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Abstract. In this paper, we investigate a singular integral operator with
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1. Introduction

Polyanalytic functions have been investigated thoroughly, notably by the
Russian school led by Balk [1], and they provide extensions of classical oper-
ators from complex analysis [1,2,4,8,10]. These functions represent one of
the more natural generalizations of the analytic ones, and are closely related
to polyharmonic functions, which have numerous applications in physics and
engineering. Any polyharmonic function of order k can be decomposed into
a sum of some polyanalytic function of order k and its conjugate.

A complex valued function f(z) = u(x, y)+iv(x, y) is said to be polyan-
alytic of order k (k-analytic) in a domain Ω ⊂ C if it has partial derivatives
(with respect to x and y) up to the order k and in Ω satisfies the iteration of
the Cauchy–Riemann condition:

∂kf

∂zk
= 0, (1)

where

∂z =
∂

∂z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

A real valued function u = u(x, y) is called polyharmonic of order k on
a domain Ω if u ∈ C∞(Ω) and �ku = 0, where � denotes the ordinary
Laplacian and �ku = �k−1(�u).
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N. Thédoresco [15, page 23], (see also [1, page 204]), was probably the
first to propose a Cauchy type formula for polyanalytic functions, a formula
that expresses the values of a polyanalytic function within some contour Γ
in terms of its values and those of its successive derivatives.

Until further notice, we always suppose that Ω is a simple connected
bounded domain of R2 with sufficiently smooth boundary Γ.

Recently, Begehr developed the following higher order Borel–Pompeiu
formula for C-valued and Ck-smooth functions, see [3, page 230].

Theorem 1.1. Let f ∈ Ck(Ω) ∩ Ck+1(Ω) for k ≥ 0. Then for z ∈ Ω

f(z) =
k∑

n=0

1
2πi

∫
Γ

(z − ζ)n

n!(ζ − z)
∂n

ζ
f(ζ)dζ − 1

π

∫
Ω

(z − ζ)k

k!(ζ − z)
∂k+1

ζ
f(ζ)dξdη. (2)

When f is polyanalytic of order k + 1 in Ω, then formula (2) reduces to

f(z) =
k∑

n=0

1
2πi

∫
Γ

(z − ζ)n

n!(ζ − z)
∂n

ζ
f(ζ)dζ. (3)

Here, the sum of contour integrals may be thought of as a sort of Cauchy
integral operator in the theory of polyanalytic functions.

In this paper, we suggest a very natural function space where the bound-
ary values of such a Cauchy integral are well behaved. More concretely, we
introduce a related singular integral operator in this context and prove that
the higher order Lipschitz classes [14] behave invariant under its action. This
result can be interpreted as a generalization of the classical Plemelj–Privalov
theorem [7,9].

Bianalytic functions [the solutions of (1) for k = 2] deserve special atten-
tion because of their connection with biharmonic functions. The biharmonic
equation �2u = 0 is encountered in plane problems of elasticity and it is also
used to describe radar imaging and slow flows of viscous incompressible fluids
[5,11,12]. Due to this fact, and for other reasons for which the case k = 2 is
interesting, we restrict ourselves to that case. In a forthcoming publication,
on the basis of approach developed here, we will study the general case.

2. Preliminaries

We start this section by defining the so called higher order Lipschitz classes,
which are directly related to a very deep theorem in real analysis due to H.
Whitney [16]. We shall follow the notation used in [14] but restricted to R

2.

2.1. Lipschitz Classes

Let E be a closed subset of R2, k a non-negative integer and 0 < α ≤ 1. We
shall say that a real valued function f , defined in E, belongs to Lip(E, k +α)
if there exist real valued bounded functions f (j), 0 < |j| ≤ k, defined on E,
with f (0) = f , and so that

Rj(x, y) = f (j)(x) −
∑

|j+l|≤k

f (j+l)(y)
l!

(x − y)l, x, y ∈ E (4)
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satisfies
|Rj(x, y)| = O(|x − y|k+α−|j|), x, y ∈ E, |j| ≤ k. (5)

In general, an element of Lip(E, k + α) should be interpreted as a collection
{f (j) : E �→ R, |j| ≤ k}. When k = 0, the Lipschitz class becomes the usual
class C0,α

b (E) of bounded Hölder continuous functions in E.

Remark 2.1. We remark that the function f (0) = f does not necessarily deter-
mine the functions f (j) for arbitrary E, but for E = R

2 the functions f (j) are
uniquely determined by f (0) and Lip(R2, k + α) actually consists of continu-
ous and bounded functions f with continuous and bounded partial derivatives
∂(j)f up to the order k. Moreover, for |j| = k the functions ∂(j)f belongs to
the space Lip(R2, α).

For completeness of exposition, we recall the multi-index notation

∂(j) :=
∂|j|

∂xj1
1 ∂xj2

2

,

with (j) = (j1, j2).
We shall say that a complex valued function f = u + iv belongs to

Lip(E, k + α) if both u and v do so. In this context, however, this definition
can be reformulated in purely complex terms as

Rj(τ, ζ) = f (j)(τ) −
∑

|j+l|≤k

f (j+l)(ζ)
l!

(τ − ζ)l1(τ − ζ)l2 , τ, ζ ∈ E (6)

|Rj(τ, ζ)| = O(|τ − ζ|k+α−|j|), τ, ζ ∈ E, |j| ≤ k, (7)

the functions f (j) being this time complex-valued as well.
Indeed, assume f = u + iv to be in Lip(E, k + α). Then, in accordance

with the above definition there exist real valued bounded functions u(j), v(j)

0 < |j| ≤ k, defined on E and such that

u(j)(x) =
∑

|j+l|≤k

u(j+l)(y)
l!

(x1 − y1)l1(x2 − y2)l2 + Uj(x, y) (8)

and

v(j)(x) =
∑

|j+l|≤k

v(j+l)(y)
l!

(x1 − y1)l1(x2 − y2)l2 + Vj(x, y), (9)

with

|Uj(x, y)| = O(|x − y|k+α−|j|), |Vj(x, y)| = O(|x − y|k+α−|j|).

A combination of (8) and (9) yields

f (j)(x) =
∑

|j+l|≤k

f (j+l)(y)
l!

(x1 − y1)l1(x2 − y2)l2 + Rj(x, y), (10)

where

f (j) = u(j) + iv(j), Rj(x, y) = Uj(x, y) + iVj(x, y).
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It follows from the elementary formulas

x1 − y1 =
1
2
((x − y) + (x − y)), x2 − y2 =

1
2i

((x − y) − (x − y)),

together with the Newton binomial expansion that (10) can be rewritten in
the form

f (j)(x) =
∑

|j+l|≤k

f (j+l)(y)
2|l|il2 l!

[ |l|∑
n=0

a(l)
n (x − y)|l|−n(x − y)n

]
+ Rj(x, y), (11)

where a
(l)
n =

∑
|s|=n

(
l
s

)
(−1)s2 , n = 0, |l|.

At this stage and after some convenient abuse of notation, to deduce
(6) from (11) is a matter of direct computation.

Following [14, page 177], we put

Pj(τ, ζ) =
∑

|j+l|≤k

f (j+l)(ζ)
l!

(τ − ζ)l1(τ − ζ)l2 .

Using the Taylor expansion of the polynomial Pj(τ, t) − Pj(τ, ζ) about the
point t ∈ R

2, we easily obtain

Pj(τ, t) − Pj(τ, ζ) =
∑

|j+l|≤k

Rj+l(t, ζ)
l!

(τ − t)l1(τ − t)l2 . (12)

This relation will be needed in Sect. 3.
For methodological reason we here also include the complex version of

the celebrated Whitney extension theorem [14, Theorem 4, page 177].

Theorem 2.1. Let f be a complex valued function in Lip(E, k + α), E ⊂ R
2.

Then, there exists a complex valued function f̃ ∈ Lip(R2, k + α) satisfying

(i) f̃ |E = f (0), ∂l1
z ∂l2

z f̃ |E = f (l), l = (l1, l2)
(ii) f̃ ∈ C∞(R2\E),
(iii) |∂l1

z ∂l2
z f̃(z)| � cdist(z,E)α−1, for |l| = k + 1 and z ∈ R

2\E.

Until the end of this work, c will denote a positive constant, not neces-
sarily the same at different occurrences.

Remark 2.2. In particular, we note that for f ∈ Lip(Γ, k + α) the Whitney
theorem ensures the existence of an extension f̃ such that f̃ = f and ∂n

z f̃ =
f (0,n) on Γ, for n = 0, . . . , k.

The above remark suggests that the already announced polyanalytic
Cauchy operator [the sum of contour integrals in (3)] may be naturally defined
for functions f ∈ Lip(Γ, k + α). These functions (collection of functions) are
intrinsically given on Γ, and as we shall see, they here play a similar role as
Hölder functions do for the classical analytic Cauchy integral.
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2.2. A Singular Integral Operator

In accordance with our last considerations, let us define the polyanalytic
Cauchy integral of a function f ∈ Lip(Γ, k + α) by

C(k)f(z) :=
k∑

n=0

1
2πi

∫
Γ

(z − ζ)n

n!(ζ − z)
f (0,n)(ζ)dζ, (13)

where f (0,n) denotes the corresponding function f (j) with (j) = (0, n) asso-
ciated to f ∈ Lip(Γ, k + α).

Of course, the function C(k)f(z) is polyanalytic in R
2\Γ by definition.

A less trivial concern is to know whether it keeps a well boundary behavior
when z ∈ Ω approaches t ∈ Γ. This answer is closely related to the study of
the principal value integral (singular integral operator)

S(k)f(t) =
k∑

n=0

1
πi

∫
Γ

(t − ζ)n

n!(ζ − t)
f (0,n)(ζ)dζ, t ∈ Γ. (14)

The first summand in (14) corresponds to the classical singular integral oper-
ator (also called Hilbert transform) given by

S(0)f(t) =
1
πi

∫
Γ

f(ζ)
ζ − t

dζ,

which has been intensively studied [7,9]. Probably, the most famous result
concerning S(0) is the well known Plemelj–Privalov theorem about the invari-
ance of the Hölder classes C0,α(Γ) under the action of the singular integral
operator S(0). In more concrete terms:

S(0)(C0,α(Γ)) ⊂ C0,α(Γ), 0 < α < 1. (15)

The following theorem, our main result, states a generalization of (15). Its
proof will take essentially the remaining of the paper.

Theorem 2.2. Let be Γ as before and 0 < α < 1. Then we have the inclusion

S(1)(Lip(Γ, 1 + α)) ⊂ Lip(Γ, 1 + α).

We conclude the section with two auxiliary lemmas, which go back as
far as [13]. The estimates contained will prove extremely useful in Section 3.

Lemma 2.1. Let Γ be a smooth Jordan curve with diameter d, and t ∈ Γ. Set
Γr(t) = Γ ∩ B(t, r), being B(t, r) the closed ball with center t and radius r.
Then, for 0 ≤ r ≤ d

mes(Γr(t)) =
∫

Γr(t)

|dζ| ≤ cr,

∫
Γr(t)

|dζ|
|ζ − t|1−α

≤ c rα,

r

∫
Γ\Γr(t)

|dζ|
|ζ − t|2−α

≤ c rα.

Moreover, ∣∣∣∣∣
∫

Γ\Γr(t)

dζ

ζ − t

∣∣∣∣∣ ≤ c,
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where c > 0 is independent of r.

Lemma 2.2. Let Γ be a smooth Jordan curve and t, τ ∈ Γ. Then

1
πi

∫
Γ

dζ

(ζ − t)(ζ − τ)
= 0,

1
πi

∫
Γ

dζ

(ζ − t)2
= 0.

3. Proof of the Main Theorem

Proof. For simplicity of notation, we write f̂ instead of S(1)f .
Set

f̂ (1,0)(t) =
1
πi

∫
Γ

f(ζ) + t − ζf (0,1)(ζ)
(ζ − t)2

dζ, f̂ (0,1)(t) =
1
πi

∫
Γ

f (0,1)(ζ)
ζ − t

dζ

and prove that

R(0,0)[f̂ ](t, τ) = f̂(t) − f̂(τ) − (t − τ)f̂ (1,0)(τ) − (t − τ)f̂ (0,1)(τ)

R(0,1)[f̂ ](t, τ) = f̂ (0,1)(t) − f̂ (0,1)(τ)

R(1,0)[f̂ ](t, τ) = f̂ (1,0)(t) − f̂ (1,0)(τ)

satisfy

|Rj [f̂ ](t, τ)| ≤ c|t − τ |1+α−|j|

for all |j| ≤ 1.

Let us first estimate1 |R0[f̂ ](t, τ)|.
We have

R0[f̂ ] =
1
πi

∫
Γ

f(ζ) + (t − ζ)f (0,1)(ζ)
ζ − t

dζ − 1
πi

∫
Γ

f(ζ) + (τ − ζ)f (0,1)(ζ)
ζ − τ

dζ

− t − τ

πi

∫
Γ

f(ζ) + (τ − ζ)f (0,1)(ζ)
(ζ − τ)2

dζ − t − τ

πi

∫
Γ

f (0,1)(ζ)
ζ − τ

dζ. (16)

Making use of the identity t − ζ = (t − τ) + (τ − ζ), and by substituting it
into the first term on the right-hand side of (16), we obtain

R0[f̂ ] =
(t − τ)2

πi

∫
Γ

f(ζ) + (τ − ζ)f (0,1)(ζ)
(ζ − t)(ζ − τ)2

dζ

+
t − τ

πi

[ ∫
Γ

f (0,1)(ζ)
ζ − t

dζ −
∫

Γ

f (0,1)(ζ)
ζ − τ

dζ

]
.

1 We will write it simply Rj [f̂ ] when no confusion can arise.
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By (6) it follows that f(ζ) + (τ − ζ)f (0,1)(ζ) = f(τ) − (τ − ζ)f (1,0)(ζ) −
R0[f ](τ, ζ), which implies after substitution

R0[f̂ ] =
(t − τ)2

πi

∫
Γ

f (1,0)(ζ)
(ζ − t)(ζ − τ)

dζ − (t − τ)2

πi

∫
Γ

R0[f ](τ, ζ)
(ζ − t)(ζ − τ)2

dζ

+
t − τ

πi

[ ∫
Γ

f (0,1)(ζ)
ζ − t

dζ −
∫

Γ

f (0,1)(ζ)
ζ − τ

dζ

]

=
t − τ

πi

[ ∫
Γ

f (1,0)(ζ)
ζ − t

dζ −
∫

Γ

f (1,0)(ζ)
ζ − τ

dζ

]

− (t − τ)2

πi

∫
Γ

R0[f ](τ, ζ)
(ζ − t)(ζ − τ)2

dζ

+
t − τ

πi

[ ∫
Γ

f (0,1)(ζ)
ζ − t

dζ −
∫

Γ

f (0,1)(ζ)
ζ − τ

dζ

]
.

Observe the use of Lemma 2.2 in the above equality.
Since f ∈ Lip(Γ, 1 + α), it follows that f (1,0), f (0,1) ∈ Lip(Γ, α). From

this, by the classic Plemelj–Privalov theorem (15), we conclude that the first
and last terms above are both dominated by c |t − τ |1+α.

It will thus be sufficient to prove that the second term

I(t, τ) =
(t − τ)2

πi

∫
Γ

R0[f ](τ, ζ)
(ζ − t)(ζ − τ)2

dζ

is dominated by c|t − τ |1+α.
Let r = |t−τ |

2 and set Γ1 := Γr(t), Γ2 := Γr(τ) and Γ3 := Γ\Γ1 ∪ Γ2.
Write

Ip(t, τ) =
(t − τ)2

πi

∫
Γp

R0[f ](τ, ζ)
(ζ − t)(ζ − τ)2

dζ

for p = 1, 3.
The following estimation of I2(t, τ) being due to the fact that |ζ − t| ≥ r

in Γ2

|I2(t, τ)| ≤ c|t − τ |2
∫

Γ2

|R0[f ](τ, ζ)||dζ|
|ζ − t||ζ − τ |2 ≤ c|t − τ |2

∫
Γ2

|τ − ζ|1+α|dζ|
|ζ − t||ζ − τ |2

≤ c|t − τ |2
∫

Γ2

|dζ|
|ζ − t||ζ − τ |1−α

≤ c|t − τ |
∫

Γ2

|dζ|
|ζ − τ |1−α

≤ c|t − τ |1+α. (17)

To examine I3(t, τ), we note that if |ζ − τ | ≤ |ζ − t|, then

1
|ζ − t||ζ − τ |1−α

≤ 1
|ζ − τ |2−α

.

On the other hand, if |ζ − t| ≤ |ζ − τ |, then

1
|ζ − t||ζ − τ |1−α

≤ 1
|ζ − t|2−α

.
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From this,

1
|ζ − t||ζ − τ |1−α

≤ 1
|ζ − t|2−α

+
1

|ζ − τ |2−α
.

Now, it is clear that Γ3 ⊂ Γ\Γ1 and Γ3 ⊂ Γ\Γ2, which gives

|I3(t, τ)| ≤ c|t − τ |2
∫

Γ3

|dζ|
|ζ − t||ζ − τ |1−α

≤ c|t − τ |2
[ ∫

Γ3

|dζ|
|ζ − t|2−α

+
∫

Γ3

|dζ|
|ζ − τ |2−α

]

≤ c|t − τ |
[
|t − τ |

∫
Γ\Γ1

|dζ|
|ζ − t|2−α

+ |t − τ |
∫

Γ\Γ2

|dζ|
|ζ − τ |2−α

]

≤ c|t − τ |1+α. (18)

Observe the use of Lemma 2.1 in (17) and (18).
Finally, let us examine I1(t, τ). From (12) it follows that

I1(t, τ) =
(t − τ)2

πi

[ ∫
Γ1

R0[f ](τ, t)dζ

(ζ − t)(ζ − τ)2
+

∫
Γ1

R0[f ](t, ζ)dζ

(ζ − t)(ζ − τ)2

+ (t − τ)
∫

Γ1

R(1,0)[f ](t, ζ)dζ

(ζ − t)(ζ − τ)2
+ (t − τ)

∫
Γ1

R(0,1)[f ](t, ζ)dζ

(ζ − t)(ζ − τ)2

]
.

The integrals within the bracket signs in the above expression shall be denoted
by I1

1 (t, τ), I2
1 (t, τ), I3

1 (t, τ), I4
1 (t, τ), respectively.

We first examine I1
1 (t, τ). From the identity

1
(ζ − t)(ζ − τ)2

=
1

(t − τ)2

(
1

ζ − t
− 1

ζ − τ

)
− 1

t − τ

1
(ζ − τ)2

,

we obtain

|I1
1 (t, τ)| ≤ c|R0[f ](τ, t)|

|t − τ |2
(∣∣∣

∫
Γ1

dζ

ζ − t

∣∣∣ +
∣∣∣
∫

Γ1

dζ

ζ − τ

∣∣∣ + |t − τ |
∣∣∣
∫

Γ1

dζ

(ζ − τ)2

∣∣∣)

≤ c

|τ − t|1−α

(∣∣∣
∫

Γ1

dζ

ζ − t

∣∣∣ +
∫

Γ1

|dζ|
|ζ − τ | + |t − τ |

∫
Γ1

|dζ|
|ζ − τ |2

)
.

By Lemma 2.1, we have ∣∣∣
∫

Γ1

dζ

ζ − t

∣∣∣ ≤ c,

∫
Γ1

|dζ|
|ζ − τ | ≤ c

|t − τ |
∫

Γ1

|dζ| ≤ c · mes(Γ1)
|t − τ | ≤ c,

and

|t − τ |
∫

Γ1

|dζ|
|ζ − τ |2 ≤ c

|t − τ |
∫

Γ1

|dζ| ≤ c · mes(Γ1)
|t − τ | ≤ c.
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Consequently, we conclude that

|I1
1 (t, τ)| ≤ c

|t − τ |1−α
. (19)

We now turn to I2
1 (t, τ). Since |t − ζ| ≤ |t−τ |

2 and |ζ − τ | ≥ |t−τ |
2 in Γ1, we

have

|I2
1 (t, τ)| ≤

∫
Γ1

|R0[f ](t, ζ)||dζ|
|ζ − t||ζ − τ |2 ≤ c

|t − τ |α
|t − τ |2

∫
Γ1

|dζ|

≤ c · mes(Γ1)
|t − τ |2−α

≤ c

|t − τ |1−α
. (20)

We now apply Lemma 2.1 again to conclude that

|I3
1 (t, τ)| ≤ |t − τ |

∫
Γ1

|R(1,0)[f ](t, ζ)||dζ|
|ζ − t||ζ − τ |2

≤ c

|t − τ |
∫

Γ1

|dζ|
|ζ − t|1−α

≤ c

|t − τ |1−α
. (21)

By a similar argument

|I4
1 (t, τ)| ≤ c

|t − τ |1−α
. (22)

Combining (19)–(22) we can assert that I1(t, τ) is bounded by c|t − τ |1+α,
hence so is I(t, τ), by (17) and (18), and finally

|R0[f̂ ](t, τ)| ≤ c|t − τ |1+α (23)

Note that, since f (0,1) ∈ Lip(Γ, α) by hypothesis,

|R(0,1)[f̂ ](t, τ)| ≤ c|t − τ |α
holds by the Plemelj–Privalov theorem (15). Then we are reduced to proving

|R(1,0)[f̂ ](t, τ)| ≤ c|t − t|α.

To get this estimate, we use (6) again to obtain

f(ζ) + t − ζf (0,1)(ζ) = f(t) − (t − ζ)f (1,0)(ζ) − R0[f ](t, ζ),

which implies after substitution

R(1,0)[f̂ ] =
1
πi

∫
Γ

f (1,0)(ζ)
ζ − t

dζ − 1
πi

∫
Γ

f (1,0)(ζ)
ζ − τ

dζ

+
1
πi

∫
Γ

R0[f ](τ, ζ)
(ζ − τ)2

dζ − 1
πi

∫
Γ

R0[f ](t, ζ)
(ζ − t)2

dζ.

Since f (1,0) ∈ Lip(Γ, α), it follows that
∣∣∣ 1
πi

∫
Γ

f (1,0)(ζ)
ζ − t

dζ − 1
πi

∫
Γ

f (1,0)(ζ)
ζ − τ

dζ
∣∣∣ ≤ c|t − τ |α.

We next turn to estimating

J(t, τ) =
1
πi

∫
Γ

R0[f ](τ, ζ)
(ζ − τ)2

dζ − 1
πi

∫
Γ

R0[f ](t, ζ)
(ζ − t)2

dζ.



38 Page 10 of 13 Singular Integral Operator Involving Higher Order MJOM

Since the following identities hold

1
πi

∫
Γ

R0[f ](τ, ζ)
(ζ − τ)2

dζ =
t − τ

πi

∫
Γ

−R0[f ](τ, ζ)
(ζ − τ)2(ζ − t)

dζ +
1
πi

∫
Γ

R0[f ](τ, ζ)
(ζ − τ)(ζ − t)

dζ

(24)

1
πi

∫
Γ

R0[f ](t, ζ)
(ζ − t)2

dζ =
t − τ

πi

∫
Γ

R0[f ](t, ζ)
(ζ − t)2(ζ − τ)

dζ +
1
πi

∫
Γ

R0[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ,

(25)

we may continue subtracting (25) from (24) to get

J(t, τ) =
t − τ

πi

∫
Γ

−R0[f ](τ, ζ)
(ζ − τ)2(ζ − t)

dζ − t − τ

πi

∫
Γ

R0[f ](t, ζ)
(ζ − t)2(ζ − τ)

dζ

+
1
πi

∫
Γ

R0[f ](τ, ζ) − R0[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ. (26)

It has been already proved that

|I(t, τ)| =
∣∣∣ (t − τ)2

πi

∫
Γ

R0[f ](τ, ζ)
(ζ − t)(ζ − τ)2

dζ
∣∣∣ ≤ c|t − τ |1+α.

Therefore, the first two terms on the right-hand side of (26) are both bounded
by c|t − τ |α.

What is left is to show that the last term,

J ′(t, τ) =
1
πi

∫
Γ

R0[f ](τ, ζ) − R0[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ,

so is.
From (12) it follows that

R0[f ](τ, ζ) − R0[f ](t, ζ) = R0[f ](τ, t)
+ (τ − t)R(1,0)[f ](t, ζ) + (τ − t)R(0,1)[f ](t, ζ).

Substituting into J ′(t, τ) yields

J ′(t, τ) =
τ − t

πi

∫
Γ

R(1,0)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ +
τ − t

πi

∫
Γ

R(0,1)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ. (27)

Let J ′′(t, τ) denote the first term on the right-hand side of (27). Let be Γp,
p = 1, 3, as before and put

J ′′
p (t, τ) =

τ − t

πi

∫
Γp

R(1,0)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ.

It follows that

|J ′′
1 (t, τ)| =

∣∣∣τ − t

πi

∫
Γ1

R(1,0)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤ c

∫
Γ1

|dζ|
|ζ − t|1−α

≤ c|t − τ |α. (28)

Since |t − τ |2 ∫
Γ3

|dζ|
|ζ−τ ||ζ−t|1−α ≤ c|t − τ |1+α by (18), we conclude that
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|J ′′
3 (t, τ)| =

∣∣∣τ − t

πi

∫
Γ3

R(1,0)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤ c|t − τ |

∫
Γ3

|dζ|
|ζ − τ ||ζ − t|1−α

≤ c|t − τ |α. (29)

We now turn to J ′′
2 (t, τ). From (12), we have

R(1,0)[f ](t, ζ) = R(1,0)[f ](τ, ζ) − R(1,0)[f ](τ, t),

hence that∣∣∣
∫

Γ2

R(1,0)[f ](t, ζ)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤

∣∣∣
∫

Γ2

R(1,0)[f ](τ, ζ)
(ζ − τ)(ζ − t)

dζ
∣∣∣ +

∣∣∣
∫

Γ2

R(1,0)[f ](τ, t)
(ζ − τ)(ζ − t)

dζ
∣∣∣.

We need to prove that the two terms on the right-hand side above are both
bounded by c|t − τ |α−1.

Let us examine the first one∣∣∣
∫

Γ2

R(1,0)[f ](τ, ζ)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤ c

∫
Γ2

|dζ|
|ζ − τ |1−α|ζ − t| ≤ c

|t − τ |
∫

Γ2

|dζ|
|ζ − τ |1−α

≤ c

|t − τ |1−α
.

On the other hand, since
∣∣∣
∫

Γ2

R(1,0)[f ](τ, t)
(ζ − τ)(ζ − t)

dζ
∣∣∣ =

∣∣∣R(1,0)[f ](τ, t)
t − τ

( ∫
Γ2

dζ

ζ − t
−

∫
Γ2

dζ

ζ − τ

)∣∣∣,
Lemma 2.1 shows that the modulus of the two integrals in parentheses are
both bounded by a non-negative constant c, hence that

∣∣∣
∫

Γ2

R(1,0)[f ](τ, t)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤ c|t − τ |α−1,

and finally that

|J ′′
2 (t, τ)| =

∣∣∣τ − t

πi

∫
Γ2

R(1,0)[f ](τ, t)
(ζ − τ)(ζ − t)

dζ
∣∣∣ ≤ c|t − τ |α.

Similar arguments apply to the second term on the right-hand side of (27)
and the proof is completed. �

4. Concluding Remarks

We conclude with a couple of remarks

Remark 4.1. Theorem 2.2 may be extended to the case of Carleson Jordan
curves (Ahlfors–David). Such a generalization is similar in spirit to that car-
ried out in [13]. In this more general case, it is necessary to introduce a
modified singular integral operator given by

Sf(t) =
1
πi

∫
Γ

f(ζ) − f(t)
ζ − t

dζ + f(t),

instead of S(0)f .
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The estimates developed in the proof of Theorem 2.2 are similarly
obtained. The basic geometry ingredient is the fact that Lemma 2.1 still
holds for Carleson curves.

Remark 4.2. Future work will explore the hypothesis that our result still hold
for the general case k ∈ N, as well as the idea of extending it to Euclidean
space using Clifford analysis [6].
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