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Dynamics of Some Three-Dimensional
Lotka–Volterra Systems
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Abstract. We characterize the dynamics of the following two
Lotka–Volterra differential systems:

ẋ = x(r + ay + bz), ẋ = x(r + ax + by + cz),
ẏ = y(r − ax + cz), and ẏ = y(r + ax + dy + ez),
ż = z(r − bx− cy), ż = z(r + ax + dy + fz).

We analyze the biological meaning of the dynamics of these
Lotka–Volterra systems
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1. Introduction and Statement of the Main Results

The Lotka–Volterra differential systems appeared at the work of A. J. Lotka
in 1910 for modeling autocatalytic chemical reactions, and were extended by
himself in 1920 to

dx

dt
= x(α − βy),

dy

dt
= y(−γ + δx),

for modeling the dynamics of a plant species and a herbivorous animal species,
where x and y are, respectively, the numbers of preys and predators, and α,
β, γ, and δ are positive real parameters describing the interaction of the
two species. Volterra developed this last model independently from Lotka to
explain the exchange of the fish catches between fish and predatory fish in
the Adriatic Sea during the first World War. Kolmogorov [9] in 1936 studied
these systems again and extended them to arbitrary dimension, and for this
reason, these kinds of systems are also called Kolmogorov systems.

This last Lotka–Volterra differential system has been modified in differ-
ent ways for studying the dynamics of the interaction between the competi-
tion of two or more species. Lotka–Volterra systems have also been used to
model dynamical phenomena from different subjects, such as hydrodynamics
[3], plasma physics [10], chemical reactions [7], and evolution of conflicting
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species in biology [8,18], and so on. Lotka–Volterra systems have been studied
from different points of view, see for instance [1,2,4,11–14,17].

Here, we study two kinds of differential systems of Lotka–Volterra type.
The first one is the next system:

ẋ = x(r + ay + bz),
ẏ = y(r − ax + cz),
ż = z(r − bx − cy), (1)

where the dot denotes the derivative with respect to the time t, and a, b, and
c are nonzero constants, and (x, y, z) are located in the positive octant of R3;
here, this means the set {(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0, z ≥ 0}. If r �= 0, under
the change of variables

X = e−rtx, Y = e−rty, Z = e−rtz, τ = ert/r, (2)

system (1) is transformed into

ẋ = x(ay + bz),
ẏ = y(−ax + cz),
ż = z(−bx − cy), (3)

where we still use the variables x, y, z instead of X,Y,Z. Our first result
characterizes the global dynamics of system (3) in the positive octant of R3.

Theorem 1. For system (3), the following statements hold.
(a) System (3) has the two functionally independent first integrals H1 =

x + y + z and H2 = xcy−bza.
(b) If abc �= 0, then the global phase portraits of system (3) on the invariant

set {(x, y, z)| x + y + z = h, x ≥ 0, y ≥ 0, z ≥ 0} are topologically
equivalent either to the one of Fig. 1, or to the one of Fig. 2.

The biological meaning of the conclusion in Fig. 1 of statement (b) is
that only the species x will survive. Whereas the biological meaning of the
conclusion in Fig. 2 of statement (b) is that the three species persist on a
periodic solution, or in an equilibrium point.

The proof of theo 1 is given in Sect. 2. We remark that if abc = 0, system
(3) has less biological meaning and its dynamics can be easily obtained by
our methods, and so it is omitted here.

We now study the global dynamics of system (1) in the positive octant
of R3.

Theorem 2. Any orbit of system (1) when r �= 0 starting at some point of the
positive octant except at the origin, either goes in forward time to the origin
and in backward time approaches to infinity, or viceversa.

The proof of theo 2 will be given in section 3.
We note that the dynamics of systems (1) and (3) are completely dif-

ferent, but they are related through the transformation (2). Each orbit of
system (3) is bounded and it is limited by one of the invariant triangles L+

h

defined at the beginning of Sect. 2. If r > 0, this orbit under the inverse
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change of variables (2) goes to the origin when t → −∞ and to infinity when
t → ∞. If r < 0, the converse happens.

Next, we consider the following three-dimensional differential systems
of Lotka–Volterra type:

ẋ = x(r + ax + by + cz),
ẏ = y(r + ax + dy + ez),
ż = z(r + ax + dy + fz), (4)

In a similar way to the study of system (1), under the transformation (2),
system (4) becomes

ẋ = x(ax + by + cz),
ẏ = y(ax + dy + ez),
ż = z(ax + dy + fz), (5)

where again, we still use the variables x, y, z instead of X,Y,Z. To avoid
degeneracies, we assume that

(H0) a, b, c, d, e, f �= 0, e �= f , b �= d and c �= e.
For system (5), we have the next result.

Theorem 3. Under assumption (H0), the dynamics of system (5) is the fol-
lowing.
(a) The dynamics at infinity is topologically equivalent to the one of Fig. 6.
(b) The dynamics on the invariant planes x = 0, y = 0, and z = 0 are

topologically equivalent to the one given in the Poincaré disc in Figs. 7,
8, and 9, respectively.

(c) All orbits starting at the points outside the coordinate planes and the
infinity are heteroclinic, and each of them either connects the origin and
one of the singularities at the endpoints of the axes, or connects two of
the singularities at the endpoints of the axes.

Since statement (b) provides the α- and ω-limit sets of all the orbits
inside the positive octant of R3, we can determine the initial and final evo-
lutions of the three species modeled by the Lotka–Volterra system (5).

The proof of Theorem 3 will be given in Sect. 4. The heteroclinic orbits
in (c) will be precisely described in the proof of that statement.

For a definition of Poincaré disc and Poincaré sphere, see [6] and [5,15],
respectively. When we say the singularities at the endpoints of the axes, we
mean the singular points which are on the boundary of the Poincaré disc or
of the Poincaré sphere at the endpoints of the coordinate axes.

2. Proof of Theorem 1

Proof of statement (a). It can be verified by direct calculations.
Proof of statement (b). For studying the global dynamics of system (3),

we consider each level surface Lh := {(x, y, z) ∈ R
3| x + y + z = h} and

denote by L+
h its restriction to the positive octant. Therefore, we must have

h ≥ 0. For h = 0, the level surface is limited to the origin. For h > 0, L+
h is
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a triangle with the three boundaries denoted by Bx
h , By

h, and Bz
h, which are

invariant and located, respectively, on the yz, xz, and xy planes. This follows
from the invariance of the three coordinate planes and of the level surface
Lh. The three vertices of L+

h are denoted by P x
h = (h, 0, 0), P y

h = (0, h, 0),
and P z

h = (0, 0, h), which are singularities of system (3) and are located,
respectively, on the x, y, and z axes.

According to the above analysis, we only need to study global dynamics
of system (3) on L+

h . Permuting the names of the variables and changing the
sign of the time (if necessary), we only need to study two cases:
• Case 1: a, b, and c are positive,
• Case 2: a and c positive and b negative.

Restricting system (3) to the invariant set L+
h , we obtain

ẋ = x(bh − bx + (a − b)y),
ẏ = y(ch − (a + c)x − cy). (6)

Beside the singularities P x
h , P y

h , and P z
h , the necessary condition for system

(6) to have a fourth singularity in L+
h is a − b + c �= 0. If it exists, it should

be of the form

P+
h =

(
ch

a − b + c
,− bh

a − b + c
,

ah

a − b + c

)
.

This shows that system (6) has a fourth singularity in L+
h if and only if the

case 2 happens.
The Jacobian matrix of system (6) is

M+
h =

(
b(h − 2x − y) + ay (a − b)x

−(a + c)y −ax + c(h − x − 2y)

)
.

It is easy to show that the singularities Sx
h = (h, 0), Sy

h = (0, h). and
Sz

h = (0, 0) of (6), associated with P x
h , P y

h , and P z
h , respectively, have the

eigenvalues

(−ah,−bh), (ah,−ch), (bh, ch),

respectively.
In case 1, system (6) has only the three singularities Sx

h , Sy
h, and Sz

h,
which are, respectively, stable node, saddle, and unstable node. This shows
that system (3) has the phase portrait on L+

h ⊂ {x + y + z = h} given in
Fig. 1.

In case 2, the three singularities Sx
h , Sy

h, and Sz
h are all saddles. The

singularity S+
h of system (6), associated with P+

h in the interior of L+
h , has a

pair of pure imaginary eigenvalues

±
√

−abc

a − b + c
h
√−1.

To distinguish if this singularity is either a focus or a center, we compute a
first integral of system (6). From statement (a), system (6) has the Darboux
first integral:

H+
h (x, y, z) = xcy−b(h − x − y)a.
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P z
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Bx
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Figure 1. Phase portrait of system (3) on L+
h with a, b, c > 0

Px
h

P y
h

P z
h

P+
h

Figure 2. Phase portrait of system (3) on L+
h with a, c > 0

and b < 0

For more details on Darboux theory of integrablity, see for example [6, Chap-
ter 8] or [16]. Clearly, the Darboux first integral H+

h is an analytic function in
the interior of the triangle Γ+

h , which is projection of L+
h onto the xy plane.

By the classical Poincaré–Lyapunov theo which says that an elementary mon-
odromy singularity of a planar analytic differential system is a center if and
only if it has an analytic first integral defined in a neighborhood of the singu-
larity, it follows that the singularity S+

h is a center. Moreover, we can prove
using the first integral H+

h that the periodic orbits of system (6) fill up the
interior of L+

h except the singularity S+
h . Therefore, system (3) has the phase

portrait in L+
h given in Fig. 2. �

3. Proof of Theorem 2

Note that r �= 0. We can check that system (1) has the three invariant planes
x = 0, y = 0, and z = 0, and has always the two functionally independent
Darboux invariants:
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V1(x, y, z, t) = e−rt(x + y + z), V2(x, y, z, t) = e−r(a−b+c)txcy−bza.

Recall that a Darboux invariant of a polynomial vector field Y(w) in R
n is a

function of the form e−σtf(w) with σ a nonzero constant and f a polynomial
satisfying Y(f(w)) = σf(w), i.e., f is a Darboux polynomial of the vector
field Y(w) with cofactor σ.

We note that if a − b + c = 0, the function V2 is a first integral. From
these last two invariants V1 and V2, it follows that system (1) has always the
first integral:

F (x, y, z) = xcy−bza(x + y + z)−(a−b+c).

Some easy calculations show that system (1) has a unique singularity in the
positive octant, the origin.

Since the origin is the unique finite singularity of system (1), and the
three coordinate planes are invariant, it follows that any orbit starting from
the interior of the positive octant will stay in it.

For proving the theo, let γ+ be an orbit with its initial point, say
P+, located in the positive octant except at the origin, and let (x, y, z) =
(ξ(t), η(t), ζ(t)) be the expression of this orbit. By the Darboux invariant V1,
we have

e−rt(ξ(t) + η(t) + ζ(t)) = ξ(0) + η(0) + ζ(0) = (x + y + z)|P+ =: h > 0.

That is

ξ(t) + η(t) + ζ(t) = hert.

Then, the theo follows from this last expression and the facts that ξ(t), η(t),
ζ(t) > 0. �

4. Proof of Theorem 3

We can check that system (5) has the first integral

F (x, y, z) = exp
(

(−b + d)y
z

) (
x

y

)e−f (
z

y

)c−e

,

which is of Darboux type. This first integral is difficult to use for studying
dynamics of system (5). However, we can check that

d(y/z)
dt

= (e − f)y. (7)

By assumption (H0), we can assume without loss of generality that e >
f ; otherwise, we can interchange the variables y and z. Some easy calculations
show that system (5) has only singularities located on the three invariant
coordinate planes. In addition, since y = 0 is invariant, we get from (7) that
each orbit starting at the point outside y = 0 will transversally pass through
all the planes y/z =constant�= 0. This implies that any orbit starting at the
point outside the three invariant coordinate planes will either approach to
the coordinate planes, or approach to infinity. Therefore, we focus our next
studies on the coordinate planes and the infinity.
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Under the assumption (H0), after rescaling the spacial variables

x → 1
a
x, y → 1

b
y, z → 1

c
z,

system (5) can be written in an equivalent way as

ẋ = x(x + y + z),
ẏ = y(x + dy + ez),
ż = z(x + dy + fz). (8)

For studying the dynamics of system (8) at infinity, we use the Poincaré com-
pactification, see [5]. Using the local chart of the infinity at the x direction,
under the change of variables

x → 1
w

, y → y

w
, z → z

w
,

and the time rescaling dt = wdτ , we get

w′ = −(1 + y + z)w,

y′ = ((d − 1)y + (e − 1)z)y,

z′ = ((d − 1)y + (f − 1)z)z, (9)

where the prime denotes the derivative with respect to τ . By assumption
(H0) and the rescaling, we have d �= 1, e �= 1, and f �= e. If f �= 1, system (9)
has a unique singularity on the invariant plane w = 0, i.e., the origin, and has
an one-dimensional stable manifold (i.e., the w axis), and a two-dimensional
center manifold (i.e., the plane at infinity). Combining the directions of orbits
on the y and z axes and the fact that

d(y/z)
dτ

= (e − f)y,

we can get the local dynamics of system (9) at the origin, it is shown in one
of the first four phase portraits of Fig. 3. If f = 1, system (9) has the line
{w = 0} ∩ {y = 0} fulfilled with singularities. Since e > f , one have e > 1.
Distinguishing d > 1 and d < 1, we get the last two phase portraits of Fig. 3.

Using the local chart at infinity in the y direction, under the change of
variables

x → x

w
, y → 1

w
, z → z

w
,

and the time rescaling dt = wdτ , we get

w′ = −(x + d + ez)w,

x′ = ((1 − d) + (1 − e)z)x,

z′ = (f − e)z2. (10)

Since d �= 1, e �= 1, and e > f , system (10) has the unique singularity at
the origin, which is a saddle node on w = 0. System (10) has the local phase
portraits given in Fig. 4. Using the local chart at infinity in the z direction,
under the change of variables
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d > 1, f > 1 d > 1, f < 1 d < 1, f > 1 d < 1, f < 1

yy

y y yy

zz

z z zz

ww

w w ww

d > 1, f = 1 d < 1, f = 1

Figure 3. Local phase portrait of system (9) at infinity in
the endpoint of the x axis

d > 1 0 < d < 1 d < 0

xx x

zz
z

ww
w

Figure 4. Local phase portraits of system (10) at infinity in
the endpoint of the y axis

x → x

w
, y → y

w
, z → 1

w
,

and the time rescaling dt = wdτ , we get

w′ = −(x + dy + f)w,

x′ = ((1 − d)y + (1 − f))x,

y′ = (e − f)y. (11)

If f �= 1, system (11) has the unique singularity at the origin, which is
hyperbolic. System (11) has either the first, or the third, or the fourth local
phase portrait given in Fig. 5. If f = 1, on w = 0, the line y = 0 is fulfilled
with singularities. Since e > f = 1, we have the second phase portrait of
Fig. 5.
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f > 1 0 < f < 1 f < 0f = 1
x

xx x

y y yy

w w ww

Figure 5. Local phase portraits of system (11) at infinity in
the endpoint of the z axis

d > 1, f > 1 d > 1, f < 1 d < 1, f > 1 d < 1, f < 1

Figure 6. Phase portraits of system (8) on the Poincaré
sphere

d > 0, f > 0 d > 0, f < 0 d < 0, f > 0 d < 0, f < 0

y y y y

z z zz

Figure 7. Phase portraits of system (8) in the x = 0 plane

Combining the above analysis in each local charts at infinity, we get the
global phase portraits of system (8) in the Poincaré sphere. Fig. 6 shows the
phase portraits of system (8) on the semisphere, which faces us. The phase
portraits on the back side of the Poincaré sphere is a projection of those in
Fig. 6. We complete the proof of statement (a).

To prove statement (b), we restrict our study to each coordinate plane.
On the invariant plane x = 0, system (8) is reduced to

ẏ = y(dy + ez), ż = z(dy + fz). (12)

This system has the same form as system (9) when restricted to w = 0.
Therefore, they have the same phase portraits as those in Fig. 5 without the
w axis; here, we have used the fact that d, e, f, e − f > 0. Then, the phase
portraits of system (12) on the Poincaré disc are the same as those in Fig. 6
only with different parameter conditions, see Fig. 7.
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f > 1 0 < f < 1 f < 0f = 1

xx x x

zz z z

Figure 8. Phase portraits of system (8) in the y = 0 plane

d > 1 0 < d < 1 d < 0

xxx

yyy

Figure 9. Phase portrait of system (8) in the y = 0 plane

On the invariant plane y = 0, system (8) is reduced to

ẋ = x(x + z), ż = z(x + fz). (13)

Similarly, we can get the phase portraits shown in Fig 8.
On the invariant plane z = 0, system (8) is reduced to

ẋ = x(x + y), ẏ = y(x + dy). (14)

It has the same formula than (13) and so has either the first, or the third,
or the fourth phase portrait of Fig. 8, because d �= 1 by assumption. For a
better understanding the global phase portraits of system (8), we draw the
phase portraits of system (14) in Fig 9. This proves statement (b).

Finally, we prove statement (c). Here, we only provide the proof in the
positive octant. The proofs in the other octants are completely analogous.
Combining the analyses of the dynamics on the invariant coordinate planes
and at infinity, we get the global phase portraits of system (8) in the positive
octant as in Fig. 10.

Combining Fig. 10 and formula (7), we get that all orbits starting from
the interior of the positive octant

• in backward time, go to the origin and in forward time approach to the
infinity at the endpoint of the y axis if d > 1 and f > 0;

• in backward time, go to the infinity at the endpoint of the z axis and
in forward time approach to the infinity at the endpoint of the y axis if
d > 1 and f < 0;

• in backward time, go to the origin and in forward time approach to the
infinity at the endpoint of the x axis if d < 1 and f > 0;
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d > 1, f > 1 d > 1, 0 < f < 1 d > 1, f < 0d > 1, f = 1

0 < d < 1, f > 1 0 < d < 1, 0 < f < 1 0 < d < 1, f < 00 < d < 1, f = 1

d < 0, f > 1 d < 0, 0 < f < 1 d < 0, f < 0d < 0, f = 1

Figure 10. Phase portraits of system (8) in the positive octant

• in backward time, go to the infinity at the endpoint of the z axis and
in forward time approach to the infinity at the endpoint of the x axis if
d < 1 and f < 0.

This shows that all orbits with the initial points in the interior of the pos-
itive octant are heteroclinic. We complete the proof of statement (c) and
consequently the theo.

Acknowledgements

The first author is partially supported by a FEDER-MINECO Grant
MTM2016-77278-P, a MINECO Grant MTM2013-40998-P, an AGAUR
Grant number 2014SGR-568, and from the recruitment program of high-end
foreign experts of China.The second author is partially supported by NNSF
of China grants 11271252 and 11671254, by the Grant FP7-PEOPLE-2012-
IRSES-316338 of Europe, and by innovation program of Shanghai municipal
education commission grant 15ZZ012.

References
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