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Abstract. This paper considers the Degn–Harrison reaction–diffusion
system subject to homogeneous Neumann boundary conditions in a s-
mooth and bounded domain. Using the presence of contracting rectan-
gles and the method of Lyapunov, we establish sufficient conditions for
the global asymptotic stability of the unique constant steady state.
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1. Introduction

Various biological and chemical models consist of systems of semilinear dif-
fusion equations. They are introduced to explain many realistic phenomena.
In this paper we consider the reaction–diffusion system

⎧
⎪⎨

⎪⎩

∂u

∂t
= d1 Δu + a − u − uv

1 + k u2
x ∈ Ω, t > 0

∂v

∂t
= d2 Δv + b − uv

1 + k u2

(1.1)

where Ω is a bounded domain in Rn with smooth boundary. The corre-
sponding ODE model was proposed by Degn and Harrison [1] to describe
the respiratory behavior of a Klebsiella Aerogenes bacterial culture. Such
spatially homogeneous model was analyzed by Farein and Velarde [2] who
found time-periodic solutions to explain the observed oscillations. Compared
to the ODE system, the reaction–diffusion model (1.1) is more complicat-
ed and interesting, though they share some common conclusions. A general
reaction–diffusion system, modeling a chemical reaction, has the form

∂u
∂t

= DΔu + F (u,p) (1.2)

where u is a vector representing chemical concentrations, p is a vector of ki-
netic parameters, D is a matrix of diffusion coefficients. Boundary conditions
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are usually taken as zero flux, that is, the domain boundary is assumed imper-
meable to the chemicals. In his seminal paper, Turing [3] proved, theoretically,
that a system of type (1.2) could spontaneously evolve to spatially hetero-
geneous patterns from an initially uniform state in response to infinitesimal
perturbations. Remarkably, he showed that diffusion could drive a chemical
system to instability, leading to spatial patterns. Recently, the existence of
Turing patterns in (1.1) has been investigated in [4,5], exhibiting the critical
role of the system parameters in leading to the formation of such structures.
Model (1.1) has a quite similar mathematical form to the Lengyel–Epstein
system

⎧
⎪⎨

⎪⎩

∂u

∂t
= Δu + a − u − 4uv

1 + u2
x ∈ Ω, t > 0

∂v

∂t
= (σc)Δv + (σb)

(

u − uv

1 + u2

) (1.3)

describing the chlorite-iodide-malonic acid (CIMA) reaction [6]. The impor-
tance of system (1.3) is due to the fact that the first experimental evidence of
the Turing pattern was observed on the CIMA reaction in an open unstirred
gel reactor, almost 40 years after the publication of Turing’s paper. Lengyel
and Epstein [7] compared the Degn–Harrison model with the CIMA reaction
model and found that the former can produce a richer dynamics. This paper
devotes to the study of the asymptotic behavior of the dynamics generated by
system (1.1). Our main aim is introducing suitable conditions on parameters
of (1.1) ensuring the global attractivity of the unique constant steady-state
solution. Obviously, the presence of global attractors excludes the formation
of spatio-temporal patterns. The individuation of invariant rectangles is an
important tool of our arguments. Indeed, the fact that such rectangles are
also contracting, permits to replace, in some sense, the PDE system (1.1)
by the corresponding ODE system with d1 = d2 = 0, canceling, for t suffi-
ciently large, the x-dependence as shown in Theorem 5.1. The technique of
contracting rectangles is illustrated in [8,9] to obtain relevant global existence
theorems. Another relevant tool is the method of Lyapunov, we employed in
Theorem 5.3. Also in [10], the authors combine the technique of invariant
rectangles with Lyapunov functionals to prove the convergence to a spatial
homogeneous equilibrium solution, in a diffusion Lotka–Volterra system. The
dynamics of the kinetic system

⎧
⎨

⎩

u′ = a − u − u v

1 + k u2

v′ = b − u v

1 + k u2

(1.4)

is studied in Sect. 3, through the analysis of its isoclines in the phase-space,
the Dulac criterion and the Poincaré–Bendixson theorem. The global stability
of its unique equilibrium is investigated in Theorem 3.2.
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2. Preliminaries

We consider the following reaction–diffusion system based on the Degn–
Harrison model

⎧
⎪⎨

⎪⎩

∂u

∂t
= d1 Δu + a − u − φk(u) v x ∈ Ω, t > 0

∂v

∂t
= d2 Δv + b − φk(u) v

(2.1)

with Neumann boundary condition
∂u

∂n
=

∂v

∂n
= 0 on ∂Ω (2.2)

and nonnegative initial value

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω (2.3)

where u0(x), v0(x) ∈ C(Ω̄) ∩ C2(Ω). In (2.1) the spatial domain Ω ⊂ Rn is
open, bounded and has regular boundary ∂Ω, and

φk(u) =
u

1 + k u2
, k > 0.

The diffusion coefficients d1, d2 are positive, d1 �= d2, parameters a, b are
positive and a > b.

It is well known that (2.1)–(2.3) possesses a unique classical solution
(u, v) with u, v ∈ C1,2(R∗

+ × Ω) ∩ C(R+ × Ω̄). Such solution is positive,
namely u(t, x), v(t, x) > 0 for t > 0 and x ∈ Ω̄. Henceforth we assume that
the solutions of (2.1) are subject to (2.2) and (2.3).

It easy to see that (2.1) has a unique constant steady state

(u∗, v∗), u∗ = a − b, v∗ =
b

φk(u∗)

and we are interested in its global stability. For convenience of the reader,
next we describe some results from [4,5].

Theorem 2.1 [5]. If a2k ≤ 1, then (u∗, v∗) is a global attractor of (2.1) in the
sense that, for any (u(t, x), v(t, x)) solution to (2.1)

lim
t→+∞ u(t, x) = u∗, lim

t→+∞ v(t, x) = v∗

uniformly with respect to x ∈ Ω̄.

Taking into account the previous theorem, afterwards we suppose

a >
1√
k

.

The below result regards the eventual (non constant) steady-state solutions
of (2.1), that is the solutions of the elliptic boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

−d1Δu = a − u − φk(u) v, x ∈ Ω
−d2Δv = b − φk(u) v
∂u

∂n
=

∂v

∂n
= 0 on ∂Ω.

(2.4)
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Theorem 2.2. Let (u(x), v(x)) be any positive solution of (2.4) and assume
that

k a2 <
(a

b
− 1

)
. (2.5)

Then the following estimates

a

(

1 − b

φk(a)

)

< u(x) < a,
b

a
< v(x) <

b

φk(a) − b
, x ∈ Ω̄

hold.

The size of Ω and the diffusion coefficients play a central role in obtain-
ing the nonexistence of steady-state solutions. Roughly speaking, it follows
from the investigations in [4,5] that, under assumption (2.5), if d1, d2 or the
principal eigenvalue λ1 are sufficiently large, then system (2.1) has no (non
constant) steady-state solutions.

3. The ODE System

The model initially introduced by Degn and Harrison can be written as
{

u′ = f(u, v)
v′ = g(u, v)

(3.1)

where u(t), v(t) represent the concentration of oxygen and nutrient, respec-
tively, and

f(u, v) = a − u − φk(u)v, g(u, v) = b − φk(u)v. (3.2)

It is obvious that non-negative solutions of model (3.1) are of real interest so
that we take initial condition

u(0) = u0 > 0, v(0) = v0 > 0.

To study the local stability of (u∗, v∗), we consider the Jacobian matrix
J(u, v) of (3.1). We find

J(u∗, v∗) =
(

−a11 −a12

−a11 + 1 −a12

)

(3.3)

where

a11 = 1 +
b

u∗
1 − k(u∗)2

1 + k(u∗)2
, a12 = φk(u∗) > 0.

Since det J(u∗, v∗) = a12, one gets that (u∗, v∗) is locally asymptotically
stable for (3.1) if

trace J(u∗, v∗) = −a11 − a12 = −a + (a − b)2(1 + k(a − 2b))
(a − b)(1 + k(a − b)2)

< 0. (3.4)

Further informations about the dynamics of system (3.1) can be derived from
the detailed analysis of its isoclines. The v-isocline

γv : v =
b

φk(u)
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has a minimum point at (
1√
k

, 2b
√

k) and goes to infinity for u → 0+. The

u-isocline

γu : v = fa,k(u), fa,k(u) =
a − u

φk(u)

intersects the u-axes at u = a. It is strictly decreasing if a2k ≤ 27. If a2k > 27
γu is strictly decreasing in ]0, 1√

k
] and [a

2 , a]. In interval ] 1√
k
, a

2 [ it has a local
minimum u1, a local maximum u2 and a saddle point at 3

√
a
k with u1 <

3
√

a
k < u2. The two isoclines intersect only at (u∗, v∗) and fa,k(u) > b

φk(u) for
0 < u < u∗.

System (3.1) has an invariant rectangle in the phase plane, attracting
all positive solutions, as shown in the following theorem. Put

R = [u, a] × [2b
√

k, v], u =
bu∗

a(1 + ka2)
, v = fa,k(u). (3.5)

Theorem 3.1. Let (u(t), v(t)) be any solution of (3.1). Then there is a con-
stant T > 0, which may depend on u0 and v0, such that

(u(t), v(t)) ∈ R for all t > T.

Proof. As first step, we prove that the rectangle R, defined in (3.5), is an
invariant region. Since b < a we are allowed to write b = t a, 0 < t < 1, so
that

b u∗ = t(1 − t)a2 ≤ a2

4
, t ∈ ]0, 1[ .

Consequently

u ≤ a

4(1 + ka2)
=

φk(a)
4

≤ 1
8
√

k
<

1√
k

(3.6)

because φk(u) ≤ 1
2
√

k
. Observe that fa,k(u) and b

φk(u) are strictly decreasing
in ]0, u] (for each k).

As second step let us verify that
b

φk(a)
< fa,k(u). (3.7)

Indeed

fa,k(u) =
(a

u
− 1

)
(1 + ku2) > (4(1 + ka2) − 1)(1 + ku2) > 4ka2 + 3

and
b

φk(a)
=

b

a
(1 + ka2) < 1 + ka2.

Hence (3.7) easily follows. Previous estimates prove, in particular, that (u∗, v∗)
lies in the interior of R. At this point, we can state that, on the boundary of
R, the vector field (f(u, v), g(u, v)), defined by (3.2), does not point outwards.
Indeed

f(u, v) > 0 and f(a, v) < 0 for 2b
√

k < v < v,

g(u, 2b
√

k) > 0 and g(u, v) < 0 for u < u < a.
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Therefore rectangle R is an invariant region.
Let (u(t), v(t)) be a positive solution to (3.1). It is obvious that

u′(t) < a − u(t).

Since all positive solutions of the ODE

x′(t) = a − x(t)

tends to a as t → +∞, by the comparison theorem,

u(t) ≤ a for t sufficiently large.

Analogously, since φk(u) ≤ 1
2
√

k
,

v′(t) ≥ b − v(t)
2
√

k
.

Taking into account that all solutions of the differential equation

y′(t) = b − y(t)
2
√

k

approach 2b
√

k as t → +∞, we get

v(t) ≥ 2b
√

k for t sufficiently large.

Denote by Q the region ]0, a] × [2b
√

k,+∞[. Since

b

φk(u)
< fa,k(u) if u < u∗,

we can divide the region Q\R in three parts:

(I) (u, v) ∈ Q\R, 0 < u < u, v ≤ b

φk(u)
;

(II) (u, v) ∈ Q\R, v ≥ fa,k(u);

(III) (u, v) ∈ Q\R, 0 < u < u,
b

φk(u)
< v < fa,k(u).

The trajectories starting in region (I) have both components strictly
increasing then they go into R, at some t, otherwise they get into region (III)
after intersecting isocline γv. Similarly, the trajectories starting in region (II)
have both components strictly decreasing then, after intersecting the line
v = fa,k(u), they go into R or they intersect isocline γu and enter into region
(III). Considering the direction of the vector field on isoclines γu and γv, we
deduce that the trajectories starting in region (III) cannot leave this region
till they go inside R, for some t. The proof is complete. �

We are ready to state and prove the main result in this section.

Theorem 3.2. Let us suppose that

3 3
√

a k2 − a k + 1 > 0. (3.8)

Then the equilibrium (u∗, v∗) is globally asymptotically stable in the first quad-
rant as solution to (3.1).
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Proof. The first step of our proof eliminates the existence of periodic solutions
in R. Rewrite system (2.1) in the form

⎧
⎨

⎩

u′ = φk(u)(fa,k(u) − v), t > 0

v′ = φk(u)(
b

φk(u)
− v).

(3.9)

Obviously

∂

∂u
(fa,k(u) − v) +

∂

∂v

(
b

φk(u)
− v

)

= f ′
a,k(u) − 1.

It easy to see that

f ′
a,k(u) = − a

u2
+ k a − 2k u

is strictly negative for a2k ≤ 27. If a2k > 27, it is enough to prove

f ′
a,k

(
3

√
a

k

)

− 1 < 0

to provide inequality f ′
a,k(u) − 1 < 0 because f ′

a,k(u) attains its maximin
value at u = 3

√
a
k . The equality

f ′
a,k

(
3

√
a

k

)

− 1 = −3 3
√

a k2 + k a − 1

and assumption (3.8) exclude the presence of closed orbits, lying entirely in
R, by the Dulac criterion. To complete the proof it suffices to show that,
under condition (3.8), (u∗, v∗) is asymptotically stable. By (3.4), it is enough
to demonstrate that inequality

a + (a − b)2(1 + k(a − 2b)) > 0 (3.10)

holds. We may assume a < 2b because the validity of (3.10) is evident for
a ≥ 2b. Introduce the function

g(x) =
a

(a − x)2
− (2x − a)k + 1. (3.11)

We are going to prove that, under assumption (3.8),

g(x) > 0,
a

2
< x < a. (3.12)

It easy to check that

g
(a

2

)
=

4
a

+ 1 > 0, lim
x→a−

g(x) = +∞,

and

g′(x) =
2a

(a − x)3
− 2k

is strictly positive if and only if x > a − 3
√

a
k . When a2k ≤ 8, it turns

out a − 3
√

a
k ≤ a

2 so that g(x) is strictly increasing in interval ]a
2 , a[. As a

consequence

g(x) > g
(a

2

)
> 0,

a

2
< x < a.
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Let us consider the case a2k > 8. The point a − 3
√

a
k is a minimum for g(x),

g

(

a − 3

√
a

k

)

= 3 3
√

a k2 − a k + 1

therefore, using (3.8),

g(x) ≥ g

(

a − 3

√
a

k

)

> 0,
a

2
< x < a.

and (3.12) is proved. It implies that a + (a − b)2(1 − (2b − a)k) > 0 for each
b ∈]a

2 , a[. Using the absence of periodic solutions and the Poincaré–Bendixson
theorem, we complete the proof. �

4. Contracting Rectangles as Attracting Regions

Let

0 = λ0 < λ1 < λ2 < · · · < λi < · · ·
be the sequence of eigenvalues for the elliptic operator (−Δ), subject to the
Neumann boundary conditions. Consider the linearized operator evaluated
at (u∗, v∗)

(
d1Δ − a11 −a12

1 − a12 d2Δ − a12

)

.

By [11, Theorem 1], (u∗, v∗) is asymptotically stable for (2.1) if, for each
integer i, the eigenvalues of matrix

Mi =
(

−a11 − d1λi −a12

1 − a12 −a12 − d2λi

)

have negative real parts. Since

det Mi = d2λi(d1λi + a11) + a12(d1λi + 1) > 0

and

trace Mi = −(d1 + d2)λi − a11 − a12,

we deduce that (u∗, v∗) is certainly asymptotically stable when (3.10) holds.
Our results on the global stability of (u∗, v∗) depend on the existence of
suitable invariant regions.

Definition 4.1. A closed subset Σ ⊂ R2 is called a (positively) invariant re-
gion for (2.1) if, any solution (u(t, x), v(t, x)) such that u(0, x), v(0, x) ∈ Σ
for all x ∈ Ω, satisfies (u(t, x), v(t, x)) ∈ Σ for all t > 0 and x ∈ Ω.

Definition 4.2. A rectangle Σ = [u1, u2]× [v1, v2] is contracting for the vector
field (p(u, v), q(u, v)) if (p, q) points into Σ on the boundary ∂Σ, that is

p(u1, v) > 0 and p(u2, v) < 0 for v1 < v < v2,

q(u, v1) > 0 and q(u, v2) < 0 for u1 < u < u2.
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It can be shown (see [9]) that for a set to be invariant for PDE system
(2.1) it must be a rectangle which is invariant for ODE system (2.5). Hence
a contracting rectangle for the vector field (f(u, v), g(u, v)), defined by (2.4),
is an invariant region for system (2.1).

The next theorem shows the attractivity of rectangle R also for the
solutions of reaction–diffusion system (2.1).

Theorem 4.1. Let R be the rectangle defined in (3.5). Then, for any positive
solution (u(t, x), v(t, x)) of (2.1), there exists T > 0 such that

(u(t, x), v(t, x)) ∈
◦
R

for t > T and x ∈ Ω.

Proof. As showed in Theorem 3.1, (u∗, v∗) lies in the interior of R and

f(u, v) > 0 and f(a, v) < 0 for 2b
√

b < v < v,

g(u, 2b
√

b) > 0 and g(u, v) < 0 for u < u < a.

Hence R is a contracting rectangle for the vector field (f, g) by Definition 4.2.
Since one can construct arbitrarily large contracting rectangles of this form,
by [9, Theorem 14.19], all solutions of (2.1) must enter into the invariant
region R in finite time. �

As a consequence of the previous theorem, R has to contain all eventual
steady state solutions.

Corollary 4.1. Let (u(x), v(x)) be any positive solution of (2.4), then

u < u(x) < a, 2b
√

k < v(x) < v, x ∈ Ω.

In this way Theorem 2.2 is improved because we do not require the
restrictive assumption (2.5).

Observe that, taking into account Theorem 2.1, condition (2.5) makes
sense only if

a

b
− 1 > 1

that is a > 2b. For such values of a and b, the solution (u∗, v∗) is asymptoti-
cally stable because (3.10) holds.

5. Global Asymptotic Stability

In this section we investigate the global dynamics of the Degn–Harrison sys-
tem (2.1).

In the next theorem, we show that the solutions of (2.1) have the same
asymptotic behavior of those to system (3.1) when they become spatially
homogeneous for t → +∞.

First introduce some notations.
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The Jacobian matrix of (f(u, v), g(u, v)) is given by

J(u, v) =

⎛

⎜
⎜
⎝

−(1 +
1 − ku2

(1 + ku2)2
v) −φk(u)

− 1 − ku2

(1 + ku2)2
v −φk(u)

⎞

⎟
⎟
⎠ .

Denote by Js(u, v) its corresponding symmetric matrix, that is

Js(u, v) =

⎛

⎜
⎜
⎝

−(1 +
1 − ku2

(1 + ku2)2
v) −1

2
(φk(u) +

1 − ku2

(1 + ku2)2
v)

−1
2
(φk(u) +

1 − ku2

(1 + ku2)2
v) −φk(u)

⎞

⎟
⎟
⎠ .

Let μ(u, v) be the largest (real) eigenvalue of Js(u, v), then
〈(

u
v

)

, Js(u, v) ·
(

u
v

)〉

≤ μ(u, v)(u2 + v2) ≤ γ(u2 + v2), (u, v) ∈ R

(5.1)

where

γ = max
(u,v)∈R

μ(u, v). (5.2)

Theorem 5.1. Let us suppose that (3.8) holds and

λ1d > γ, d = min{d1, d2} (5.3)

where, as before, λ1 is the principal eigenvalue of (−Δ) and γ is defined by
(5.2). Then, for any solution (u(t, x), v(t, x)) of (2.1), we get

lim
t→+∞ ‖u(t, ·) − u∗‖L2(Ω) = 0 = lim

t→+∞ ‖v(t, ·) − v∗‖L2(Ω). (5.4)

Proof. Theorem 4.1 ensures the existence of T > 0 such that (u(t, x), v(t, x))

lies in
◦
R for x ∈ Ω and t > T .

It is convenient to write (2.1) in the vectorial form

zt = D Δz + F (z)

where

D =
(

d1 0
0 d2

)

, z = (u, v), F (z) =
(

a − u − φk(u)v
b − φk(u)v

)

.

For t > T , put

Φ(t) =
1
2
‖∇z(t, ·)‖2

L2(Ω) =
1
2

∫

Ω

〈∇z(t, x),∇z(t, x)〉dx

where the inner product 〈·, ·〉 is defined by

〈∇z,∇w〉 =
2∑

i=1

n∑

j=1

zi
xj

wi
xj

, z = (z1, z2), w = (w1, w2).
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Known arguments (see [6,12]) yield
dΦ
dt

=
∫

Ω

〈∇z,∇zt〉dx =
∫

Ω

〈∇z,∇(DΔz)〉dx +
∫

Ω

〈∇z,∇F (z)〉dx

= −
∫

Ω

〈Δz,DΔz〉dx +
∫

Ω

〈∇z, J(z) · ∇z〉dx

≤ −d

∫

Ω

|Δz|2dx +
∫

Ω

〈∇z, Js(z) · ∇z〉dx.

In the light of [12, Lemma A.1]

‖Δz‖2
L2(Ω) ≥ λ1‖∇z‖2

L2(Ω),

hence, by (5.1)
dΦ
dt

≤ −dλ1

∫

Ω

|∇z|2dx + γ

∫

Ω

|∇z|2dx = −2(dλ1 − γ)Φ

which implies the existence of a constant c > 0 such that

‖∇z‖L2(Ω) ≤ c e−(dλ1−γ)t, t > T. (5.5)

Estimate (5.5) implies that all solutions of (2.1), with values in R, converge
to their spatial averages z(t) over Ω, i.e.

z(t) =
1

|Ω|

∫

Ω

z(t, x) dx.

In fact the Poincaré inequality gives

‖z(t, ·) − z(t)‖2
L2(Ω) ≤ 1

λ1
‖∇z(t, ·)‖2

L2(Ω)

thus, by (5.3) and (5.5), one deduces

lim
t→+∞ ‖z(t, ·) − z(t)‖L2(Ω) = 0.

The last part of the proof shows that, under our assumptions, the asymptotic
behavior of (2.1) is determined only by the corresponding ODE system (3.1).

From [12, Theorem 3.1] we obtain that z(t) = (u(t), v(t)) satisfies the
ODE system

{
u′ = f(u, v) + q1(t)
v′ = g(u, v) + q2(t)

(5.6)

with initial conditions

u(0) =
1

|Ω|

∫

Ω

u0(x) dx, v(0) =
1

|Ω|

∫

Ω

v0(x) dx,

where, for some c > 0,

|qi(t)| ≤ c e−(dλ1−γ)t, t > T.

Hence, by (5.3), the solutions of (5.6) have the same asymptotic behavior of
those of system (3.1) (see [6]). Since (3.8) holds, we can apply Theorem 3.2,
so that (u∗, v∗) is a global attractor for system (3.1) in R2

+. We deduce

lim
t→+∞ |u(t) − u∗| = 0 = lim

t→+∞ |v(t) − v∗|

and (5.4) easily follows. �
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Remark 5.1. We wish to stress the fact, that if the matrix Js(u, v) is negative
definite in R, then the conclusion of Theorem 5.1 is valid, provided that only
(3.8) holds.

When inequality (3.8) fails, we are able to provide the global asymptotic
stability of (u∗, v∗) in a smaller rectangle T ⊂ R under suitable constrains
only on parameters a, b, k and no restrictions on the size of Ω (due to λ1)
and the diffusion coefficients d1, d2.

Theorem 5.2. Suppose that 3 3
√

a k2 − ak + 1 ≤ 0 and

b ≤ a

4

(
4 + a2k

1 + a2k

)

. (5.7)

Then the rectangle

T =
[a

2
, a

]
×

[
2b

√
k, fa,k

(a

2

)]
, (5.8)

is an invariant region for system (2.1).

Proof. The first assumption implies that a2k > 27. It turns out that inequal-

ity
4 + a2k

1 + a2k
<

4
3

holds. Using (5.7) one deduces

b <
a

3
and u∗ = a − b >

2
3
a.

Consequently, under our assumptions, (u∗, v∗) ∈ T , isocline γu is strictly
decreasing, isocline γv is strictly increasing in rectangle T . Moreover

b

φk(a)
≤ fa,k

(a

2

)
and T ⊂ R.

It is not difficult to verify that the vector field (f, g), defined by (3.2), does
not point outwards on the boundary of T , that is, by Definition 3.2, T is
contracting. Hence T is an invariant region for system (2.1). �

Theorem 5.2 leads to the following one.

Theorem 5.3. Suppose that the assumptions of Theorem 5.2 hold. Let (u(t, x),
v(t, x)) be any solution of (2.1) having its initial value in rectangle T , defined
by (5.8), for all x ∈ Ω. Then

lim
t→+∞ u(t, x) = u∗, lim

t→+∞ v(t, x) = v∗

uniformly in x ∈ Ω.

Proof. Take (u(t, x), v(t, x)), solution of (2.1) with initial value (u0(x), v0(x))
∈ T , for all x ∈ Ω. By Theorem 5.2, it turns out that

(u(t, x), v(t, x)) ∈ T , t > 0, x ∈ Ω.

It is convenient to write system (2.1) in the form
⎧
⎪⎨

⎪⎩

∂u

∂t
= d1 Δu + φk(u)[(fa,k(u) − fa,k(u∗)) − (v − v∗)]

∂v

∂t
= d2 Δv + φk(u)

[(
b

φk(u)
− b

φk(u∗)

)

− (v − v∗)
]

.
(5.9)
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Putting

E(u, v) =
∫ u

u∗

(
b

φk(s)
− b

φk(u∗)

)

ds +
(v − v∗)2

2
,

consider the Lyapunov function

V (t) =
∫

Ω

E(u(t, x), v(t, x)) dx.

The time derivative of V (t) along the solutions of system (2.1) yields

V ′(t) =
∫

Ω

[(
b

φk(u)
− b

φk(u∗)

)
∂u

∂t
+ (v − v∗)

∂v

∂t

]

dx

=
∫

Ω

φk(u)
[(

b

φk(u)
− b

φh(u∗)

)

(fa,k(u) − fa,k(u∗)) − (v − v∗)2
]

dx

(5.10)

+ d1

∫

Ω

(
b

φk(u)
− b

φh(u∗)

)

Δu dx + d2

∫

Ω

(v − v∗)Δv dx.

Taking into account the boundary conditions for (u, v), we find
∫

Ω

(v − v∗)Δv dx = −
∫

Ω

|∇v|2dx < 0

and analogously
∫

Ω

(
b

φk(u)
− b

φh(u∗)

)

Δu dx = −
∫

Ω

(
b

φk(u)

)′
|∇u|2dx.

Also this second addendum of (5.10) is strictly negative because b
φk(u) is

strictly increasing in [a
2 , a]. In addition, since fa,k(u) is strictly decreasing in

[a
2 , a], we get

u < u∗ ⇒
(

b

φk(u)
− b

φk(u∗)

)

< 0 and (fa,k(u) − fa,k(u∗)) > 0

u > u∗ ⇒
(

b

φk(u)
− b

φk(u∗)

)

> 0 and (fa,k(u) − fa,k(u∗)) < 0.

Thus, going back to (5.10), we obtain that V ′(t) is strictly negative for
(u, v) �= (u∗, v∗). It is easy to verify that {(u∗, v∗)} is the largest invariant
set of

{(u(t, x), v(t, x)) ∈ T | V ′(t) = 0}

hence known arguments (see [13]) lead to

lim
t→+∞ |u(t, x) − u∗| = 0 = lim

t→+∞ |v(t, x) − v∗|

uniformly for x ∈ Ω. �
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