
Mediterr. J. Math. (2017) 14:122

DOI 10.1007/s00009-017-0916-8

1660-5446/17/030001-19

published onlineApril 24, 2017
c© Springer International Publishing 2017

Trigonometric B-Spline Collocation Method
for Solving PHI-Four and Allen–Cahn
Equations
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Abstract. In this paper, we develop a numerical solution based on non-
polynomial B-spline (trigonometric B-spline) collocation method for
solving time-dependent equations involving PHI-Four and Allen–Cahn
equations. A three-time-level implicit algorithm has been derived. This
algorithm combines the trigonometric B-spline interpolant and the θ-
weighted scheme for space and time discretization, respectively. Conver-
gence analysis is discussed and the accuracy of the presented method
is O(τ2 + h2). Applying von Neumann stability analysis, the proposed
technique is shown to be unconditionally stable. Three test problems are
demonstrated to reveal that our method is reliable, efficient and very
encouraging.
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1. Introduction

Partial differential equations (PDEs) are a great tool to model many appli-
cations that appear in science and engineering. PDEs are essential in various
fields such as plasma physics, fluid dynamics and quantum field theory [1].
Consider the following time-dependent equation:

aut + butt + cuxx + du = ψ(x, t, u, uq, ux), ā ≤ x ≤ b̄ and t ≥ 0, (1.1)

subject to initial conditions

u(x, 0) = f1(x), ut(x, 0) = f2(x), (1.2)

and boundary conditions as follows:

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ t0, (1.3)
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where u = u(x, t) represents the wave displacement at position x and time
t and a, b, c, q, and d are known constants and ψ(x, t, u, uq, ux) is the force
term.

Changing the values of the constants in Eq. (1.1) gives various types of
equations. For example, if we set the constants as a = 0, b = 1, c = −1, d =
−1 and ψ(x, t, u, uq, ux) = −u3, Eq. (1.1) becomes PHI-Four equation. This
equation plays an important role in mathematical physics. Triki and Wazwaz
[1], have been addressed the exact bright and dark soliton solutions of the
form:

u(x, t) = ± tanh

(
(x − vt)√
2(1 − v2)

)
, (1.4)

where v is the wave speed. Also, in [1], the authors applied sine–cosine ansatz
method to investigate the solution of the following two types of PHI-Four
equation:

(u±n)tt − c(u±n)xx − um + u±n = 0. (1.5)

Also, Triki and Wazwaz [2], considered a new variety of soliton solutions of
the generalized Fitzhugh–Nagumo equation by specific solitary wave ansatz
and the tanh method.

Also, if we set the constants as a = 1, b = 0, c = −1, d = −1 and
ψ(x, t, uq, ux) = −u3. Equation (1.1) becomes Allen–Cahn equation. Allen–
Cahn equation is used to model many applications such as mathematical
biology, quantum mechanics, plasma physics and image processing [3–5].

The solution of these types of NPDEs are significant in various appli-
cations. Bahrawy et al. [6] presented a Jacobi–Gauss–Lobatto collocation
method for solving the PHI-Four equation. Ehsani et al. [7] solved the PHI-
Four equation using the homotopy perturbation method. Wazwaz and Triki
[8] developed non-topological and topological soliton solutions for the PHI-
Four equation via solitary wave ansatz method. Also, Alofi [9] proposed the
generalized tanh method to find the solution of Drinfeld–Sokolov system
and PHI-Four equation. Soliman and Abdo [10] established new solutions
for RLW, PHI-Four and Boussinesq equations. Also, Sassaman and Biswas
[11] investigated the solution of PHI-Four and Klein Gordon equations using
the soliton perturbation theory. Lastly, Najafi [12] discussed the soliton solu-
tion of this equation using the He’s variational method for solving PHI-Four
equation.

Hariharan [3], Hariharan and Kannan [4] adapted a wavelet-based
method for solving the Newell–Whitehead and Allen–Cahn equations, respec-
tively. Beneš et al. [5] developed an algorithm of pattern recovery based on the
solution of the Allen–Cahn equation. Ishtiaq et al. [13] demonstrated some
numerical methods for Allen–Cahn equation using different time stepping
and space discretization methods with non-periodic boundary conditions.

Ordinary B-spline collocation method has been used for solving PDEs
by many authors as in [14–20]. Mohammadi [21], used another type of
spline named exponential B-spline to present a numerical algorithm for the
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time-dependent generalized regularized long wave equation. Also, Moham-
madi [22], developed an exponential B-spline collocation method for solving
convection–diffusion equation.

In this paper, we aim to illustrate an alternative type of nonpoly-
nomial B-spline function named trigonometric B-spline for solving time-
dependent problems. Based on nonpolynomial B-spline function a three-time-
level implicit algorithm has been derived. This algorithm uses the nonpoly-
nomial B-spline interpolant and the θ-weighted scheme for the spatial and
temporal discretization, respectively, to solve the time-dependent problem
(1.1)–(1.3). We discussed the convergence analysis in details and the stability
analysis of the proposed method are presented via von Neumann technique.
The main advantage of this approach is easy to implement for both linear
and nonlinear problems.

This paper is organized as follows: Sect. 2 is devoted to temporal dis-
cretization via finite difference technique to discretize the time-dependent
problem (1.1). In Sect. 3 we described the cubic trigonometric B-spline and
implemented our method to solve the problem (1.1)–(1.3). Convergence anal-
ysis of the presented scheme is discussed in Sect. 4. While the stability anal-
ysis using von Neumann approach is shown to be unconditionally stable in
Sect. 5. In Sect. 6 we presented three numerical examples to validate the
efficiency and convergence of our method. Finally, in Sect. 7 we conclude our
results.

2. Temporal Discretization

Consider a uniform mesh Δ with the grid points πij to discretize the region
Ω = [ā, b̄] × [0, T ]. Each πij is the vertices of the grid points (xi, tj) where
xi = a + ih, i = 0, 1, 2, . . . , N and tj = jk, j = 0, 1, 2, . . . ,M,Mk = T . The
quantities h and k are the mesh size in the space and time directions, respec-
tively. First we discretize the problem in, time variable using the forward
and central difference formulas and apply θ-weighted scheme to the space
derivatives to Eq. (1.1) where (0 ≤ θ ≤ 1) then it can be written as:

a

k
(u(x, tn+1) − u(x, tn)) +

b

k2
(u(x, tn+1) − 2u(x, tn) + u(x, tn−1))

= θ[−cu′′(x, tn+1) − du(x, tn+1)
+ψ(x, tn+1, u(x, tn+1), uq(x, tn+1), u′(x, tn+1))]
+ (1 − θ)[−cu′′(x, tn) − du(s, tn)
+ψ(x, tn, u(x, tn), uq(x, tn), u′(x, tn))], (2.1)

where the subscription n − 1, n and n + 1 denotes the adjacent time levels.
Rearrange the above equation, we get

αu′′(x, tn+1) + βu(x, tn+1) + γψ(x, tn+1, u(x, tn+1), u
q(x, tn+1), u

′(x, tn+1))

= ϕ(x, tn, u(x, tn), uq(x, tn), u′(x, tn)), (2.2)

where α = θc, β = a
k + b

k2 + dθ, γ = −θ and
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ϕ(x, tn, u(x, tn), uq(x, tn), u′(x, tn))

=
(

a

k
+

2b

k2
− d(1 − θ)

)
u(x, tn) − (1 − θ)cu′′(x, tn)

+ (1 − θ)ψ(x, tn, u(x, tn), uq(x, tn), u′(x, tn)) − b

k2
u(x, tn−1). (2.3)

With the boundary conditions:

u(a, tn+1) = g1(tn+1), u(b, tn+1) = g2(tn+1). (2.4)

The space derivatives are approximated by trigonometric B-spline which are
presented in the next section.

3. Trigonometric B-Spline Collocation Method

We use the cubic trigonometric B-spline function to solve the bound-
ary value problems given by (2.2)–(2.4) at each time level. Let Δ̄ ≡
{ā = x0 < x1, . . . , xN−1, xN = b̄} be a uniform partition of the solution
domain ā ≤ x ≤ b̄ by the knots xj with h = xj+1 −xj = b̄−ā

N , j = 0, 1, . . . , N .
Let TS(Δ̄) be the space of trigonometric spline functions over the par-

tition Δ̄. We can define the trigonometric B-spline functions {TBSj(x)}, for
j = −1, 0, 1, . . . , N + 1. for TS(Δ̄) after including two more points on each
side of the partition Δ̄. Thus, the cubic trigonometric B-spline function is
defined as in [13,23,27,28].

TBSj(x) =
1

μ(h)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin3(x−xj−2
2 ), x ∈ [xj−2, xj−1]

sin(x−xj−2
2 )[sin(x−xj−2

2 ) sin(xj−x
2 )

+ sin(xj+1−x
2 ) sin(x−xj−1

2 )]

+ sin(x−xj−2
2 ) sin2(xj+1−x

2 ), x ∈ [xj−1, xj ]

sin(xj+2−x
2 ), [sin(x−xj−1

2 ) sin(xj+1−x
2 )

+ sin(xj+2−x
2 ) sin(x−xj

2 )]

+ sin(x−xj−2
2 ) sin2(xj+1−x

2 ), x ∈ [xj , xj+1]

sin3(xj+2−x
2 ), x ∈ [xj+1, xj+2]

0, otherwise

where

μ(h) = sin(h̄) sin(h) sin(3h̄), h̄ =
h

2
.

Properties of trigonometric B-spline basis are given below, see [23]

1. TBSj(x) is nonnegative,
2. TBSj(x) ≥ 0 when x ∈ [xj−2, xj+2] and zero otherwise,
3.

∑
j TBSj(x) = 1.

Then the coefficients of TBSj and its derivatives are given in the following
table.
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Table 1. Coefficients of TBSj and its derivatives, see [24,25]

x xj−2 xj−1 xj xj+1 xj+2

TBSj 0 γ1 σ γ1 0
TBS′

j 0 λ 0 −λ 0

TBS(2)
j 0 δ σ1 δ 0

Where

γ1 = sin2(h̄) csc(h) csc(3h̄), σ =
2

1 + 2 cos(h)
, λ =

3
4

csc(3h̄),

δ =
3(1 + 3 cos(h)) csc2(h̄)
16(2 cos(h̄) + cos(3h̄))

, σ1 =
−3 cot2(h̄)

2(1 + 2 cos(h))
.

We consider that U(x, t) be the approximation to the exact solution u(x, t)
of problems (2.2)–(2.4), thus we have

U(x, tn+1) =
N+1∑
j=−1

cj(tn+1)TBSj(x), (3.1)

where cj are unknown coefficients and TBSj(x) are trigonometric B-spline
functions. The nodal values Uj , U

′
j and U

(2)
j at the knots xj are derived from

expression (3.1) and Table 1 in the following form

Uj = γ1cj+1 + σcj + γ1cj−1, (3.2)
U ′

j = −λcj+1 + λcj−1, (3.3)

U
(2)
j = δcj+1 + σ1cj + δcj−1. (3.4)

Substituting Eqs. (3.2)–(3.4) into Eq. (2.2) yields the following equation

α

n+1∑
j=−1

cj(tn+1)TBS′′
j (xj) + β

n+1∑
j=−1

cj(tn+1)TBSj(xj)

+ γψ

⎛
⎝xj , tn+1,

n+1∑
j=−1

cj(tn+1)TBSj(xj),

⎛
⎝ n+1∑

j=−1

cj(tn+1)TBSj(xj)

⎞
⎠

q

,

n+1∑
j=−1

cj(tn+1)TBS′
j(xj)

⎞
⎠ = ϕ(xj). (3.5)

Simplifying the above relation leads to the following system of equations

α1cj+1 + β1cj + α1cj−1 + γψj = ϕj , j = 0, 1, 2, . . . , N, (3.6)

where α1 = αδ + βγ1, β1 = ασ1 + βσ and ψj = ψ(xj , γ1cj+1 + σcj + γ1cj−1,
λcj+1 − λcj−1, (γ1cj+1 + σcj + γ1cj−1)q).

To obtain a unique solution of the last system, two additional constraints
are required. These constrains are obtained from the boundary conditions
given by Eq. (2.4).
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Using the first boundary condition, we get

u(a, tn+1) = g1(tn+1) = γ1c1 + σc0 + γ1c−1.

Eliminating the constant c−1 from the above equation and Eq. (3.6) for j = 0,
we obtain

α∗c0 + γ1γψ0 = γ1ϕ0 − α1g1(tn+1), for j = 0, (3.7)

where α∗ = γ1β1 − α1σ.
Similarly, for the second end condition, we have

α∗cN + γ1γψN = γ1ϕN − α1g2(tn+1), for j = N. (3.8)

Equations (3.6)–(3.8) can be written in the following matrix form as:

MC + ψ = ϕ, (3.9)

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α∗ 0 0 0 0 0 0 0 0
α1 β1 α1 0 0 0 0 0 0
0 α1 β1 α1 0 0 0 0 0

0
. . . . . . . . . . . . 0 0 0 0

0 0
. . . . . . . . . . . . . . . . . . 0

0 0 0 0 0 0 α1 β1 α1

0 0 0 0 0 0 0 0 α∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ψ = (γ1γψ0, γψ1, γψ2, . . . , γ1γψN )T,

ϕ = (γ1ϕ0 − α1g1(tn+1), ϕ1, ϕ2, . . . , γ1ϕN − α1g2(tn+1))T,

C = (c0, c1, c2, . . . , cN )T.

4. Convergence Analysis

Let ū(x) be the exact solution of the boundary value problems (3.6)–(3.8),
and also U(x) =

∑n+1
j=−1 cjTBSj(x) be the trigonometric B-spline collocation

approximation to ū(x). Due to the round of errors, we assume that Ū(x) =∑n+1
j=−1 c̄jTBSj(x) be the computed B-spline approximation to ū(x), where

c̄ = (c̄0, c̄1, . . . , c̄n)T. To estimate ‖ū(x)−U(x)‖, we must estimate the errors
‖ū(x) − Ū(x)‖ and ‖Ū(x) − U(x)‖, respectively. Following (3.9) for Ū(x), we
get

MC̄ + ψ̄ = ϕ̄, (4.1)

where ψ̄ = (γ1γψ̄0, γψ̄1, γψ̄2, . . . , γ1γψ̄N )T,

ϕ̄ = (γ1ϕ̄0 − α1g1(tn+1), ϕ̄1, ϕ̄2, . . . , γ1ϕ̄N − α1g2(tn+1))T,

C̄ = (c̄0, c̄1, c̄2, . . . , c̄N )T.

Using the systems (3.9) and (4.1), and following [26], we obtain

M(C − C̄) + (ψ − ψ̄) = ϕ − ϕ̄, (4.2)

Before we proceed, we need the following theorem.
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Theorem 1. Suppose that y(x) ∈ C4[ā, b̄] and Δ̄ ≡ {ā = x0 < x1 < · · ·
< xN−1 < xN = b̄} be a uniform partition of [ā, b̄] with a step size h. If z(x)
be the unique trigonometric B-spline approximation for y(x) at the knots
x0, x1, . . . , xN−1, xN , then

‖z(x) − y(x)‖ ≤ O(h3),

‖z(k)(x) − y(k)(x)‖ ≤ O(h2), k = 1, 2,

‖z(k)(x) − y(k)(x)‖ ≤ O(h), k = 3.

Proof. See [27].
Recall to Eq. (2.2) and Theorem 1, we get a bound on ‖ϕ − ϕ̄‖ as:

|ϕj − ϕ̄j | = |αu′′
j + βuj + γψj − αū′′

j − βūj − γψ̄j |
≤ |α||u′′

j − ū′′
j | + |β||uj − ūj | + |γ||ψj − ψ̄j |.

Then using Theorem 1, we have ‖ϕ − ϕ̄‖ ≤ |α|O(h2) + |β|O(h3) +
L(O(h3) + O(h2)), where ‖ψ′(z)‖ < L, see [27,28].

‖ϕ − ϕ̄‖ ≤ Kh2, K = |α| + L + (|β| + L)O(h). (4.3)

Now for the term (ψ − ψ̄) and apply the mean value theorem, we get

ψ − ψ̄ = (ψu(∝1)ω1 + ψux
(∝2)ω2)(C − C̄), (4.4)

where ∝1 and ∝2 are in [ā, b̄] and ω1 and ω2 are given matrices which have
the following form:

ω1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
γ1 σ γ1 0 0 0 0 0 0
0 γ1 σ γ1 0 0 0 0 0

0
. . . . . . . . . . . . 0 0 0 0

0 0
. . . . . . . . . . . . . . . . . . 0

0 0 0 0 0 0 γ1 σ γ1
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λσ
γ1

−2λ 0 0 0 0 0 0 0
λ 0 −λ 0 0 0 0 0 0
0 λ 0 −λ 0 0 0 0 0

0
. . . . . . . . . . . . 0 0 0 0

0 0
. . . . . . . . . . . . . . . . . . 0

0 0 0 0 0 0 λ 0 −λ
0 0 0 0 0 0 0 2λ −λσ

γ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using Eq. (4.4) into Eq. (4.2), we get

M̄(C − C̄) = ϕ − ϕ̄, (4.5)

where M̄ = M + ψu(∝1)ω1 + ψux
(∝2)ω2.

Then from Eq. (4.5), we have

‖C − C̄‖ ≤ ‖M̄−1‖‖ϕ − ϕ̄‖ ≤ Kh2‖M̄−1‖.



122 Page 8 of 19 W. K. Zahra MJOM

Using the properties of trigonometric B-spline basis, see [23,26,28],
we note that trigonometric B-spline basis is defined only in the interval
[xj−2, xj+2] and outside of this interval it is zero. Therefore, TBSj(x) is hav-
ing non-vanishing values at the mesh points [xj−2, xj+2] and at other mesh
points the value of TBSj(x) is zero. It is clear that from the definition of
trigonometric B-spline basis, the derivatives of TBSj(x) up to second order
also have the same nature at the mesh points as in the case of TBSj(x). Using
these facts, we can say that the matrix ‖M̄‖ is a tridiagonal band matrix with
nonzero entries and dominant principal diagonal elements. Hence, the matrix
is nonsingular and M̄−1 is bounded. Then, we get

‖C − C̄‖ ≤ K1h
2, K1 = K‖M̄−1‖. (4.6)

�
Lemma 2. The B-spline TBS−1,TBS0, . . .TBSN+1 defined in Eq. (3.1), sat-
isfies the inequality

n+1∑
j=−1

|TBSj(x)| ≤ 6.

Proof. We know that |∑n+1
j=−1 TBSj(x)| ≤ ∑n+1

j=−1 |TBSj(x)|.
At any node xj , we have

n+1∑
j=−1

|TBSj(x)| = |TBSj−1(x)| + |TBSj(x)| + |TBSj+1(x)|

= |γ1| + |σ| + |γ1| ≤ 4.

Also, we have at any point in each subinterval xj−1 ≤ x ≤ xj

N+1∑
j=−1

|TBSj(x)| = |TBSj−2(x)| + |TBSj−1(x)| + |TBSj(x)| + |TBSj+1(x)| ≤ 6

Then, we have
N+1∑
j=−1

|TBSj(x)| = |TBSj−2(x)| + |TBSj−1(x)| + |TBSj(x)| ≤ 6

Hence, this proves the lemma.
From U(x) − Ū(x) =

∑n+1
j=−1(cj − c̄j)TBSj(x), [28] and Lemma 2, we

get that
‖Ū(x) − U(x)‖ ≤ K̄h2, K̄ = 6K1. (4.7)

�
Theorem 3. Let ū(x) be the exact solution of (3.6)–(3.8) and let U(x) be the
trigonometric B-spline collocation approximation, then

‖ū(x) − U(x)‖ = O(h2).

Proof. From Theorem 1 and Eq. (4.7), we get that

‖ū(x) − U(x)‖ = ‖ū(x) − U(x) + Ū(x) − Ū(x)‖ ≤ ‖ū(x) − Ū(x)‖
+ ‖Ū(x) − U(x)‖

≤ O(h3) + K̄h2 ≤ O(h2).
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Suppose that u(x, t) be the exact solution to (1.1)–(1.3) and U(x, t) be the
approximation to this solution, then we have ‖u(x, tn+1) − U(x, tn+1)‖ ≤
O(τ2 + h2). �

5. Stability Analysis

The stability of the proposed method is investigated by von Neumann
method. The form of the proposed scheme takes the following form by letting
ψ(x, t, u, uq, ux) = 0 for simplicity

(αδ + βγ1)cn+1
j+1 + (ασ1 + βσ)cn+1

j + (αδ + βγ1)cn+1
j−1 + (α1δ + β1γ1)cn

j+1

+ (α1σ1 + β1σ)cn
j + (α1δ + β1γ1)cn

j−1 +
bγ1
k2

cn−1
j−1 +

bσ1

k2
cn−1
j

+
bγ1
k2

cn−1
j+1 = 0. (5.1)

where α1 = c(1 − θ) and β1 = d(1 − θ) − a
k − b

k2 .
We discuss two cases, the stability analysis for both PHI-Four and

Allen–Cahn equations.

5.1. Stability Analysis of PHI-Four Equation

For the stability analysis of PHI-Four equation, we let a = 0, b = 1, c =
−1, d = −1, then substitute by the values of γ1, δ, σ and σ1 in Eq. (5.1) and
after simplification, one obtain

(r1 + k2θr2)cn+1
j+1 + (r3 − k2θr4)cn+1

j + (r1 + k2θr2)cn+1
j−1

+ (−2r1 + k2(1 − θ)r2)cn
j+1 + (−2r3 − k2(1 − θ)r4)cn

j

+ (−2r1 − k2(1 − θ)r2)cn
j−1 + r1c

n−1
j−1 + r3c

n−1
j + r1c

n−1
j+1 = 0, (5.2)

where

r1 = sin2(h̄)(32 cos(h̄) + 16 cos(3h̄))(1 + 2 cos(h̄)),
r2 = sin (h) sin(3̄h)(3 + 9 cos(h̄))(1 + 2 cos(h̄)),
r3 = sin (h) sin(3h̄)(64 cos(h̄) + 32 cos(3h̄)),
r4 = − cos2(h̄) sin(h) sin(3h̄)cosec2(h̄)(48 cos(h̄) + 24 cos(3̄h)).

Put cn
j = ξneiεjh, i =

√−1 in Eq. (5.2) and simplifying, we get

ξ2 [μ1 cos(εh) + μ2] + ξ [μ3 cos(εh) + μ4] + [r1 cos(εh) + r3] = 0. (5.3)

where

μ1 = (r1 + k2θr2), μ2 = (r3 − k2θr4), μ3 = (−2r1 + k2(1 − θ)r2),
μ4 = (−2r3 − k2(1 − θ)r4).

Then Eq. (5.3) becomes

(P + θQ)ξ2 + (−2P + (1 − θ)Q)ξ + P = 0. (5.4)

where

P = r3 + r1 cos(εh), Q = k2(−r4 + r2 cos(εh)).
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The necessary and sufficient condition for Eq. (5.4) to be stable (|ξ| ≤ 1),
then we get:

ξ =
−(−2P + (1 − θ)Q) ± √

(−2P + (1 − θ)Q)2 − 4P (P + θQ)
2(P + θQ)

.

After simplification, we get that

|ξ| =

√
(2P − (1 − θ)Q)2

4(P + θQ)2
+

4PQ − ((1 − θ)Q)2

4(P + θQ)2
,

Then we have

|ξ| =

√
P 2 + PθQ

P 2 + 2PθQ + (θQ)2
≤ 1.

It is evidence that the scheme is unconditionally stable.

5.2. Stability Analysis of Allen–Cahn Equation

For the stability analysis of Allen–Cahn equation, we let a = 1, b = 0, c = −1
and d = −1, then substitute by the values of γ1, δ, σ and σ1 in Eq. (5.1),
after simplification and following the procedure given in Sect. 5.1, one obtain

(P + θQ)ξ + (−P + (1 − θ)Q) = 0. (5.5)

Rewrite Eq. (5.5) in the following form:

ξ =
(−P + (1 − θ)Q) + iz

(P + θQ) + iz
,

where z is an arbitrary constant.
Then we have

|ξ| =

√
(−P + (1 − θ)Q)2 + z2

(P + θQ)2 + z2
≤ 1.

This means that the scheme is unconditionally stable.

6. Numerical Experiments and Discussion

To illustrate the performance and the accuracy of the presented method,
three test problems are given in this section, one for PHI-Four equation and
the other two test problems are for Allen–Cahn equation. We compute Ej

norm described by the following relation

Ej = |uexact
j − Uapproximate

j |.
Also, all numerical computations were made using MATLAB R2009a.
Test Problem (1) Consider Eq. (1.1) with the initial and boundary conditions
given in Eqs. (1.2)–(1.3) with the values of the constants as a = 0, b = 1, c =
−1, d = −1 and ψ(x, t, uq, ux) = −u3 which gives the PHI-Four equation as:

utt − uxx − u + u3 = 0, (6.1)

with the initial and boundary conditions as follows:
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Table 2. Absolute error for test Problem 1 at θ = 1
2 , 0 <

x < 1 and 0 ≤ t ≤ 0.01

x/t 0.002 0.004 0.006 0.008 0.01

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.1 1.28E−10 6.75E−10 1.63E−09 2.98E−09 4.75E−09
0.2 9.38E−10 2.70E−09 5.24E−09 8.55E−09 1.26E−08
0.3 6.94E−10 1.08E−10 1.73E−09 4.83E−09 9.22E−09
0.4 5.61E−09 1.28E−08 2.14E−08 3.15E−08 4.29E−08
0.5 1.31E−08 2.39E−08 3.23E−08 3.82E−08 4.15E−08
0.6 4.43E−08 9.06E−08 1.38E−07 1.87E−07 2.37E−07
0.7 1.18E−07 2.32E−07 3.41E−07 4.45E−07 5.43E−07
0.8 3.00E−07 6.01E−07 9.02E−07 1.20E−06 1.50E−06
0.9 5.53E−07 1.10E−06 1.64E−06 2.17E−06 2.69E−06
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

u(x, 0) = 0, ut(x, 0) = x, u(0, t) = 0,

u(1, t) = t +
t3

6
− t5

20
+

t5

120
− t7

140
− t7

840
− t11

23760
+

t13

37440
− t15

168000

+
t17

2176000
,

with the analytical exact solution as given in [7] as follows:

u(x, t) = xt +
xt3

6
− x3t5

20
+

xt5

120
− xt7

140
− x3t7

840
− x3t11

23760
+

x5t13

37440

− x7t15

168000
+

x9t17

2176000
. (6.2)

Test Problem (2) Consider Eq. (1.1) with the initial and boundary conditions
given in Eqs. (1.2) and (1.3) with the values of the constants as a = 1, b =
0, c = −1, d = −1 and ψ(x, t, uq, ux) = −u3 which gives the Allan–Cahn
equation as

ut − uxx − u + u3 = 0, (6.3)

with the initial condition

u(x, 0) = −0.5 + 0.5 tanh(0.3536x),

and the boundary conditions

u(0, t) = −0.5+0.5 tanh(−0.75 t), u(1, t) = −0.5 + 0.5 tanh(0.3536 − 0.75t),

and the exact solution as follows from [3]

u(x, t) = −0.5 + 0.5tanh(0.3536x − 0.75 t) (6.4)

Test Problem (3) Consider Eq. (1.1) with the initial and boundary conditions
given in Eqs. (1.2) and (1.3) with the values of the constants as a = 1, b = 0,
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Table 3. Absolute error for test problem 1 at θ = 1
2 , 0 < x <

1 and 0 ≤ t ≤ 0.1

x/t 0.02 0.04 0.06 0.08 0.1

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
0.1 9.33E−08 5.04E−07 1.45E−06 2.73E−06 4.29E−06
0.2 1.65E−08 1.20E−06 2.64E−06 5.05E−06 8.69E−06
0.3 6.84E−07 1.05E−06 4.59E−06 9.09E−06 1.35E−05
0.4 1.74E−06 4.35E−06 4.89E−06 6.86E−06 1.38E−05
0.5 8.61E−06 5.87E−06 6.52E−06 2.45E−05 3.75E−05
0.6 3.38E−05 3.44E−05 2.11E−05 8.31E−06 2.89E−05
0.7 0.000142 0.000102 6.91E−05 3.24E−05 0.000158
0.8 0.000585 0.000322 0.000352 0.000224 1.45E−05
0.9 0.00242 0.000703 0.000976 0.001062 0.000986
1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 4. Comparison between the exact and approximate
solutions for test Problem 1 at θ = 1

2 , 0 < x < 1 and 0 ≤
t ≤ 0.1

x t Exact solution Approximate solution

0 0 0 0
0.1 0.01 0.00100001 0.00100000
0.2 0.02 0.00400026 0.00400028
0.3 0.03 0.00900135 0.00900139
0.4 0.04 0.01600426 0.01600861
0.5 0.05 0.02501041 0.02500943
0.6 0.06 0.03602159 0.03604266
0.7 0.07 0.04903999 0.04901543
0.8 0.08 0.06406820 0.06429252
0.9 0.09 0.08110917 0.08006743
1 0.1 0.10016624 0.10016524

c = −1, d = −1 and ψ(x, t, uq, ux) = −u3 which gives the Allan Cahn equa-
tion as

ut − uxx − u + u3 = 0, (6.5)

with the initial condition

u(x, 0) =
(
1 + e−(

√
2

2 )x
)−1

,

and the boundary conditions

u(0, t) =
(
1 + e− 3

2 t
)−1

, u(1, t) =
(

1 + e−
( √

2
2

)[
1+ 3

√
2

2 t
])−1

,
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Figure 1. Space–time graph of Problem 1 at θ = 1
2 , 0 < x <

1 and 0 ≤ t ≤ 0.1. a Approximate solution, b Exact solution,
c Error
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Figure 2. Maximum error for Problem 1 for different time
levels at θ = 1

2 , 0 < x < 1 and 0 ≤ t ≤ 0.1

and the exact solution as follows from [3]

u(x, t) =
(

1 + e−
( √

2
2

)[
x+ 3

√
2

2 t
])−1

. (6.6)
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Table 5. Absolute error for Problem 2 at θ = 1
2 , 0 < x < 1

and 0 ≤ t ≤ 0.01

x/t 0.001 0.003 0.005 0.007 0.009 0.01

0.0 0.000E+00 0.000E+00 1.110E−16 1.110E−16 0.000E+00 0.000E+00

0.1 2.448E−04 6.443E−04 9.687E−04 1.246E−03 1.492E−03 1.606E−03

0.2 2.000E−04 6.128E−04 1.016E−03 1.399E−03 1.761E−03 1.935E−03

0.3 1.797E−04 5.411E−04 9.082E−04 1.277E−03 1.644E−03 1.826E−03

0.4 1.594E−04 4.806E−04 8.052E−04 1.134E−03 1.465E−03 1.632E−03

0.5 1.410E−04 4.252E−04 7.124E−04 1.003E−03 1.296E−03 1.444E−03

0.6 1.242E−04 3.747E−04 6.280E−04 8.841E−04 1.143E−03 1.273E−03

0.7 1.091E−04 3.290E−04 5.520E−04 7.770E−04 1.003E−03 1.116E−03

0.8 9.502E−05 2.896E−04 4.824E−04 6.705E−04 8.536E−04 9.434E−04

0.9 8.886E−05 2.412E−04 3.725E−04 4.910E−04 6.009E−04 6.534E−04

1.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table 6. Comparison between the exact and approximate
solutions for test Problem 2 at θ = 1

2 , 0 < x < 1 and 0 ≤
t ≤ 0.01

x t Exact solution Approximate solution

0 0 −0.5 −0.5
0.1 0.001 −0.48294667 −0.48270191
0.2 0.002 −0.46584916 −0.46544517
0.3 0.003 −0.44881129 −0.44827076
0.4 0.004 −0.43186126 −0.43121885
0.5 0.005 −0.41504090 −0.41432848
0.6 0.006 −0.39839276 −0.39763717
0.7 0.007 −0.38195995 −0.38118064
0.8 0.008 −0.36571227 −0.36499250
0.9 0.009 −0.34910129 −0.34910400
1 0.01 −0.33054967 −0.33354385

Tables 2 and 3 show the absolute error for PHI-Four equation and a
comparison between the exact and the approximate solutions is also reported
in Table 4. Figure 1 shows the space–time graph of the exact, the approximate
solutions and the error for PHI-Four equation. The error at different time
levels is depicted in Fig. 2. While, Tables 5 and 6 show the absolute error
for Allen–Cahn equation for Problems 2 and 3. Also, Table 6 reports the
exact and the approximate solutions for Problem 2. Figures 3 and 5 show the
space–time graph of the exact, the approximate solutions and the error for
Problems 2 and 3, and finally, Figs. 4 and 6 the error at different time levels.
We can conclude from these tables and figures that our numerical results
are in good agreement with the exact solution for the given time-dependent
problems.
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Table 7. Absolute error for test problem 3 at θ = 1
2 , 0 < x <

1 and 0 ≤ t ≤ 0.01

x/t 0.001 0.003 0.005 0.007 0.009 0.01

0.0 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

0.1 2.509E−04 7.070E−04 1.127E−03 1.528E−03 1.917E−03 2.108E−03

0.2 3.351E−04 1.022E−03 1.715E−03 2.408E−03 3.100E−03 3.446E−03

0.3 4.389E−04 1.328E−03 2.233E−03 3.153E−03 4.085E−03 4.555E−03

0.4 5.456E−04 1.649E−03 2.768E−03 3.905E−03 5.057E−03 5.639E−03

0.5 6.542E−04 1.975E−03 3.314E−03 4.669E−03 6.042E−03 6.735E−03

0.6 7.626E−04 2.301E−03 3.857E−03 5.434E−03 7.028E−03 7.830E−03

0.7 8.697E−04 2.620E−03 4.399E−03 6.188E−03 7.968E−03 8.850E−03

0.8 9.653E−04 2.956E−03 4.902E−03 6.755E−03 8.510E−03 9.353E−03

0.9 1.161E−03 3.064E−03 4.617E−03 5.951E−03 7.136E−03 7.685E−03

1.0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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Figure 3. Space–time graph of Problem 2 at θ = 1
2 , 0 <

x < 1 and 0 ≤ t ≤ 0.01. a Approximate solution, b Exact
solution, c Error

7. Conclusion

Nonpolynomial B-spline collocation method is implemented for the solu-
tion of time-dependent problems involving the PHI-Four and Allen–Cahn
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Figure 5. Space–time graph of Problem 3 at θ = 1
2 , 0 <

x < 1 and 0 ≤ t ≤ 0.01. a Approximate solution, b Exact
solution, c Error

equations. The numerical solution is obtained using three-time-level implicit
scheme based on a trigonometric cubic B-spline interpolant for spatial dis-
cretization and the θ-weighted scheme for temporal discretization. A detailed
convergence analysis of the proposed method is shown. Also, von Neumann
approach is applied to show that our scheme is unconditionally stable. It is
evident from the three problems that the approximate solution is very close
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levels at θ = 1

2 , 0 < x < 1 and 0 ≤ t ≤ 0.01

to the exact solution and the results are very encouraging. The suggested
scheme is easy, simple and good alternative to some other techniques when
dealing with the numerical solution of time-dependent problems.
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