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Abstract. We are interested in the problem of when the density condi-
tion in a multiresolution analysis defined in L?(R"™), 1 < p < oo, holds.
Indeed, if 2 < p < oo, we obtain sufficient conditions on the generators
of a multiresolution analysis in order to the density condition is satisfied.
We emphasis on the requirement of the Fourier transform in a neigh-
borhood of the origin. This involves the notion of density point. When
1 < p < 2, the obtained condition is necessary. Moreover, we study the
same problem when a multiresolution analysis is defined in the subspace
of L>°(R™) of the set of all continuous functions vanishing at infinite.
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1. Introduction

A multiresolution analysis is a general method for constructing orthonormal
wavelets, Riesz basis of wavelets, and wavelet frames. Moreover, it plays a
main role in approximation of functions spaces by dilated of shift-invariant
subspaces. Here, we are interested in the problem of when the density condi-
tion in a multiresolution analysis defined in LP(R"™), 1 < p < oo, holds.

1.1. Notation and Basic Definitions

The sets of strictly positive integers, integers, and real numbers will be
denoted by N, Z, and R, respectively. Let n € N, if we write LP(R™),
1 < p < oo, we mean the usual Lebesgue space, and Cy(R™) will be the
subspace of L>(R™) consisting of all continuous functions vanishing at infin-
ity. For 1 < p < oo, the conjugate number ¢ will be the real number, such
that % + % =1, and if p = 1, the conjugate will be ¢ = co. We will denote
B.(y) ={x € R": |x —y| < r}, and we will write B, if y is the origin. If
A : R" — R™ is a linear map, A* will mean the adjoint of A. With some
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abuse in the notation, if we write A, we also mean the corresponding matrix
respect to the canonical basis. Moreover d4 = | det A|. For a Lebesgue mea-
surable set £ C R, B¢ =R"\ E and the Lebesgue measure of E in R™ will
be denoted by |E|,. If x € R", then x + E = {x+y: for y € FE}. We
will denote A(E) = {x € R":x = A(t) for t € F } and the volume of E
changes under A according to |AE|,, = da|FE|,. The characteristic function of
a set F C R™ will be denoted by xg, i.e., xp(x)=1ifx € E, and yg(x) =0
otherwise.

A linear map A is called expansive if all (complex) eigenvalues of A have
absolute value greater than 1. It is said that a diagonalizable linear map A is
isotropic if all (complex) eigenvalues of A have the same absolute value. If A
is invertible, we consider the operator D4 on LP(R™), 1 < p < oo, defined by
D4 f(t) = f(At). The translation of a function f € LP(R™) by b € R" will
be denoted by 7, f(t) = f(t — b). For a subspace S of L?(R™), b € R", and
jez,

D\S={D%f:feS}, and mS={mf:feS}

Given f : R™ — C a Lebesgue measurable function, supp(f) = {x €
R™ : f(x) # 0}. Sets are defined modulo a null set. Some equations are
understood except a null measurable set in R™.

Definition 1. Let x € R”, we will say that x is a point of density for a set
ECRY |E|, >0, if
. |ENB.(x)]n _

lim
=0 |By(x)|n

The following generalization of the classical notions of point of density
was introduced in [4].

Definition 2. Let A : R® — R” be an expansive linear map. Let E C R™ be
a set of positive measure. We say that x € R™ is an A-density point for E if
for any positive number r, one has

L EN[ATB,) +xl

- =1.
j—00 |A7]Br|n

Observe that when A is isotropic, the notion of A-density point coincides
with the classical notion of density point.
Moreover, we need the following definition of [4].

Definition 3. Let A : R® — R" be an expansive linear map. A measurable
function f: R™ — C is said to be A-locally nonzero at a point z € R™ if for
any € > 0 and r > 0 there exists j € N, such that

[{xc (A 7B, +2): f(x) =0}, <elA™ By,
We adopt the convention that the Fourier transform of a function f €

LY(R") is defined by

Fie)= [ rigemixtax.
RTL



MIOM On the Density Condition of a Multiresolution Analysis Page 3 of 13 106

The Fourier transform can be extended to the space of tempered distributions
in the usual way. In particular, the Fourier transform is well defined on the
spaces LP(R™), 1 < p < oo, in the sense of tempered distributions. By the
Hausdorff-Young inequality, if f € LP(R™) with 1 < p < 2, the Fourier
transform of f can be considered as a function in L?(R™). Indeed, one has
that

”fHLq(R") < ||fHLP(]R“r)-

For more details on the Fourier transform defined on tempered distributions,
one can read, e.g., [5].

For 2 < p < oo and its conjugate number ¢, we consider the following
space of functions:

TLP(R™) = {f € L’(R") : f e LYR")}.
We also need the following;:
ICy(R™) = {f € Co(R™) : f e L"(R") for some 1 < r < 2}.

1.2. Multiresolution Analysis and Historical Results on the Density Condi-
tion

Otherwise will be mentioned and to shorten the notation, if we write A, we

mean a dilation given by a fixed expansive linear map A : R® — R", such

that A(Z™) C Z".

A multiresolution analysis was introduced in [15] (see also [16]) with
the dyadic dilation in L?(R™), n > 1. A multiresolution analysis associated
with A was considered, for instance, in [6,14,21,22]. Afterwards, the notion
of generalized multiresolution analysis was introduced in [1]. Generalizations
to the LP(R™) context appeared in [9,10,23]. Furthermore, multiresolution
analyses on L?(Q) where Q is a compact set were studied in [12].

By a multiresolution analysis defined on LP(R™), 1 < p < oo, and
associated with a dilation A (A-MRA), we will mean a sequence of closed
subspaces {V; : j € Z} C LP(R"), that satisfies the following conditions:

(i) Vjez, V;CVi.
(i) VjeZ, feV;je Dafe V.
(i) NyenV; = {0},
(iv) UjezVj = LP(R™).
(v) There exists a countable set of function ® = {¢1, d2,...} C Vo, such
that

Vo=span{ ¢ : € P, keZ"}

where the closure is in LP(R™).

In this work, we study the problem of when W = U;czV; is dense in
LP(R™) if the subspaces in {V; : j € Z} satisfy the conditions (i), (ii), and
(v) in the definition of an A-MRA. This problem was extensively studied
in the literature. Let us focus on those known results that use conditions of

different nature on the generators of the subspace Vj. The first necessary and
sufficient conditions on ¢ € L?(RR), a generator of a core subspace Vp, to have
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that UjezV; is dense in L?(R) were proved by Madych [14] and by de Boor
et al. [2] independently. The result proved by Madych is the following.

Theorem A. Let ¢ € L?*(R"), such that {r¢ : k € Z"} is an orthonormal
system. Suppose {V; : j € Z} is a sequence of closed subspaces of L?(R™)
which enjoys the properties (i) and (v) with ® = {¢}. If P;f denotes the
orthogonal projection of f onto Vj, then the following conditions are equiva-
lent:

(a) For all f in L*(R")
lim || f = P;f ||=0.
j—o0
(b) The function ¢ in (v) satisfies
1 ~
lim ——— S(t)[2dt =0
j—oo |[(A*)71Q) (A*)*J'Q‘ |
for every cube Q of finite diameter in R™.

The result by de Boor, DeVore, and Ron is the following.
Theorem B. Let ¢ € L?(R™) be such that if Vo is the L?(R™)-closure of the

finite linear combinations of the multi-integer translates of ¢ and let, for any
JEL,

Vy = {f(27%) : [ € Vol
If the condition (1) is satisfied for the sequence of subspaces V;, j € Z, then
the condition (iv) holds if and only if

Ujez (27 supp g/b\) =R" (modulo a null set),

where
supp ¢ = {t ER™ : §(t) # 0}.
Afterwards, Herndndez et al. [7] (see also [8]) proved the following result.

Theorem C. Let ¢ € L?(R), such that {Tp¢ : k € Z} is an orthonormal
system. Let Vo = span{r, : k€ Z}. Suppose {V; : j € L} is a sequence of
closed subspaces of L*(R) satisfying the properties (i) and (ii) with de dyadic
dilation. Then, the condition (iv) holds if and only if lim;_, \&(27%) =1,
a.e.

A generalization of this result to the context of an A-MRA when the
core subspace Vj is generated by the shift of several scaling functions was
formulated by Calogero [3].

More necessary and sufficient conditions were proved by Lorentz et al.
[13].

Theorem D. Let ¢ € L*(R), such that {rp¢ : k € Z} is an orthonormal
system. Let V;, j € Z, be a sequence of closed subspaces of L*(R) satisfying
(1), (i), and (v) with ® = {¢} and the dyadic dilation. Then, the condition
(iv) is equivalent to the following conditions:

(a) lim;_ |$(27jy)| exists and is positive for a.e. y € R;
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(b) The set {y € R : | ¢(y) |> 0} is dyadically absorbing, i.c., for a.c.
y € R, there exists a positive integer jo, which may depend on y, such
that if j > jo, then | $(277y) |> 0.

(c) limj_ o0 276 x %(2jy) exists in the distributional sense and is a nonzero
multiple of the Dirac distribution at the origin. Here, (E(y) = ¢(—y) and
* denotes the usual convolution.

In [4], a necessary and sufficient condition to have the density condition in
a multiresolution analysis is given in terms of the classical notion of density
point and approximate continuily.

Theorem E. Let ¢ € L?>(R"), such that {rx¢ : k € Z"} is an orthonormal
system. Let V; be a sequence of closed subspaces in L?(R™) satisfying the
conditions (i), (ii), and (v) with ® = {¢}. Then, the following conditions are
equivalent:

(a) UjezV; = L*(R™).

(b) gg is A*—locally nonzero at the origin.

(¢c) the origin is a point of A*—approzimate continuity of the function |q/ﬁ\|
if we set |<$(0)| =1.

When @ is a finite number of functions, a generalization of these last
results was proved by Saliani [17]. If it is assumed that a core subspace V} is
generated by the shifts of a single function, the above result was generalized in
[11]. The paper by Soto-Bajo [20] deals with all these mentioned conditions
in the context of A-MRA’s defined in reducing subspaces and where the
core subspace Vy may be generated by the shift of a non-finite number of
functions. In [18], if V; is generated by the translations by integers of a
function ¢ € L?(R") and the subspaces V; are not necessarily nested, the
author proved necessary and sufficient conditions on ¢ to have that UjezV;
is dense in L?(R").

In the LP(R™) context, under some decay conditions of a single generator
¢ of Vy and if $(0) # 0, Jia and Micchelli [10] proved that UjezVj is dense in
LP(R™), 1 <p < 0.

Theorem F. If ¢ is a function defined on R™, such that

/W ( S folx - k))

kezZn
and Yy cqn ¢(x — k) =1, then for any f € LP(R"),

P
dx < oo, (1<p< o),

—0 as h—0",

Hf S an()o(h~ - k)

kezn

where

an(k) = ap(f, k) := hfn/ f(x)dx = /[0 o f(h(x+k))dx.

hk+[0,h)"
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Zhao [23] obtained an improvement of the above result, because the
decay assumptions are weaker, namely, ¢ is in L'(R™) N LP(R™). From a
different point of view, Zhao also proved the following.

Theorem G. Let 2 < p < oo and 1/h an integer > 2. Assume that ¢ €
LP(R™), such that ¢ = for some ¢ € L1(R™) and

R™\ Ujez ((1/R)’ supp ¢) (1)
is a null set. Let {V;}jcz be a nested sequence of closed subspaces in LP(R™)
satisfying (i1). Then, the span of U;ezV; is dense in LP(R™) if the closure of
span of UjezV; contains .

When 1 < p <2, the condition (1) is necessary is also proved. Finally,
the density of UjezV; in the space L™ is studied. A generalization of Zhao’s
results was obtained by Jia [9], because he worked with finitely generated
shift-invariant subspaces and a general dilation matrix. Note that Jia also
emphasis in the case when the generators functions of Vj are compactly sup-
ported functions.

We study conditions on the Fourier transform of a single generator of a
subspace V[ in an multiresolution analysis with the dyadic dilation to have
W = U,ezVj is dense in LP(R™), 1 < p < oo. Indeed, when 2 < p < oo, we
obtain sufficient conditions in Theorem 1 below. When p = oo, we consider
the subspace Cp(R™) and our sufficient conditions are written in Theorem 2
below. We focus on the requirement of the Fourier transform of the generators
in a neighborhood of the origin and this is given in terms of density point. In
Proposition 1 below, we prove that this condition is necessary when 1 < p < 2.
Although the results we prove here do not appear in the literature in the above
context, we prove our results when an A-MRA with a countable number of
generators is considered. In this context, we need the notion of A-density
point. The condition depends of the dilation A. When the dilation is given
by a diagonal matrix with equal entries in the diagonal and greater than 2, the
condition (1) also depends of the dilation, but our condition is independent of
such a dilation. This is why Corollary 1, 2, and 4 have been written explicitly.

The remainder of this work is the following. In Sect. 2, we write our
main results and their proofs can be found in Sect. 3.

2. Main Results

We collect the main results of this manuscript in this section.
When 2 < p < oo, we prove the following sufficient conditions.

Theorem 1. Let 2 < p < oo, let ® = {¢1,¢2,...} C ZLP(R™), and let V; =
W{Di‘n{gﬁ : ke ¢ e d}, j € Z, where the closure is in LP(R™).
Assume that V; C Vi1, If Xuee | 18 A*-locally nonzero at the origin,
then UjezV; is dense in LP(R™).

Supp ¢a

Having into account that the definition of point of density and point
of A-density are equivalent when A is an isotropic expansive linear map, we
have the following.
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Corollary 1. Let 2 < p < o0, let A : R" — R™ be an expansive isotropic
linear map, such that A(Z"™) C Z", and let ® = {¢1, ¢o,...} C ZLP(R™). Let
V; = span{ Dy n¢ : k€ Z", ¢ € B}, j € Z, where the closure is in LP(R™).
Assume that V; C V1. If the origin is a point of density for U3 supp g/b:,
then UjezV; is dense in LP(R™).

We have the following necessary condition when 1 < p < 2.

Proposition 1. Let 1 < p < 2, let ® = {¢1,¢2,...} C LP(R") and let V; =
W{Diﬁ'k¢ . keZ ¢ e @}, j € Z, where the closure is in LP(R™).
Assume that V; C V1. If U;ezV; is dense in LP(R™), then the origin is a
point of A*-density for US2, supp @

We have the following.

Corollary 2. Let 1 < p < 2, let A : R® — R™ be an expansive isotropic
linear map, such that A(Z™) C Z"™ and let ® = {¢1, P2, ...} C LP(R™). Let
V; = span{ D) n¢ : k€ Z", ¢ € B}, j € Z, where the closure is in LP(R™).
Assume that V; C Viyq. If UjezV; is dense in LP(R™), then the origin is a
point of density for US2, supp @

A straight consequence of Theorem 1 and Proposition 1 is the following
version of Theorem 1.6 in [20].

Corollary 3. Let ® := {¢1, ¢2,... } C L*(R™) and let V; = span{Df;‘Tk¢ ke
Z", ¢ € ®}, j € Z, where the closure is in L*(R™). Assume that V; C Vji1.
The following assertions are equivalent:

(a) UjezV; is dense in L*(R™).
(b) The origin is a point of A*-density for US| supp @,.

(c) The function X e supp 4. is A*-locally nonzero at the origin.
a=1 a

Instead of an MRA in L*°(R™), we consider a multiresolution analysis
defined in Cy(R™). We prove the following.

Theorem 2. Let ® := {¢1,da,...} C ZCo(R™) and let V; = span{ D’

ke Z", ¢ € @}, j € Z, where the closure is in Co(R™). Assume that V; C

Vi1 If X supp B is A*-locally nonzero at the origin, then UjezV; is dense
a=1"* a

We have the following corollary.

Corollary 4. Let A : R® — R"™ be an expansive isotropic linear map,
such that A(Z™) C Z" and let ® = {¢1,¢2,...} C ZCy(R™). Let V; =
W{Diﬁ((ﬁ ke ¢ e d}, j e Z, where the closure is in Co(R™).
Assume that V; C V1. If the origin is a point of density for U32, supp @,
then UjezV; is dense in Co(R™).



106 Page 8 of 13 A. San Antolin MIOM

3. Proofs of the Main Results

We need the following previous lemmas. The next lemma was proved in [4].
Lemma A. The set P = UX  A~F(Z") is dense in R™.
The following is a version of Theorem 2.1 in [23].

Lemma B. Let 1 < p < oo, j € Z, let ® := {¢1,¢2,...} C LP(R"), and
let V; = span{D’y«¢ : k € Z", ¢ € ®}, where the closure is in LP(R™).
Assume that V; C Vjy1. Then, U;czV;, where the closure is in LP(R™), is

invariant under a translation by any b € R™. The result remains true if we
replace LP(R™) by Co(R™).

Proof. First, we consider that V; is in LP(R"), 1 < p < co. We show that
W = U,ezVj is invariant under translations by vectors m € P, where P
is defined in Lemma A. Let m € P, then m € P, for some ¢ € N. For
any f € W and Ve > 0, there exist jo € N and h € Vj,, such that | f —
h||tr@ry < €. By (i), when j > jo, we have h € V;, and therefore, h(x) =

Yoo Yokezn ¢ 4 (A7x — k) with convergence in LP(R™). Hence,

Tmh(x) = h(x —m) = Z Z cl((j)gba(ij — A'm — k).
a=1kezZn

If j > max{ ¢, jo }, then A7m € Z". Consequently, Tmh € V;, and therefore,
Tmf € W. Finally, the density of P in R", the closedness of the subspace W,
and the continuity of the operator 7, in LP(R™) yield the invariance of W
under any translation.

When the subspaces V; are in Cy(R™), a proof of the lemma can be done
in a similar way. O

We also need the following.

Lemma C. Let 2 < p < oo, let w € ZLP(R™) and let v € LY(R™) where
pt+q ' =1. Then

/ , ueu) dx = / _a(t)o(t) dt.

Proof. First, the hypothesis u € ZLP(R™) and Hausdorff-Young inequality
imply that there exists w € LI(R™), such that u = o = w(—-) € LI(R").
Moreover, we have v € LP(R™).

On the other hand, denote by S, the class of Schwartz functions
in R™. Since S is dense in L"(R™) for any 1 < r < oo, there exist
{un}20 1, {vn}o—; C S, such that

lv = vm|lpagny — 0 and  ||& — Up||fagny) — 0, as m — oo.
By Hausdorff-Young inequality, we have

10— OmllLe @y < |V = UmllLamny — 0 as m — oo,
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and
v = umllLe@ny = [[u(—) = wm(=) Lo @) = U = Ul Lr @)
< @ — ]| parny — 0,

as m — oo. Furthermore, by Parseval’s formula for functions in & and the
Holder inequality, we have

/" u(x)v(x) — u(x)v(x) dx

< vllpa@my e = vm |l e @ny + l[umllLe @) [V — vm |l Lo @ny
HOmll o @) |8 = Um || Loy + [[UllLa@n) 10— Om | r@r) — 0,

as m — oo, that is what we wanted to prove. O
We are ready to prove Theorem 1.

Proof of Theorem 1. Assume that W := U,ezV; is not LP(R™). Then, by
Hahn—Banach theorem, there exists a nonzero function g € L9(R™), such
that

/n g(—t)f(t)dt =0, VfeW.
Since W is translation invariant,
(9% f)(x) = / gt)f(x—t)dt =0, vVxeR", VfeW
In particular
@*DMQQQ:Q Vi€eZ a=12,... 2)

By Lemma C and (2), we have

/ e2ﬂ—it'x§(t)D£¢a(t) dt = (g * Di‘gba) (X) =0, Vj€Z, a=1,2,...

Thus, having in mind that §Di‘¢a € L'(R"), we have ﬁ(t)D;j@(t) =0 a.e.
Vi€Z a=1,2,...

According to our hypothesis, for any positive integer N and r > 1, there
exists k € N, such that

Sk _ [(A*) "B |n
\ {t € (A Byt Xe sy (8) = o} <R
Then
*\ — ~ *\J A _kBT n
{te () B, (A0 £0) |, < A Prln
and, therefore, taking j = k, we obtain
|Br|n

H{y €Br:9(y) # 0} < —

Letting N — o0, we obtain

{yeBr:gly) #0}|n=0.
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Hence, g(t) = 0 a.e. and g(x) = 0 a.e. follows. This is a contradiction with

the assumption of W is not dense in LP(R™). This finishes the proof. O
For the proof of Proposition 1, we need the following lemmas.

Lemma D. Let 1 < p <2, j € Z, let & = {¢1,¢2,...} C LP(R") and let
V;, = span{D’y7w¢ : k € Z", ¢ € ®}, where the closure is in LP(R™).
Assume that V; C Vji1. Then

U2, supp ¢, C A* (Ui":1 supp gba) .

Proof. For a € {1,2,...,}, we have ¢,(A71x) € V_; C Vp. By definition of
Vo, we can write

Pa(A7'%) = D> " aplu(x — k),
keZm™ £=1

where the convergence is in LP(R™) and aﬁ’e € C. Taking the Fourier trans-
form and according to the Hausdorff-Young inequality, we obtain

ba(A*t) = Z Zaﬁ’fe”’”’k't@(t) a.e. on R™.

kezZn £=1
Hence
supp(¢a) C A” (Ui’il supp 5@) :
and the conclusion follows. O

The proof of the following lemma is similar to that of Proposition 1 in
[19].

Lemma E. Let M : R™ — R™ be an expansive linear map and let E C R",
|E|, >0, be a measurable set, such that

lim yxgp(M77x)=1 a.e onR".
j—00
Then, the origin is a point of M-density for E.

Proof of Proposition 1. Assume that the origin is not a point of A*-density
for US2, supp q/i); By Lemma E with M = A* there exists a non null measur-
able set I C By, such that for any x € I, a sequence {jx}72, C N, ji < jr+1,
with the property that (A4*)7Jrx ¢ U, supp@ may be taken. Therefore,
by Lemma D, we obtain that

c

Ujen (A*) 71 C (UZO:1 Supp@) : (3)

Consider the linear functional A; : LP(R™) — C defined by

A f) = O ) = /I () dt.



MIOM On the Density Condition of a Multiresolution Analysis Page 11 of 13 106

Since <A1,e*2”|"2> > 0, the operator Aj is nontrivial. Furthermore, Aj is
continuous, because
AL A =Xz O < Ixefller@ny < lIxalloe@e) [ fll Lo @n)
< lIxrllze @l fllLe nys

where the last inequality follows by the Hausdorff-Young inequality.
In particular, for any a € {1,2,...,}, j € N, and k € Z",

<AI,D£7'1<¢@> _ de /e—2mk.(A*)—jt$;((A*)fjt) dt
I

= /(A ) v1e727”'k'sg$;(s) ds=0
*)—J

where the last equality follows by (3). Hence, A; is a null operator on UjenV.
Therefore, UjenV; is not dense in LP(R™). Finally, bearing in mind that
Vi C Vj41, the result follows. O

Now, we prove Theorem 2.

Proof of Theorem 2. We proceed by contradiction. Assume that U;czV; is
not dense in Cp(R™), then by Riesz representation theorem (see example
[5, p. 216]), there exists a non trivial Radon measure p on R™, such that
|| (R™) < oo and

f(=t)du(t) =0, VfeW.
R’!L
By Lemma B, we know that Uj;czV; is translation invariant, then for x € R
and f € W, we have

(fxm)) = [ Fx—t)du(t) = 0.

RTL
In particular,

(Dl % p)(x) = | Dypa(x —t)du(t) =0, Vje€Z, a=1,2,...
]Rn

For any g € L'(R™) and a = 1,2, ..., since || D¢ loo = |ball Loo m7),

[ late=5)Dhenly ~ oldlu oty
pul(R") < oo.

< gl @) l|dall oo (ny

Now, let g be any compactly supported continuous function and j € Z.
Applying Fubini’s theorem (see [5]), we obtain

Do * (9% p) = g * (DY * p) = 0. (4)
Let g, = g * p. It is well known (see [5]) that g, € L°(R") forall 1 < s < oo.
By hypothesis, 5; € L"(R™) for some 1 < r < 2 and there exists p, € L"(R"),
such that @, = ¢,. In particular, we have seen that g, € L"(R™). According
to the Hausdorff-Young theorem g, € L" (R™), where r~! 4 /=1 = 1 when
1 <r <2 and ' = co when r = 1. By Holder inequality, Di‘@@: € LY(R").
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Thus, by (4) and following similar ideas as in the proof of Lemma C, we
obtain

/ 2TEX () DI o (t)db =0, VjEZ, a=1,2,... (5)

In an analogous way as the last part of the proof of Theorem 1, we have that
gu(x) = 0 for a.e. x € R™. This conclusion is valid for an arbitrary compactly
supported continuous function, then p is the null measure. It contradicts that
UjezV; is not dense in Cy(R™). O
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