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Abstract. In this paper, by using a nonlinear alternative for a sum
of compact upper semicontinuous and contractive multivalued oper-
ators, we establish sufficient conditions for the existence of solutions
for perturbed fractional differential inclusions with nonlocal multi-point
Erdélyi–Kober fractional integral boundary conditions. For the applica-
bility of the main result, we include an example.
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1. Introduction

Considerable interest in fractional differential equations has been stimulated
due to their numerous applications in many fields of science and engineering.
Important phenomena in finance, electromagnetics, acoustics, viscoelasticity,
electrochemistry and material sciences are well described by differential equa-
tions of fractional order. For examples and recent development of the topic,
see [1–5] and the references cited therein.

Differential inclusions, known as generalization of differential equations
and inequalities, serve as important and useful mathematical tools in optimal
control theory, dynamical systems and stochastic processes, for details, see
the text [6]. In fact, the area of initial and boundary value problems involv-
ing fractional-order differential equations and inclusions has been extensively
investigated in the recent years. The development on the topic includes the
existence theory as well as the methods of solution for such problems, for
example, see [7–24] and the references cited therein.

It has been noticed that fractional-order boundary value problems
supplemented with integral boundary conditions involve either classical,
Riemann–Liouville or Hadamard type integrals. Besides these integrals, there
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is another kind of integral operator, introduced by Erdélyi and Kober [25] in
1940, which is known as Erdélyi–Kober fractional integral operator. These
operators are found to be quite useful in solving single, dual and triple inte-
gral equations possessing special functions of mathematical physics in their
kernels. For applications of the Erdélyi–Kober fractional integrals, we refer
the reader to a series of papers and texts [2,25–29].

In this paper, we investigate a boundary value problem of perturbed
fractional differential inclusions equipped with nonlocal multi-point Erdélyi–
Kober fractional integral boundary conditions given by

⎧
⎪⎨

⎪⎩

Dqx(t) ∈ F (t, x(t)) + G(t, x(t)), 0 < t < T, 1 < q ≤ 2,

x(0) = 0, αx(T ) =
m∑

i=1

βiI
γi,δi
ηi

x(ξi),
(1.1)

where Dq is the standard Riemann–Liouville fractional derivative of order q,
Iγi,δi
ηi

is the Erdélyi–Kober fractional integral of order δi > 0 with ηi > 0
and γi ∈ R, i = 1, 2, . . . ,m, F,G : [0, T ] × R → P(R) are multivalued maps,
P(R) is the family of all nonempty subsets of R, and α, βi ∈ R, ξi ∈ (0, T ),
i = 1, 2, . . . ,m are given constants.

The paper is organized as follows. Section 2 contains preliminary con-
cepts related to the proposed study while the main existence result, based
on nonlinear alternative for contractive maps, is presented in Sect. 3. For the
illustration of the main result, we discuss an example.

We emphasize that the findings for perturbed fractional differential
inclusions supplemented with multipoint Erdélyi–Kober fractional integral
boundary conditions reported in this paper are new and contribute signifi-
cantly to the subject of fractional calculus.

2. Preliminaries

The first part of this Section is devoted to some fundamental concepts of
fractional calculus, while the second part deals with the background material
for multivalued maps related to our problem.

2.1. Basic Material for Fractional Calculus

In this section, we introduce some notations and definitions of fractional
calculus and present preliminary results needed in our proofs later [2,5].

Definition 2.1. The Riemann–Liouville fractional derivative of order q of a
continuous function f : (0,∞) → R is defined by

Dqf(t) =
1

Γ(n − q)

(
d

dt

)n ∫ t

0

(t − s)n−q−1f(s)ds, n − 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of a real number q. Here Γ is
the Gamma function defined by Γ(q) =

∫ ∞
0

e−ssq−1ds.
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Definition 2.2. The Riemann–Liouville fractional integral of order q > 0 of a
continuous function f : (0,∞) → R is defined by

Jqf(t) =
1

Γ(q)

∫ t

0

(t − s)q−1f(s)ds,

provided the integral exists.

Definition 2.3. The Erdélyi–Kober fractional integral of order δ > 0 with
η > 0 and γ ∈ R of a continuous function f : (0,∞) → R is defined by

Iγ,δ
η f(t) =

ηt−η(δ+γ)

Γ(δ)

∫ t

0

sηγ+η−1f(s)
(tη − sη)1−δ

ds

provided the right side is pointwise defined on R+.

Remark 2.4. For η = 1 the above operator is reduced to the Kober operator

Iδ
γf(t) =

t−(δ+γ)

Γ(δ)

∫ t

0

sγf(s)
(t − s)1−δ

ds, γ, δ > 0,

that was introduced for the first time by Kober in [30]. For γ = 0, the Kober
operator is reduced to the Riemann–Liouville fractional integral with a power
weight:

Iδ
0f(t) =

t−δ

Γ(δ)

∫ t

0

f(s)
(t − s)1−δ

ds, δ > 0.

From the definition of the Riemann–Liouville fractional derivative and
integral, we can obtain the following lemmas.

Lemma 2.5 (See [2]). Let y ∈ C(0, T ) ∩ L1(0, T ). Then the fractional differ-
ential equation Dqy(t) = 0 has a solution

y(t) = c1t
q−1 + c2t

q−2 + · · · + cntq−n,

where ci ∈ R, i = 1, 2, . . . , n and n − 1 < q < n.

Lemma 2.6 (See [2]). For y ∈ C(0, T ) ∩ L1(0, T ), it holds that

JqDqy(t) = y(t) + c1t
q−1 + c2t

q−2 + · · · + cntq−n,

where ci ∈ R, i = 1, 2, . . . , n and n − 1 < q < n.

2.2. Some Auxiliary Lemmas

For easy reference we include the following well known formula as a lemma.

Lemma 2.7. Let δ, η > 0 and γ, q ∈ R. Then we have

Iγ,δ
η tq =

tqΓ(γ + (q/η) + 1)
Γ(γ + (q/η) + δ + 1)

. (2.1)

Lemma 2.8. Let 1 < q ≤ 2, δi, ηi > 0, α, γi, βi ∈ R, ξi ∈ (0, T ), i =
1, 2, . . . , m and h ∈ C([0, T ],R). Then the linear Riemann–Liouville frac-
tional differential equation subject to the Erdélyi–Kober fractional integral
boundary conditions

⎧
⎪⎨

⎪⎩

Dqx(t) = h(t), t ∈ (0, T ),

x(0) = 0, αx(T ) =
m∑

i=1

βiI
γi,δi
ηi

x(ξi),
(2.2)
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is equivalent to the following fractional integral equation

x(t) = Jqh(t) − tq−1

Λ

(

αJqh(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqh(ξi)

)

, (2.3)

where

Λ := αT q−1 −
m∑

i=1

βiξi
q−1Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
�= 0. (2.4)

Proof. Using Lemmas 2.5, 2.6, the Eq. (2.2) can be expressed as an equivalent
integral equation

x(t) = Jqh(t) − c1t
q−1 − c2t

q−2, (2.5)

for c1, c2 ∈ R. The first condition of (2.2) implies that c2 = 0. Taking the
Erdélyi–Kober fractional integral of order δi > 0 with ηi > 0 and γi ∈ R for
(2.5) and using Lemma 2.7, we have

Iδi
ηi,γi

x(t) = Iδi
ηi,γi

Jqh(t) − c1
tq−1Γ(γ + (q − 1)/η + 1)
Γ(γ + (q − 1)/η + δ + 1)

.

The second condition of (2.2) yields

αJqh(T ) − c1αT q−1 =
m∑

i=1

βiI
γi,δi
ηi

Jqh(ξi)

− c1

m∑

i=1

βiξ
q−1
i Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
,

which implies

c1 =
1
Λ

(

αJqh(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqh(ξi)

)

.

Substituting the values of c1 and c2 in (2.5), we obtain the desired solution
(2.3).

Conversely, it can easily be shown by direct computation that the inte-
gral equation (2.3) satisfies the problem (2.2). This completes the proof.

�

2.3. Basic Material for Multivalued Maps

Here we outline some basic concepts of multivalued analysis [31,32].
Let C([0, T ],R) denote the Banach space of all continuous functions

from [0, T ] into R with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, T ]}. Also by
L1([0, T ],R) we denote the space of functions x : [0, T ] → R such that
‖x‖L1 =

∫ T

0
|x(t)|dt.

For a normed space (X, ‖ · ‖), let

Pcl(X) = {Y ∈ P(X) : Y is closed},

Pb(X) = {Y ∈ P(X) : Y is bounded},

Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}.

A multi-valued map G : X → P(X):
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(i) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X.
(ii) is bounded on bounded sets if G(Y ) = ∪x∈Y G(x) is bounded in X for

all Y ∈ Pb(X) (i.e. supx∈Y {sup{|y| : y ∈ G(x)}} < ∞).
(iii) is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set

G(x0) is a nonempty closed subset of X, and if for each open set N of
X containing G(x0), there exists an open neighborhood N0 of x0 such
that G(N0) ⊆ N.

(iv) G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ Y �= ∅} is
open for any open set Y in X.

(v) is said to be completely continuous if G(B) is relatively compact for
every B ∈ Pb(X); If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a
closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

(vi) is said to be measurable if for every y ∈ X, the function

t �−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable.

(vii) has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point
set of the multivalued operator G will be denoted by FixG.

Definition 2.9. A multivalued map F : [0, T ] × R → P(R) is said to be
Carathéodory if

(i) t �−→ F (t, x) is measurable for each x ∈ R;
(ii) x �−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, T ]; Further

a Carathéodory function F is called L1-Carathéodory if
(iii) for each ρ > 0, there exists ϕρ ∈ L1([0, T ],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕρ(t)

for all ‖x‖ ≤ ρ and for a.e. t ∈ [0, T ].

Define the function Hd : P(X) × P(X) → R ∪ {∞} by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a; b) and d(a,B) = infb∈B d(a; b).

Definition 2.10. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

For each y ∈ C([0, T ],R), define the set of selections of F by

SF,y := {v ∈ L1([0, T ],R) : v(t) ∈ F (t, y(t)) on [0, T ]}.

We define the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y, y ∈
G(x)} and recall a result for closed graphs and upper-semicontinuity.
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Lemma 2.11 ([31, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G)
is a closed subset of X × Y ; i.e., for every sequence {xn}n∈N ⊂ X and
{yn}n∈N ⊂ Y , if when n → ∞, xn → x∗, yn → y∗ and yn ∈ G(xn), then
y∗ ∈ G(x∗). Conversely, if G is completely continuous and has a closed graph,
then it is upper semi-continuous.

The following lemma will be used in the sequel.

Lemma 2.12 ([33]). Let X be a Banach space. Let F : J × R → Pcp,c(X)
be an L1− Carathéodory multivalued map and let Θ be a linear continuous
mapping from L1(J,X) to C(J,X). Then the operator

Θ ◦ SF : C(J,X) → Pcp,c(C(J,X)), x �→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C(J,X) × C(J,X).

To prove our main result in this section, we use the following form of
the nonlinear alternative for contractive maps [34, Corollary 3.8].

Theorem 2.13. Let X be a Banach space, and D a bounded neighborhood of
0 ∈ X. Let Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) two multi-valued
operators satisfying
(a) Z1 is contraction, and
(b) Z2 is upper semicontinuous and compact.

Then, if G = Z1 + Z2, either
(i) G has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

3. Existence Results

Throughout this paper, for convenience, we use the following expressions

Jqf(z) =
1

Γ(q)

∫ z

0

(z − s)q−1f(s)ds, z ∈ {t, T},

for t ∈ [0, T ] and

Iγi,δi
ηi

Jqf(ξi) =
ηiξ

−ηi(δi+γi)
i

Γ(q)Γ(δi)

∫ ξi

0

∫ r

0

rηiγi+ηi−1(r − s)q−1

(ξηi

i − rηi)1−δi
f(s)dsdr,

where ξi ∈ (0, T ) for i = 1, 2, . . . ,m.

Let us list the following assumptions:
(H1) F : [0, T ] × R → Pcp,c(R) is L1-Carathéodory;
(H2) there exists a continuous nondecreasing function Φ : [0,∞) → (0,∞)

and a function p ∈ L1([0, T ],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)Φ(‖x‖) for each (t, x) ∈ [0, T ] × R;

(H3) the multi-valued map t → G(t, x) is measurable for each x ∈ R and
integrably bounded, i.e. there exists a function M ∈ L1([0, T ],R+) such
that

|G(t, x)| := sup{|g| : g(t) ∈ G(t, x)} ≤ M(t), for a.e. t ∈ [0, T ] and x ∈ R;
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(H4) G : [0, T ] × R → Pcp,c(R) and there exists a function � ∈ L1([0, T ],R)
such that

Hd(G(t, x), G(t, y)) ≤ �(t)|x − y|, t ∈ [0, T ]

for all x, y ∈ R with

Jq�(T ) +
T q−1

|Λ|

(

αJq�(T ) +
m∑

i=1

βiI
γi,δi
ηi

Jq�(ξi)

)

< 1; (3.1)

(H5) there exists a constant r > 0 such that
r

Φ(r)Ψ1 + Ψ2
> 1, (3.2)

where

Ψ1 = Jqp(T ) +
|α|T q−1

|Λ| Jqp(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jqp(ξi)

and

Ψ2 = JqM(T ) +
|α|T q−1

|Λ| JqM(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

JqM(ξi).

We transform the problem (1.1) into a fixed point problem. Con-
sider the operator

N (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([0, T ],R) :

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jq[f(t) + g(t)]

− tq−1

Λ

(

αJq[f(T ) + g(T )]

−
m∑

i=1

βiI
γi,δi
ηi

Jq[f(ξi) + g(ξi)]

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

for f ∈ SF,x and g ∈ SG,x.
Define the operators F ,G : C([0, T ],R) → P(C([0, T ],R)) by

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h ∈ C([0, T ],R) :

h(t) =

⎧
⎪⎨

⎪⎩

Jqf(t)

− tq−1

Λ

(

αJqf(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqf(ξi)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.4)

for f ∈ SF,x, and

G(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z ∈ C([0, T ],R) :

z(t) =

⎧
⎪⎨

⎪⎩

Jqg(t)

− tq−1

Λ

(

αJqg(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqg(ξi)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.5)

for g ∈ SG,x. Observe that N = F+G. We shall show that the operators
F and G satisfy all the conditions of Theorem 2.13 on [0, T ].

Lemma 3.1. The operators F and G, defined by (3.4) and (3.5) respectively,
are compact and convex-valued.
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Proof. First, we show that the operators F and G define the multivalued oper-
ators F ,G : Br → Pcp,c(C([0, T ],R)) where Br = {x ∈ C([0, T ],R) : ‖x‖ ≤ r}
is a bounded set in C([0, T ],R). We shall prove that F is compact-valued on
Br. Note that the operator F is equivalent to the composition L ◦ SF , where
L is the continuous linear operator on L1([0, T ],R) into C([0, T ],R), defined
by

L(v)(t) = Jqv(t) +
tq−1

Λ

{
αIγ,δ

η Jqv(ξ) − Jqv(T )
}

.

Suppose that x ∈ Br is arbitrary and let {vn} be a sequence in SF,x.
Then, by definition of SF,x, we have vn(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ].
Since F (t, x(t)) is compact for all t ∈ J , there is a convergent subsequence of
{vn(t)} (we denote it by {vn(t)} again) that converges in measure to some
v(t) ∈ SF,x for almost all t ∈ J . On the other hand, L is continuous, so
L(vn)(t) → L(v)(t) pointwise on [0, T ].

In order to show that the convergence is uniform, we have to show that
{L(vn)} is an equi-continuous sequence. Let t1, t2 ∈ [0, T ] with t1 < t2. Then,
we have

|L(vn)(t2) − L(vn)(t1)|

≤ |Jqvn(t2) − Jqvn(t1)| +
|tq−1
2 − tq−1

1 |
|Λ| Jq|vn(T )|

+
|α||tq−1

2 − tq−1
1 |

|Λ| |Iγ,δ
η Jq|vn(ξ)|

≤ ψ(r)
Γ(q)

∣
∣
∣
∣

∫ t1

0

[(t2 − s)q−1 − (t1 − s)q−1]p(s)ds +
∫ t2

t1

(t2 − s)q−1p(s)ds

∣
∣
∣
∣

+
|tq−1
2 − tq−1

1 |
|Λ|

(
Jq|vn(T )| + |α||Iγ,δ

η Jq|vn(ξ)|).

We see that the right hand of the above inequality tends to zero as t2 →
t1. Thus, the sequence {L(vn)} is equi-continuous and by using the Arzelá–
Ascoli theorem, we get that there is a uniformly convergent subsequence.
So, there is a subsequence of {vn} (we denote it again by {vn}) such that
L(vn) → L(v). Note that, L(v) ∈ L(SF,x). Hence, F(x) = L(SF,x) is compact
for all x ∈ Br. So F(x) is compact.

Now, we show that F(x) is convex for all x ∈ C([0, T ],R). Let h1, h2 ∈
F(x). We select f1, f2 ∈ SF,x such that

hi(t) = Jqfi(t) +
tq−1

Λ
{
αIγ,δ

η Jqfi(ξ) − Jqfi(T )
}
, i = 1, 2

for almost all t ∈ [0, T ]. Let 0 ≤ λ ≤ 1. Then, we have

[λh1 + (1 − λ)h2](t) = Jq[λf1(t) + (1 − λ)f2(t)]

+
tq−1

Λ
{
αIγ,δ

η Jq[λf1(ξ) + (1 − λ)f2(ξ)] − Jq[λf1(T ) + (1 − λ)f2(T )]
}
.
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Since F has convex values, so SF,u is convex and λf1(s)+(1−λ)f2(s) ∈
SF,x. Thus

λh1 + (1 − λ)h2 ∈ F(x).

Consequently, F is convex-valued. Similarly, G is compact and convex-valued.
�

Lemma 3.2. Assume that (H3) and (H4) hold. Then the operator G defined
by (3.5) is a contraction.

Proof. Let x, x̄ ∈ C2([0, T ],R) and h1 ∈ G(x). Then there exists g1(t) ∈
G(t, x(t)) such that, for each t ∈ [0, T ],

h1(t) = Jqg1(t) − tq−1

Λ

(

αJqg1(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqg1(ξi)

)

.

By (H4), we have

Hd(F (t, x), F (t, x̄)) ≤ �(t)|x(t) − x̄(t)|.
So, there exists w ∈ G(t, x̄(t)) such that

|v1(t) − w(t)| ≤ �(t)|x(t) − x̄(t)|, t ∈ [0, T ].

Define U : [0, T ] → P(R) by

U(t) = {w ∈ R : |v1(t) − w| ≤ �(t)|x(t) − x̄(t)|}.
Since the multivalued operator U(t) ∩ G(t, x̄(t)) is measurable (Proposition
III.4 [35]), there exists a function v2(t) which is a measurable selection for
U . So v2(t) ∈ G(t, x̄(t)) and for each t ∈ [0, T ], we have |v1(t) − v2(t)| ≤
�(t)|x(t) − x̄(t)|.

For each t ∈ [0, T ], let us define

h2(t) = Jqg2(t) − tq−1

Λ

(

αJqg2(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqg2(ξi)

)

.

Thus,

|h1(t) − h2(t)|
≤ Jq|g1(t) − g2(t)|

+
tq−1

|Λ|

(

αJq|g1(T ) − g2(T )| +
m∑

i=1

βiI
γi,δi
ηi

Jq|g1(ξi) − g2(ξi)|
)

≤
{

Jq�(T ) +
T q−1

|Λ|

(

αJq�(T ) +
m∑

i=1

βiI
γi,δi
ηi

Jq�(ξi)

)}

‖x − x̄‖.

Hence,

‖h1 − h2‖ ≤
{

Jq�(T ) +
T q−1

|Λ|

(

αJq�(T ) +
m∑

i=1

βiI
γi,δi
ηi

Jq�(ξi)

)}

‖x − x̄‖.

Analogously, interchanging the roles of x and x, we obtain

Hd(F(x),F(x̄)) ≤ δ‖x − x̄‖,
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where

δ = Jq�(T ) +
T q−1

|Λ|

(

αJq�(T ) +
m∑

i=1

βiI
γi,δi
ηi

Jq�(ξi)

)

.

So G is a contraction, since δ < 1 by (3.1). This completes the proof.
�

Lemma 3.3. Assume that (H1) and (H2) hold. Then the operator F defined
by (3.4) is upper semicontinuous.

Proof. For the sake of convenience, we break the proof into several steps.
Step 1. F maps bounded sets (balls) into bounded sets in C([0, T ],R).
For a positive number ρ, let Bρ = {x ∈ C([0, T ],R) : ‖x‖ ≤ ρ} be a bounded
ball in C([0, T ],R). Then, for each h ∈ F(x), x ∈ Bρ, there exists f ∈ SF,x

such that

h(t) = Jqf(t) − tq−1

Λ

(

αJqf(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqf(ξi)

)

.

Then we have

|h(x)| ≤ Jq|f(T )| +
|α|T q−1

|Λ| Jq|f(T )| +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jq|f(ξ)|

≤ Φ(‖x‖)Jqp(T ) + Φ(‖x‖)
|α|T q−1

|Λ| Jqp(T )

+Φ(‖x‖)
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jqp(ξi),

and consequently,

‖h‖ ≤ Φ(r)

{

Jqp(T ) +
|α|T q−1

|Λ| Jqp(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jqp(ξi)

}

.

Step 2. F maps bounded sets into equicontinuous sets of C([0, T ],R).
Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Bρ. For each h ∈ F(x), we obtain

|h(τ2) − h(τ1)|

≤ |Jqv(τ2) − Jqv(τ1)| +
|α||τ q−1

2 − τ q−1
1 |

|Λ| Jq|v(T )|

+
|τ q−1

2 − τ q−1
1 |

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jq|v(ξ)|

≤ Φ(r)
Γ(q)

∣
∣
∣
∣

∫ τ1

0

[(τ2 − s)q−1 − (τ1 − s)q−1]p(s)ds +
∫ τ2

τ1

(τ2 − s)q−1p(s)ds

∣
∣
∣
∣

+
|τ q−1

2 − τ q−1
1 |Φ(r)

|Λ|

(

|α|Jqp(T ) +
m∑

i=1

|βi|Iγi,δi
ηi

Jq(ξi)

)

.

Obviously the right hand side of the above inequality tends to zero
independently of x ∈ Bρ as τ2 − τ1 → 0. As F satisfies the above
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three assumptions, therefore it follows by the Arzelá–Ascoli theorem that
F : C([0, T ],R) → P(C([0, T ],R)) is completely continuous.

Since F is completely continuous, in order to prove that it is u.s.c., it is
enough to prove that it has a closed graph. Thus, in our next step, we show
that

Step 3. Fhas a closed graph.

Let xn → x∗, hn ∈ F(xn) and hn → h∗. Then we need to show that h∗ ∈
F(x∗). Associated with hn ∈ F(xn), there exists vn ∈ SF,xn

such that for
each t ∈ [0, T ],

hn(t) = Jqvn(t) − tq−1

Λ

(

αJqvn(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqvn(ξi)

)

.

Thus it suffices to show that there exists v∗ ∈ SF,x∗ such that for each
t ∈ [0, T ],

h∗(t) = Jqv∗(t) − tq−1

Λ

(

αJqv∗(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqv∗(ξi)

)

.

Let us consider the linear operator Θ : L1([0, T ],R) → C([0, T ],R) given
by

f �→ Θ(v)(t) = Jqv(t) − tq−1

Λ

(

αJqv(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqv(ξi)

)

.

Observe that

‖hn(t) − h∗(t)‖ =

∥
∥
∥
∥
∥
Jq(vn(t) − v∗(t)) − tq−1

Λ

(

αJq(vn(T ) − v∗(T ))

−
m∑

i=1

βiI
γi,δi
ηi

Jq(vn(ξi) − v∗(ξi))

)∥
∥
∥
∥
∥

→ 0,

as n → ∞.
Thus, it follows by Lemma 2.12 that Θ ◦ SF is a closed graph operator.

Further, we have hn(t) ∈ Θ(SF,xn
). Since xn → x∗, therefore, we have

h∗(t) = Jqv∗(t) − tq−1

Λ

(

αJqv∗(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqv∗(ξi)

)

,

for some v∗ ∈ SF,x∗ . Thus the operator F is upper semicontinuous. �

Theorem 3.4. Assume that (H1)–(H5) are satisfied. Then the boundary value
problem (1.1) has at least one solution on [0, T ].

Proof. Define an open ball Br = {x ∈ C([0, T ],R) : ‖x‖ ≤ r}, where r satis-
fies the inequality (3.6) given in condition (H5). As a consequence of Lemmas
3.1, 3.2, 3.3 the operators F and G satisfy all the conditions of Theorem 2.13
and hence its conclusion implies either condition (i) or condition (ii) holds.
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We show that the conclusion (ii) is not possible. If x ∈ λF(x) + λG(x) for
λ ∈ (0, 1), then there exist f ∈ SF,x and g ∈ SG,x such that

x(t) = λJqf(t) − λ
tq−1

Λ

(

αJqf(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqf(ξi)

)

+λJqg(t) − λ
tq−1

Λ

(

αJqg(T ) −
m∑

i=1

βiI
γi,δi
ηi

Jqg(ξi)

)

.

In view of (H2), (H3) we obtain

|x(t)| ≤ Φ(‖x‖)

{

Jqp(T ) +
|α|T q−1

|Λ| Jqp(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jqp(ξi)

}

+JqM(T ) +
|α|T q−1

|Λ| JqM(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

JqM(ξi),

or

‖x‖ ≤ Φ(‖x‖)

{

Jqp(T ) +
|α|T q−1

|Λ| Jqp(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

Jqp(ξi)

}

+JqM(T ) +
|α|T q−1

|Λ| JqM(T ) +
T q−1

|Λ|
m∑

i=1

|βi|Iγi,δi
ηi

JqM(ξi). (3.6)

If condition (ii) of Theorem 2.13 holds, then there exists λ ∈ (0, 1) and
x ∈ ∂Br with x = λF(x)+λG(x). Then, x is a solution of (1.1) with ‖x‖ = r.
Now, by the inequality (3.6), we get

r

Φ(r)Ψ1 + Ψ2
≤ 1,

which contradicts (3.2). Hence, N has a fixed point in [0, T ] by Theorem 2.13,
and consequently the problem (1.1) has a solution. This completes the proof.

�

3.1. Example

In this section, we will illustrate our main result with the help of an exam-
ple. Let us consider the following boundary value problem for Riemann–
Liouville fractional differential inclusions with Erdélyi–Kober fractional inte-
gral boundary conditions

⎧
⎪⎨

⎪⎩

D3/2x(t) ∈ F (t, x(t)) + G(t, x(t)), t ∈ (0, 1) ,
x(0) = 0,

αx(1) = 3
2I

1
3 , 17
1
5

x
(
1
4

)
+ I

2
3 , 47
2
5

x
(
1
2

)
+ 2I

3
4 , 67
3
5

x
(
3
4

)
.

(3.7)

Here q = 3/2, m = 3, T = 1, β1 = 3/2, β2 = 1, β3 = 2, η1 = 1/5, η2 = 2/5,
η3 = 3/5, γ1 = 1/3, γ2 = 2/3, γ3 = 3/4, δ1 = 1/7, δ2 = 4/7, δ3 = 6/7,
ξ1 = 1/4, ξ2 = 1/2, ξ3 = 3/4, the multivalued maps F,G : [0, 1] × R → P(R)
are given by

x → F (t, x) =
[

t cos2 x

(16 + t2)(1 + cos2 x)
,

x2 sin t

(1 + x2)(1 + t4)
+

1
2

]

, (3.8)
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x → G(t, x) =
[

2
π
√

t + 9
tan−1 x,

t|x|
1 + |x| + 1

]

(3.9)

and α will be fixed later.
For f ∈ F, we have

|f | ≤ max
(

t cos2 x

(16 + t2)(1 + cos2 x)
,

x2 sin t

(1 + x2)(1 + t4)
+

1
2

)

≤ 3
2
, x ∈ R.

According to the condition (H2), let us fix p(t) = 3/2,Φ(‖x‖) = 1. In
view of the assumptions (H3) and (H4), we have M(t) = 1 + t, �(t) = t.
Using the given data, we find that the condition (3.1) holds for any α >
3.479637. In our analysis, we take α = 4. With this choice, Λ ≈ 2.185595,
Ψ1 ≈ 3.532777, Ψ2 ≈ 3.260379. Hence by the condition (3.2) given by (H5),
there exists r > 6.793156. Thus all the conditions of Theorem 3.4 are satisfied.
In consequence, there exists a solution for problem (3.7) on [0, 1].

Remark 3.5. The existence result obtained in this paper corresponds to the
Dirichlet boundary value problem of perturbed fractional differential inclu-
sions if we take α = 1 and βi = 0, i = 1, . . . , m in the statement of (1.1).
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