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On the Density Condition of a Multiresolu-
tion Analysis in Lebesgue Spaces

A. San Antoĺın

Abstract. We are interested in the problem of when the density condi-
tion in a multiresolution analysis defined in Lp(Rn), 1 ≤ p ≤ ∞, holds.
Indeed, if 2 ≤ p < ∞, we obtain sufficient conditions on the generators
of a multiresolution analysis in order to the density condition is satisfied.
We emphasis on the requirement of the Fourier transform in a neigh-
borhood of the origin. This involves the notion of density point. When
1 ≤ p ≤ 2, the obtained condition is necessary. Moreover, we study the
same problem when a multiresolution analysis is defined in the subspace
of L∞(Rn) of the set of all continuous functions vanishing at infinite.
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1. Introduction

A multiresolution analysis is a general method for constructing orthonormal
wavelets, Riesz basis of wavelets, and wavelet frames. Moreover, it plays a
main role in approximation of functions spaces by dilated of shift-invariant
subspaces. Here, we are interested in the problem of when the density condi-
tion in a multiresolution analysis defined in Lp(Rn), 1 ≤ p ≤ ∞, holds.

1.1. Notation and Basic Definitions

The sets of strictly positive integers, integers, and real numbers will be
denoted by N, Z, and R, respectively. Let n ∈ N, if we write Lp(Rn),
1 ≤ p ≤ ∞, we mean the usual Lebesgue space, and C0(Rn) will be the
subspace of L∞(Rn) consisting of all continuous functions vanishing at infin-
ity. For 1 < p < ∞, the conjugate number q will be the real number, such
that 1

p + 1
q = 1, and if p = 1, the conjugate will be q = ∞. We will denote

Br(y) = {x ∈ R
n : |x − y| < r}, and we will write Br if y is the origin. If

A : R
n → R

n is a linear map, A∗ will mean the adjoint of A. With some
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abuse in the notation, if we write A, we also mean the corresponding matrix
respect to the canonical basis. Moreover dA = |det A|. For a Lebesgue mea-
surable set E ⊂ R

n, Ec = R
n \ E and the Lebesgue measure of E in R

n will
be denoted by |E|n. If x ∈ R

n, then x + E = {x + y : for y ∈ E}. We
will denote A(E) = { x ∈ R

n : x = A(t) for t ∈ E } and the volume of E
changes under A according to |AE|n = dA|E|n. The characteristic function of
a set E ⊂ R

n will be denoted by χE , i.e., χE(x) = 1 if x ∈ E, and χE(x) = 0
otherwise.

A linear map A is called expansive if all (complex) eigenvalues of A have
absolute value greater than 1. It is said that a diagonalizable linear map A is
isotropic if all (complex) eigenvalues of A have the same absolute value. If A
is invertible, we consider the operator DA on Lp(Rn), 1 ≤ p ≤ ∞, defined by
DAf(t) = f(At). The translation of a function f ∈ Lp(Rn) by b ∈ R

n will
be denoted by τbf(t) = f(t − b). For a subspace S of Lp(Rn), b ∈ R

n, and
j ∈ Z,

Dj
AS = {Dj

Af : f ∈ S}, and τbS = {τbf : f ∈ S}.

Given f : R
n → C a Lebesgue measurable function, supp(f) = {x ∈

R
n : f(x) �= 0}. Sets are defined modulo a null set. Some equations are

understood except a null measurable set in R
n.

Definition 1. Let x ∈ R
n, we will say that x is a point of density for a set

E ⊂ R
d, |E|n > 0, if

lim
r→0

|E ∩ Br(x)|n
|Br(x)|n = 1.

The following generalization of the classical notions of point of density
was introduced in [4].

Definition 2. Let A : R
n → R

n be an expansive linear map. Let E ⊆ R
n be

a set of positive measure. We say that x ∈ R
n is an A-density point for E if

for any positive number r, one has

lim
j→∞

|E ∩ [(A−jBr) + x]|n
|A−jBr|n = 1 .

Observe that when A is isotropic, the notion of A-density point coincides
with the classical notion of density point.

Moreover, we need the following definition of [4].

Definition 3. Let A : R
n → R

n be an expansive linear map. A measurable
function f : R

n → C is said to be A-locally nonzero at a point z ∈ R
n if for

any ε > 0 and r > 0 there exists j ∈ N, such that

| { x ∈ (A−jBr + z) : f(x) = 0 } |n < ε|A−jBr|n.

We adopt the convention that the Fourier transform of a function f ∈
L1(Rn) is defined by

̂f(t) =
∫

Rn

f(x)e−2πix·tdx.
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The Fourier transform can be extended to the space of tempered distributions
in the usual way. In particular, the Fourier transform is well defined on the
spaces Lp(Rn), 1 ≤ p ≤ ∞, in the sense of tempered distributions. By the
Hausdorff–Young inequality, if f ∈ Lp(Rn) with 1 ≤ p ≤ 2, the Fourier
transform of f can be considered as a function in Lq(Rn). Indeed, one has
that

‖ ̂f‖Lq(Rn) ≤ ‖f‖Lp(Rn).

For more details on the Fourier transform defined on tempered distributions,
one can read, e.g., [5].

For 2 ≤ p < ∞ and its conjugate number q, we consider the following
space of functions:

ILp(Rn) = {f ∈ Lp(Rn) : ̂f ∈ Lq(Rn)}.

We also need the following:

IC0(Rn) = {f ∈ C0(Rn) : ̂f ∈ Lr(Rn) for some 1 ≤ r ≤ 2}.

1.2. Multiresolution Analysis and Historical Results on the Density Condi-
tion

Otherwise will be mentioned and to shorten the notation, if we write A, we
mean a dilation given by a fixed expansive linear map A : R

n → R
n, such

that A(Zn) ⊂ Z
n.

A multiresolution analysis was introduced in [15] (see also [16]) with
the dyadic dilation in L2(Rn), n ≥ 1. A multiresolution analysis associated
with A was considered, for instance, in [6,14,21,22]. Afterwards, the notion
of generalized multiresolution analysis was introduced in [1]. Generalizations
to the Lp(Rn) context appeared in [9,10,23]. Furthermore, multiresolution
analyses on Lp(Ω) where Ω is a compact set were studied in [12].

By a multiresolution analysis defined on Lp(Rn), 1 ≤ p ≤ ∞, and
associated with a dilation A (A-MRA), we will mean a sequence of closed
subspaces {Vj : j ∈ Z} ⊂ Lp(Rn), that satisfies the following conditions:

(i) ∀j ∈ Z, Vj ⊂ Vj+1.
(ii) ∀j ∈ Z, f ∈ Vj ⇔ DAf ∈ Vj+1.
(iii) ∩j∈ZVj = {0}.
(iv) ∪j∈ZVj = Lp(Rn).
(v) There exists a countable set of function Φ = {φ1, φ2, . . .} ⊂ V0, such

that

V0 = span { τkφ : φ ∈ Φ, k ∈ Z
n }

where the closure is in Lp(Rn).
In this work, we study the problem of when W = ∪j∈ZVj is dense in

Lp(Rn) if the subspaces in {Vj : j ∈ Z} satisfy the conditions (i), (ii), and
(v) in the definition of an A-MRA. This problem was extensively studied
in the literature. Let us focus on those known results that use conditions of
different nature on the generators of the subspace V0. The first necessary and
sufficient conditions on φ ∈ L2(R), a generator of a core subspace V0, to have
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that ∪j∈ZVj is dense in L2(R) were proved by Madych [14] and by de Boor
et al. [2] independently. The result proved by Madych is the following.

Theorem A. Let φ ∈ L2(Rn), such that {τkφ : k ∈ Z
n} is an orthonormal

system. Suppose {Vj : j ∈ Z} is a sequence of closed subspaces of L2(Rn)
which enjoys the properties (ii) and (v) with Φ = {φ}. If Pjf denotes the
orthogonal projection of f onto Vj, then the following conditions are equiva-
lent:
(a) For all f in L2(Rn)

lim
j→∞

‖ f − Pjf ‖= 0.

(b) The function φ in (v) satisfies

lim
j→∞

1
|(A∗)−jQ|

∫

(A∗)−jQ

|̂φ(t)|2dt = 0

for every cube Q of finite diameter in R
n.

The result by de Boor, DeVore, and Ron is the following.

Theorem B. Let φ ∈ L2(Rn) be such that if V0 is the L2(Rn)-closure of the
finite linear combinations of the multi-integer translates of φ and let, for any
j ∈ Z,

Vj = {f(2jx) : f ∈ V0}.

If the condition (i) is satisfied for the sequence of subspaces Vj, j ∈ Z, then
the condition (iv) holds if and only if

∪j∈Z (2j supp ̂φ) = R
n (modulo a null set),

where

supp ̂φ = {t ∈ R
n : ̂φ(t) �= 0}.

Afterwards, Hernández et al. [7] (see also [8]) proved the following result.

Theorem C. Let φ ∈ L2(R), such that {τkφ : k ∈ Z} is an orthonormal
system. Let V0 = span{τk : k ∈ Z}. Suppose {Vj : j ∈ Z} is a sequence of
closed subspaces of L2(R) satisfying the properties (i) and (ii) with de dyadic
dilation. Then, the condition (iv) holds if and only if limj→∞ |̂φ(2−jξ)| = 1,
a.e.

A generalization of this result to the context of an A-MRA when the
core subspace V0 is generated by the shift of several scaling functions was
formulated by Calogero [3].

More necessary and sufficient conditions were proved by Lorentz et al.
[13].

Theorem D. Let φ ∈ L2(R), such that {τkφ : k ∈ Z} is an orthonormal
system. Let Vj, j ∈ Z, be a sequence of closed subspaces of L2(R) satisfying
(i), (ii), and (v) with Φ = {φ} and the dyadic dilation. Then, the condition
(iv) is equivalent to the following conditions:

(a) limj→∞ |̂φ(2−jy)| exists and is positive for a.e. y ∈ R;
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(b) The set {y ∈ R : | ̂φ(y) |> 0} is dyadically absorbing, i.e., for a.e.
y ∈ R, there exists a positive integer j0, which may depend on y, such
that if j ≥ j0, then | ̂φ(2−jy) |> 0.

(c) limj→∞ 2jφ ∗ ˜φ(2jy) exists in the distributional sense and is a nonzero
multiple of the Dirac distribution at the origin. Here, ˜φ(y) = φ(−y) and
∗ denotes the usual convolution.

In [4], a necessary and sufficient condition to have the density condition in
a multiresolution analysis is given in terms of the classical notion of density
point and approximate continuity.

Theorem E. Let φ ∈ L2(Rn), such that {τkφ : k ∈ Z
n} is an orthonormal

system. Let Vj be a sequence of closed subspaces in L2(Rn) satisfying the
conditions (i), (ii), and (v) with Φ = {φ}. Then, the following conditions are
equivalent:

(a) ∪j∈ZVj = L2(Rn).
(b) ̂φ is A∗−locally nonzero at the origin.
(c) the origin is a point of A∗−approximate continuity of the function |̂φ|

if we set |̂φ(0)| = 1.

When Φ is a finite number of functions, a generalization of these last
results was proved by Saliani [17]. If it is assumed that a core subspace V0 is
generated by the shifts of a single function, the above result was generalized in
[11]. The paper by Soto-Bajo [20] deals with all these mentioned conditions
in the context of A-MRA’s defined in reducing subspaces and where the
core subspace V0 may be generated by the shift of a non-finite number of
functions. In [18], if V0 is generated by the translations by integers of a
function φ ∈ L2(Rn) and the subspaces Vj are not necessarily nested, the
author proved necessary and sufficient conditions on φ to have that ∪j∈ZVj

is dense in L2(Rn).
In the Lp(Rn) context, under some decay conditions of a single generator

φ of V0 and if ̂φ(0) �= 0, Jia and Micchelli [10] proved that ∪j∈ZVj is dense in
Lp(Rn), 1 ≤ p < ∞.

Theorem F. If φ is a function defined on R
n, such that

∫

[0,1)n

∣

∣

∣

∣

∣

(

∑

k∈Zn

|φ(x − k)|
)∣

∣

∣

∣

∣

p

dx < ∞, (1 ≤ p < ∞),

and
∑

k∈Zn φ(x − k) = 1, then for any f ∈ Lp(Rn),
∥

∥

∥

∥

∥

f −
∑

k∈Zn

ah(k)φ(h−1 · −k)

∥

∥

∥

∥

∥

p

→ 0 as h → 0+,

where

ah(k) = ah(f,k) := h−n

∫

hk+[0,h)n
f(x)dx =

∫

[0,h)n
f(h(x + k))dx.
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Zhao [23] obtained an improvement of the above result, because the
decay assumptions are weaker, namely, φ is in L1(Rn) ∩ Lp(Rn). From a
different point of view, Zhao also proved the following.

Theorem G. Let 2 ≤ p < ∞ and 1/h an integer ≥ 2. Assume that ϕ ∈
Lp(Rn), such that ϕ = ̂ψ for some ψ ∈ Lq(Rn) and

R
n \ ∪j∈Z ((1/h)j supp ̂φ) (1)

is a null set. Let {Vj}j∈Z be a nested sequence of closed subspaces in Lp(Rn)
satisfying (ii). Then, the span of ∪j∈ZVj is dense in Lp(Rn) if the closure of
span of ∪j∈ZVj contains ϕ.

When 1 ≤ p ≤ 2, the condition (1) is necessary is also proved. Finally,
the density of ∪j∈ZVj in the space L∞ is studied. A generalization of Zhao’s
results was obtained by Jia [9], because he worked with finitely generated
shift-invariant subspaces and a general dilation matrix. Note that Jia also
emphasis in the case when the generators functions of V0 are compactly sup-
ported functions.

We study conditions on the Fourier transform of a single generator of a
subspace V0 in an multiresolution analysis with the dyadic dilation to have
W = ∪j∈ZVj is dense in Lp(Rn), 1 ≤ p ≤ ∞. Indeed, when 2 ≤ p < ∞, we
obtain sufficient conditions in Theorem 1 below. When p = ∞, we consider
the subspace C0(Rn) and our sufficient conditions are written in Theorem 2
below. We focus on the requirement of the Fourier transform of the generators
in a neighborhood of the origin and this is given in terms of density point. In
Proposition 1 below, we prove that this condition is necessary when 1 ≤ p ≤ 2.
Although the results we prove here do not appear in the literature in the above
context, we prove our results when an A-MRA with a countable number of
generators is considered. In this context, we need the notion of A-density
point. The condition depends of the dilation A. When the dilation is given
by a diagonal matrix with equal entries in the diagonal and greater than 2, the
condition (1) also depends of the dilation, but our condition is independent of
such a dilation. This is why Corollary 1, 2, and 4 have been written explicitly.

The remainder of this work is the following. In Sect. 2, we write our
main results and their proofs can be found in Sect. 3.

2. Main Results

We collect the main results of this manuscript in this section.
When 2 ≤ p < ∞, we prove the following sufficient conditions.

Theorem 1. Let 2 ≤ p < ∞, let Φ = {φ1, φ2, . . . } ⊂ ILp(Rn), and let Vj =
span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. If χ∪∞
a=1 supp ̂φa

is A∗-locally nonzero at the origin,
then ∪j∈ZVj is dense in Lp(Rn).

Having into account that the definition of point of density and point
of A-density are equivalent when A is an isotropic expansive linear map, we
have the following.
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Corollary 1. Let 2 ≤ p < ∞, let A : R
n → R

n be an expansive isotropic
linear map, such that A(Zn) ⊂ Z

n, and let Φ = {φ1, φ2, . . . } ⊂ ILp(Rn). Let
Vj = span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. If the origin is a point of density for ∪∞
a=1 supp ̂φa,

then ∪j∈ZVj is dense in Lp(Rn).

We have the following necessary condition when 1 ≤ p ≤ 2.

Proposition 1. Let 1 ≤ p ≤ 2, let Φ = {φ1, φ2, . . . } ⊂ Lp(Rn) and let Vj =
span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. If ∪j∈ZVj is dense in Lp(Rn), then the origin is a
point of A∗-density for ∪∞

a=1 supp ̂φa.

We have the following.

Corollary 2. Let 1 ≤ p ≤ 2, let A : R
n → R

n be an expansive isotropic
linear map, such that A(Zn) ⊂ Z

n and let Φ = {φ1, φ2, . . . } ⊂ Lp(Rn). Let
Vj = span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. If ∪j∈ZVj is dense in Lp(Rn), then the origin is a
point of density for ∪∞

a=1 supp ̂φa.

A straight consequence of Theorem 1 and Proposition 1 is the following
version of Theorem 1.6 in [20].

Corollary 3. Let Φ := {φ1, φ2, . . . } ⊂ L2(Rn) and let Vj = span{Dj
Aτkφ : k ∈

Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in L2(Rn). Assume that Vj ⊂ Vj+1.

The following assertions are equivalent:

(a) ∪j∈ZVj is dense in L2(Rn).
(b) The origin is a point of A∗-density for ∪∞

a=1 supp ̂φa.
(c) The function χ∪∞

a=1 supp ̂φa
is A∗-locally nonzero at the origin.

Instead of an MRA in L∞(Rn), we consider a multiresolution analysis
defined in C0(Rn). We prove the following.

Theorem 2. Let Φ := {φ1, φ2, . . . } ⊂ IC0(Rn) and let Vj = span{Dj
Aτkφ :

k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in C0(Rn). Assume that Vj ⊂

Vj+1. If χ∪∞
a=1 supp ̂φa

is A∗-locally nonzero at the origin, then ∪j∈ZVj is dense
in C0(Rn).

We have the following corollary.

Corollary 4. Let A : R
n → R

n be an expansive isotropic linear map,
such that A(Zn) ⊂ Z

n and let Φ := {φ1, φ2, . . . } ⊂ IC0(Rn). Let Vj =
span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, j ∈ Z, where the closure is in C0(Rn).

Assume that Vj ⊂ Vj+1. If the origin is a point of density for ∪∞
a=1 supp ̂φa,

then ∪j∈ZVj is dense in C0(Rn).
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3. Proofs of the Main Results

We need the following previous lemmas. The next lemma was proved in [4].

Lemma A. The set P = ∪∞
k=1A

−k(Zn) is dense in R
n.

The following is a version of Theorem 2.1 in [23].

Lemma B. Let 1 ≤ p < ∞, j ∈ Z, let Φ := {φ1, φ2, . . . } ⊂ Lp(Rn), and
let Vj = span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. Then, ∪j∈ZVj, where the closure is in Lp(Rn), is
invariant under a translation by any b ∈ R

n. The result remains true if we
replace Lp(Rn) by C0(Rn).

Proof. First, we consider that Vj is in Lp(Rn), 1 ≤ p < ∞. We show that
W := ∪j∈ZVj is invariant under translations by vectors m ∈ P, where P
is defined in Lemma A. Let m ∈ P, then m ∈ P� for some 	 ∈ N. For
any f ∈ W and ∀ε > 0, there exist j0 ∈ N and h ∈ Vj0 , such that ‖f −
h‖Lp(Rn) < ε. By (i), when j ≥ j0, we have h ∈ Vj , and therefore, h(x) =
∑∞

a=1

∑

k∈Zn c
(j)
k φa(Ajx − k) with convergence in Lp(Rn). Hence,

τmh(x) = h(x − m) =
∞
∑

a=1

∑

k∈Zn

c
(j)
k φa(Ajx − Ajm − k).

If j > max { 	, j0 }, then Ajm ∈ Z
n. Consequently, τmh ∈ Vj , and therefore,

τmf ∈ W . Finally, the density of P in R
n, the closedness of the subspace W ,

and the continuity of the operator τb in Lp(Rn) yield the invariance of W
under any translation.

When the subspaces Vj are in C0(Rn), a proof of the lemma can be done
in a similar way. �

We also need the following.

Lemma C. Let 2 ≤ p < ∞, let u ∈ ILp(Rn) and let v ∈ Lq(Rn) where
p−1 + q−1 = 1. Then

∫

Rn

u(x)v(x) dx =
∫

Rn

û(t)v̂(t) dt.

Proof. First, the hypothesis u ∈ ILp(Rn) and Hausdorff–Young inequality
imply that there exists w ∈ Lq(Rn), such that û = ̂ŵ = w(−·) ∈ Lq(Rn).
Moreover, we have v̂ ∈ Lp(Rn).

On the other hand, denote by S, the class of Schwartz functions
in R

n. Since S is dense in Lr(Rn) for any 1 ≤ r < ∞, there exist
{un}∞

m=1, {vn}∞
m=1 ⊂ S, such that

‖v − vm‖Lq(Rn) → 0 and ‖û − ûm‖Lq(Rn) → 0, as m → ∞.

By Hausdorff–Young inequality, we have

‖v̂ − v̂m‖Lp(Rn) ≤ ‖v − vm‖Lq(Rn) → 0 as m → ∞,
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and

‖u − um‖Lp(Rn) = ‖u(−·) − um(−·)‖Lp(Rn) = ‖̂û − ̂ûm‖Lp(Rn)

≤ ‖û − ûm‖Lq(Rn) → 0,

as m → ∞. Furthermore, by Parseval’s formula for functions in S and the
Hölder inequality, we have

∣

∣

∣

∣

∫

Rn

u(x)v(x) − û(x)v̂(x) dx
∣

∣

∣

∣

≤ ‖v‖Lq(Rn)‖u − um‖Lp(Rn) + ‖um‖Lp(Rn)‖v − vm‖Lq(Rn)

+‖v̂m‖Lp(Rn)‖û − ûm‖Lq(Rn) + ‖û‖Lq(Rn)‖v̂ − v̂m‖Lp(Rn) → 0,

as m → ∞, that is what we wanted to prove. �

We are ready to prove Theorem 1.

Proof of Theorem 1. Assume that W := ∪j∈ZVj is not Lp(Rn). Then, by
Hahn–Banach theorem, there exists a nonzero function g ∈ Lq(Rn), such
that

∫

Rn

g(−t)f(t)dt = 0, ∀f ∈ W.

Since W is translation invariant,

(g ∗ f)(x) =
∫

Rn

g(t)f(x − t)dt = 0, ∀x ∈ R
n, ∀f ∈ W.

In particular
(

g ∗ Dj
Aφa

)

(x) = 0, ∀j ∈ Z, a = 1, 2, . . . (2)

By Lemma C and (2), we have
∫

Rn

e2πit·xĝ(t)̂Dj
Aφa(t) dt =

(

g ∗ Dj
Aφa

)

(x) = 0, ∀j ∈ Z, a = 1, 2, . . .

Thus, having in mind that ĝ̂Dj
Aφa ∈ L1(Rn), we have ĝ(t)D−j

A∗ ̂φa(t) = 0 a.e.
∀j ∈ Z, a = 1, 2, . . .

According to our hypothesis, for any positive integer N and r > 1, there
exists k ∈ N, such that

∣

∣

∣

{

t ∈ (A∗)−kBr : χ∪∞
a=1 supp ̂φa

(t) = 0
} ∣

∣

∣

n
<

|(A∗)−kBr|n
N

.

Then

| { t ∈ (A∗)−kBr : ĝ((A∗)jt) �= 0 } |n <
|(A∗)−kBr|n

N

and, therefore, taking j = k, we obtain

| { y ∈ Br : ĝ(y) �= 0 } |n <
|Br|n

N
.

Letting N → ∞, we obtain

| { y ∈ Br : ĝ(y) �= 0 } |n = 0.
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Hence, ĝ(t) = 0 a.e. and g(x) = 0 a.e. follows. This is a contradiction with
the assumption of W is not dense in Lp(Rn). This finishes the proof. �

For the proof of Proposition 1, we need the following lemmas.

Lemma D. Let 1 ≤ p ≤ 2, j ∈ Z, let Φ = {φ1, φ2, . . . } ⊂ Lp(Rn) and let
Vj = span{Dj

Aτkφ : k ∈ Z
n, φ ∈ Φ}, where the closure is in Lp(Rn).

Assume that Vj ⊂ Vj+1. Then

∪∞
a=1 supp ̂φa ⊂ A∗

(

∪∞
a=1 supp ̂φa

)

.

Proof. For a ∈ {1, 2, . . . , }, we have φa(A−1x) ∈ V−1 ⊂ V0. By definition of
V0, we can write

φa(A−1x) =
∑

k∈Zn

∞
∑

�=1

αa,�
k φ�(x − k),

where the convergence is in Lp(Rn) and αa,�
k ∈ C. Taking the Fourier trans-

form and according to the Hausdorff–Young inequality, we obtain

̂φa(A∗t) =
∑

k∈Zn

∞
∑

�=1

αa,�
k e−2πik·t

̂φ�(t) a.e. on R
n.

Hence

supp(̂φa) ⊂ A∗
(

∪∞
�=1 supp ̂φ�

)

,

and the conclusion follows. �

The proof of the following lemma is similar to that of Proposition 1 in
[19].

Lemma E. Let M : R
n → R

n be an expansive linear map and let E ⊂ R
n,

|E|n > 0, be a measurable set, such that

lim
j−→∞

χE(M−jx) = 1 a.e. on R
n.

Then, the origin is a point of M -density for E.

Proof of Proposition 1. Assume that the origin is not a point of A∗-density
for ∪∞

a=1 supp ̂φa. By Lemma E with M = A∗, there exists a non null measur-
able set I ⊂ B1, such that for any x ∈ I, a sequence {jk}∞

k=1 ⊂ N, jk < jk+1,
with the property that (A∗)−jkx /∈ ∪∞

a=1 supp ̂φa may be taken. Therefore,
by Lemma D, we obtain that

∪j∈N (A∗)−jI ⊂
(

∪∞
a=1 supp ̂φa

)c

. (3)

Consider the linear functional ΛI : Lp(Rn) −→ C defined by

〈ΛI , f〉 := 〈χI , ̂f〉 =
∫

I

̂f(t) dt.
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Since 〈ΛI , e−2π|·|2〉 > 0, the operator ΛI is nontrivial. Furthermore, ΛI is
continuous, because

|〈ΛI , f〉| = |〈χI , ̂f〉| ≤ ‖χI
̂f‖L1(Rn) ≤ ‖χI‖Lp(Rn)‖ ̂f‖Lq(Rn)

≤ ‖χI‖Lp(Rn)‖f‖Lp(Rn),

where the last inequality follows by the Hausdorff–Young inequality.
In particular, for any a ∈ {1, 2, . . . , }, j ∈ N, and k ∈ Z

n,

〈ΛI ,D
j
Aτkφa〉 = d−j

A

∫

I

e−2πik·(A∗)−jt
̂φa((A∗)−jt) dt

=
∫

(A∗)−jI

e−2πik·s
̂φa(s) ds = 0

where the last equality follows by (3). Hence, ΛI is a null operator on ∪j∈NVj .
Therefore, ∪j∈NVj is not dense in Lp(Rn). Finally, bearing in mind that
Vj ⊂ Vj+1, the result follows. �

Now, we prove Theorem 2.

Proof of Theorem 2. We proceed by contradiction. Assume that ∪j∈ZVj is
not dense in C0(Rn), then by Riesz representation theorem (see example
[5, p. 216]), there exists a non trivial Radon measure μ on R

n, such that
|μ|(Rn) < ∞ and

∫

Rn

f(−t)dμ(t) = 0, ∀f ∈ W.

By Lemma B, we know that ∪j∈ZVj is translation invariant, then for x ∈ R
n

and f ∈ W , we have

(f ∗ μ)(x) =
∫

Rn

f(x − t)dμ(t) = 0.

In particular,

(Dj
Aφa ∗ μ)(x) =

∫

Rn

Dj
Aφa(x − t)dμ(t) = 0, ∀j ∈ Z, a = 1, 2, . . .

For any g ∈ L1(Rn) and a = 1, 2, . . . , since ‖Dj
Aφa‖∞ = ‖φa‖L∞(Rn),

∫

Rn

∫

Rn

|g(x − y)Dj
Aφa(y − t)|d|μ|(t)dy

≤ ‖g‖L1(Rn)‖φa‖L∞(Rn)|μ|(Rn) < ∞.

Now, let g be any compactly supported continuous function and j ∈ Z.
Applying Fubini’s theorem (see [5]), we obtain

Dj
Aφa ∗ (g ∗ μ) = g ∗ (Dj

Aφa ∗ μ) = 0. (4)

Let gμ = g ∗ μ. It is well known (see [5]) that gμ ∈ Ls(Rn) for all 1 ≤ s ≤ ∞.
By hypothesis, ̂φa ∈ Lr(Rn) for some 1 ≤ r ≤ 2 and there exists ϕa ∈ Lr(Rn),
such that ϕ̂a = φa. In particular, we have seen that gμ ∈ Lr(Rn). According
to the Hausdorff–Young theorem ĝμ ∈ Lr′

(Rn), where r−1 + r′−1 = 1 when
1 < r ≤ 2, and r′ = ∞ when r = 1. By Hölder inequality, Dj

A
̂φaĝμ ∈ L1(Rn).



106 Page 12 of 13 A. San Antolín MJOM

Thus, by (4) and following similar ideas as in the proof of Lemma C, we
obtain

∫

Rn

e2πit·xĝμ(t)Dj
A∗ ̂φa(t) dt = 0, ∀j ∈ Z, a = 1, 2, . . . (5)

In an analogous way as the last part of the proof of Theorem 1, we have that
gμ(x) = 0 for a.e. x ∈ R

n. This conclusion is valid for an arbitrary compactly
supported continuous function, then μ is the null measure. It contradicts that
∪j∈ZVj is not dense in C0(Rn). �
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[16] Meyer, Y.: Ondelettes et opérateurs. I. Hermann, Paris (1990) [ English Trans-
lation: Wavelets and operators, Cambridge University Press (1992)]

[17] Saliani, S.: On stable refinable function vectors with arbitrary support. J.
Approx. Theory 154(2), 105–125 (2008)
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[19] San Antoĺın, A.: Characterization of low pass filters in a multiresolution anal-
ysis. Stud. Math. 190(2), 99–116 (2009)

[20] Soto-Bajo, M.: Closure of dilates of shift-invariant subspaces. Central Eur. J.
Math. 11(10), 1785–1799 (2013)

[21] Strichartz, R.: Construction of Orthonormal Wavelets, Wavelets: Mathematics
and Applications, pp. 23–50. Stud. Adv. Math. CRC, Boca Raton (1994)

[22] Woytaszczyk, P.: A Mathematical Introduction to Wavelets. London Mathe-
matical Society, Student Texts, vol. 37 (1997)

[23] Zhao, K.: Density of dilates of a shift-invariant subspace. J. Math. Anal. Appl.
184(3), 517–532 (1994)

A. San Antoĺın
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