedding, we find a subsequence of wn, which converges uni-
formly to a positive solution w of (5.1) in C1(Ω) ∩ C(Ω̄). This completes the
proof. �

In the next section, we deal with the nonexistence of the positive solu-
tion.

6. Nonexistence of the Positive Solution

In the previous section, we have shown the existence of a positive solution
to (1.1) under the condition that h(x) ≥ 0 for all x ∈ Ω, infΩ k > 0 and
f(0) > 0. Here we show the importance of conditions on h and k. If h and
k do not satisfy the above-mentioned conditions, then there does not exist
any positive solution to (1.1). The result states that under the assumptions
supΩ k ≤ 0 and h(x) < 0, (1.1) does not have a positive solution. Here for the
convenience, we assume that h is some negative constant, say, h(x) = −γ, for
x ∈ Ω, where γ > 0. Under the above assumptions, (1.1) can be rewritten as
follows: {−M+

λ,Λ(D2u) = μk(x)f(u)
uα + γηuq in Ω

u = 0 on ∂Ω.
(6.1)

Since k(x) < 0 in Ω, so we can find a constant c(γ) such that if γ → 0, then
c(γ) → 0 and

μk(x)f(u)
uα

+ γηuq < c(γ)u for u > 0.

Thus if u ∈ W 2,n
loc ∩ C(Ω̄) is a positive solution of (1.1), then u also satisfies

the following equation{−M+
λ,Λ(D2u) < c(γ)u in Ω

u = 0 on ∂Ω,
(6.2)

and by Theorem 2.5, c(γ) > μ+
1 . Thus for γ > 0 sufficiently small, (6.1) does

not have a positive solution.
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In case when supΩ k < 0 and h(x) ≥ 0 in Ω, one can see that (1.1) does
not have any positive solution. Indeed, suppose if u(x) > 0 and satisfies{−M+

λ,Λ(D2u) = μk(x)f(u)
uα − ηh(x)uq in Ω

u = 0 on ∂Ω,
(6.3)

then it is easy to observe that u also satisfies{−M+
λ,Λ(D2u) ≤ −ηh(x)uq in Ω

u = 0 on ∂Ω.
(6.4)

Since u > 0, so we get {−M+
λ,Λ(D2u) ≤ 0 in Ω

u = 0 on ∂Ω.
(6.5)

Now by maximum principle, we get u(x) ≤ 0, for all x ∈ Ω, which is a
contradiction and therefore (1.1) does not have a positive solution.

Remark 6.1. We remark that we have the nonexistence of the solution to
(1.1) in the case when

(i) supΩ k < 0 and h(x) < 0;
(ii) supΩ k < 0 and h(x) ≥ 0.

In case, when infΩ k > 0 and h ≤ 0, it will be of interest to establish the
existence or nonexistence of the solution of (1.1).

7. Examples

This section deals with two examples illustrating main theorems.

Example 7.1. Consider the following equation{
−M+

λ,Λ(D2u) = e−|x|f(u)
uα − η e−|x|

1+|x|2 uq in Ω
u = 0 on ∂Ω,

(7.1)

where 0 < α < 1, 1 − α/2 < q < 1, η > 0, and

f(t) =

{[
e

lt
1+t + βt

1
β − (M + 1)

]
, if t ∈ [0, Ã][

e
lt

1+t + βÃ
1
β − (M + 1)

]
, if t ∈ [Ã,∞),

where Ã = Aβ + 1, and A, M and β are same as in Theorem 5.1. For
appropriate positive value of l, one can show that f satisfies the assumptions
of Theorem 5.1 and thus by an application of Theorem 5.1, Equation (7.1)
has a positive solution.

Let us take some example of f verifying the assumptions of Theorem
5.1.

Example 7.2.

f(t) =

{[
log(1 + lt) + βt

1
β − M

]
, if t ∈ [0, Ã][

log(1 + lÃ) + βÃ
1
β − M

]
, if t ∈ [Ã,∞),
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where again Ã = Aβ + 1 and A,M and β are from Theorem 5.1. Note that
for t ∈ [0, A], tβ ∈ [0, Ã]. Set g(t) = f(t) − βt

1
β = log(1 + lt) − M , and notice

that g(0) = f(0) = −M and g is non-decreasing function so

g(tβ) ≥ −M for t ∈ [0, a].

Further, we can choose l large enough such that log(1 + laβ) ≥ βA + M . So

g(tβ) = log(1 + ltβ) − M ≥ log(1 + laβ) − M ≥ βA ≥ βt for t ∈ [a,A].

That is,

f(tβ) = g(tβ) + βt ≥ 2βt in t ∈ [a,A].

Acknowledgements

Authors thank the referee for useful comments.

References

[1] Bertozzi, A.L., Pugh, M.C.: Long-wave instabilities and saturation in thin film
equations. Commun. Pure Appl. Math. 51(6), 625–661 (1998)

[2] Bertozzi, A.L., Pugh, M.C.: Finite-time blow-up of solutions of some long-wave
unstable thin film equations. Indiana Univ. Math. J. 49, 1323–1366 (2000)

[3] Birindelli, I., Demengel, F.: Eigenvalue, maximum principle and regularity for
fully nonlinear homogeneous operators. Commun. Pure Appl. Anal. 6(2), 335–
366 (2007)

[4] Birindelli, I., Demengel, F.: The Dirichlet problem for singular fully nonlinear
operators. In: Discrete and Continuous Dynamical Systems, Dynamical sys-
tems and differential equations. Proceedings of the 6th AIMS International
Conference, suppl, pp. 110–121 (2007)

[5] Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinear-
ities. Calc. Var. PDEs 37, 363–380 (2010)

[6] Boccardo, L., Orsina, L.: Sublinear elliptic equations with singular potentials.
Adv. Nonlinear Stud. 12(2), 187–198 (2012)

[7] Busca, J., Esteban, M.J., Quaas, A.: Nonlinear eigenvalues and bifurcation
problems for Pucci’s operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(2),
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