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On Certain Functional Equations on
Standard Operator Algebras

Nadeem ur Rehman , Nejc Širovnik and Tarannum Bano

Abstract. In this paper, functional equations related to derivations on
semiprime rings and standard operator algebras are investigated. We
prove the following result which is related to a classical result of Cher-
noff. Let X be a real or complex Banach space, let L(X) be the algebra
of all bounded linear operators of X into itself and let A(X) ⊂ L(X) be
a standard operator algebra. Suppose there exist linear mappings D,G :
A(X) → L(X) satisfying the relations D(A2n+1) = D(A2n)A+A2nG(A)
and G(A2n+1) = G(A2n)A + A2nD(A) for all A ∈ A(X). Then there
exists B ∈ L(X) such that D(A) = G(A) = [A,B] for all A ∈ A(X).
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1. Introduction

Throughout the paper, R will denote an associative ring with center Z(R).
As usual we write [x, y] for xy − yx. Given an integer n ≥ 2, a ring R is said
to be n-torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R
is prime, if for a, b ∈ R, aRb = (0) implies a = 0 or b = 0 and is semiprime in
case aRa = (0) implies a = 0. We denote by Qs the symmetric Martindale
ring of quotients. For explanation of Qs, we refer the reader to [1]. Let A be an
algebra over the real or complex field and let B be a subalgebra of A. A linear
mapping D : B → A is called a linear derivation if D(xy) = D(x)y + xD(y)
for all x, y ∈ B. In case we have a ring R, an additive mapping D : R → R is
called a derivation if D(xy) = D(x)y + xD(y) for all x, y ∈ R and is called a
Jordan derivation in case D(x2) = D(x)x + xD(x) is fulfilled for all x ∈ R.
A derivation D is inner in case there exists a ∈ R that D(x) = [x, a] for all
x ∈ R. Every derivation is a Jordan derivation, but the converse is in general
not true. A classical result of Herstein [7] asserts that any Jordan derivation
on a 2-torsion free prime ring is a derivation. A brief proof of Herstein’s result
can be found in [2]. Cusack [6] generalized Herstein’s result to 2-torsion free
semiprime rings (see also [3] for an alternative proof). An additive mapping
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D : R → R, where R is an arbitrary ring, is called a Jordan triple derivation
in case D(xyx) = D(x)yx + xD(y)x + xyD(x) for all x, y ∈ R.

Let X be a real or complex Banach space and let L(X) and F(X) denote
the algebra of all bounded linear operators on X and the ideal of all finite
rank operators in L(X), respectively. An algebra A(X) ⊂ L(X) is said to be
a standard if F(X) ⊂ A(X). Let us point out that any standard operator
algebra is prime, which is a consequence of a Hahn–Banach theorem.

Brešar [4] has proved the following result.

Theorem A. Let R be a 2-torsion free semiprime ring and let D : R → R be
an additive mapping satisfying the relation

D(xyx) = D(x)yx + xD(y)x + xyD(x) (1)

for all x, y ∈ R. Then D is a derivation.
One can easily prove that any Jordan derivation D on an arbitrary 2-

torsion free ring R satisfies the relation (1), which means that Theorem A
generalizes Cusack’s generalization of Herstein’s theorem we have mentioned
above.

Motivated by Theorem A, Vukman [15] recently proved the following
result.

Theorem B. Let R be a 2-torsion free semiprime ring and let D : R → R be
an additive mapping. Suppose that either of the relations

D(xyx) = D(xy)x + xyD(x),
D(xyx) = D(x)yx + xD(yx) (2)

for all x, y ∈ R. Then D is a derivation.
The substitution y = x2n−1 in relations (2) gives

D(x2n+1) = D(x2n)x + x2nD(x),
D(x2n+1) = D(x)x2n + xD(x2n). (3)

Recently, Širovnik [9] obtained the following result, which is related to func-
tional Eq. (3) in case n = 1.

Theorem C. Let X be a real or complex Banach space and let A(X) be a
standard operator algebra on X. Suppose that there exist linear mappings
D,G : A(X) → L(X) satisfying either the relations

D(A3) = D(A2)A + A2G(A),
G(A3) = G(A2)A + A2D(A)

or the relations

D(A3) = D(A)A2 + AG(A2),

D(A3) = D(A)A2 + AG(A2)

for all A ∈ A(X). In both cases there exists B ∈ L(X), such that D(A) =
G(A) = [A,B], which means that D and G are linear derivations.



MJOM On Certain Functional Equations Page 3 of 10 12

It is our aim in this paper to prove the following result related to func-
tional Eq. (3). This result, which generalizes Theorem C, is motivated by
Theorem B and Theorem C.

Theorem 1. Let X be a real or complex Banach space and let A(X) be a
standard operator algebra on X. Suppose that there exist linear mappings
D,G : A(X) → L(X) satisfying either the relations

D(A2n+1) = D(A2n)A + A2nG(A),

G(A2n+1) = G(A2n)A + A2nD(A)

or the relations

D(A2n+1) = D(A)A2n + AG(A2n),
D(A2n+1) = D(A)A2n + AG(A2n)

for all A ∈ A(X) and some integer n ≥ 1. In both cases there exists B ∈
L(X), such that D(A) = G(A) = [A,B] for all A ∈ A(X), which means that
D and G are linear derivations.

The main result of the paper is related to the result below first proved by
Chernoff [5] (see also [8,10,12–14]).

Theorem D. Let X be a real or complex Banach space, let A(X) be a standard
operator algebra on X and let D : A(X) → L(X) be a linear derivation. Then
D is of the form D(A) = AB − BA for all A ∈ A(X) and some B ∈ L(X).

To develop the proof of Theorem 1 we use Herstein’s theorem, Theorem
D, Lemma 2 and methods which are similar to those used in [12–14].

Lemma 2 [11, Lemma 3]. Let R be a semiprime ring and let f : R → R be
an additive mapping. If either f(x)x = 0 or xf(x) = 0 holds for all x ∈ R,
then f = 0.

2. Main Result

We begin our discussion with the first result.

Theorem 3. Let X be a real or complex Banach space, let A(X) be a s-
tandard operator algebra on X. Suppose that there exists a linear mapping
D : A(X) → L(X) satisfying either the relation

D(A2n+1) = D(A2n)A + A2nD(A)

or the relation

D(A2n+1) = D(A)A2n + AD(A2n)

for all A ∈ A(X) and some fixed integer n ≥ 1. Then there exists an operator
B ∈ L(X), such that D(A) = [A,B] for all A ∈ A(X), which means that D
is linear derivation.
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Proof. In the case when the second relation holds true, then the proof runs
similarly, and therefore, it will be omitted. We have

D(A2n+1) = D(A2n)A + A2nD(A) (4)

for all A ∈ A(X). First we shall restrict D on F(X). Let A ∈ F(X) and let
P ∈ F(X) be a projection with AP = PA = A. Replacing A with P in the
relation (4) we obtain

D(P ) = D(P )P + PD(P ). (5)

A right multiplication of (5) by P gives

PD(P )P = 0. (6)

Again replacing A with (A + P ) in the relation (4), we get
2n+1∑

i=0

(
2n+1

i

)
D(A2n+1−iP i) =

( 2n∑

i=0

(
2n
i

)
D(A2n−iP i)

)
(A + P )

+
( 2n∑

i=0

(
2n
i

)
A2n−iP i

)
D(A + P ).

Rearranging the above relation and using (4) we get
2n∑

i=1

fi(A,P ) = 0,

where fi(A,P ) stands for the expression of terms involving i factors of P ,
that is

fi(A,P ) =
(
2n+1

i

)
D(A2n+1−iP i)

− (
2n
i

)(
D(A2n−iP i)A + (A2n−iP i)D(A)

)

− (
2n
i−1

)(
D(A2n+1−iP i)P + (A2n+1−iP i)D(P )

)
.

Replacing A by A+2P,A+3P, . . . , A+2nP 2n times in the relation (4) and
expressing the resulting system of 2n homogeneous equations of the variables
fi(A,P ), i = 1, 2, . . . , 2n, we see that the coefficient matrix of the system is
a Vandermonde matrix

⎡

⎢⎢⎢⎣

1 1 . . . 1
2 22 . . . 22n
...

...
. . .

...
2n (2n)2 . . . (2n)2n

⎤

⎥⎥⎥⎦ .

Since the determinant of this matrix is different from zero, it follows imme-
diately that the system has only a trivial solution. In particular

f2n−1(A,P ) =
(
2n+1
2n−1

)
D(A2) − (

2n
2n−1

)(
D(A)A + AD(A)

)

− (
2n

2n−2

)(
D(A)P + AD(P )

)
= 0
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and

f2n(A,P ) =
(
2n+1
2n

)
D(A) − (

2n
2n

)(
D(P )A + PD(A)

)

− (
2n

2n−1

)(
D(A)P + AD(P )

)
= 0.

The above relations reduce to

n(2n + 1)D(A2) = 2nD(A)A + 2nAD(A) + n(2n − 1)D(A2)P
+ n(2n − 1)A2D(P ), (7)

(2n + 1)D(A) = D(P )A + PD(A) + 2nD(A)P + 2nAD(P ). (8)

Thanks to (6), a right multiplication by P in (7) gives

D(A2)P = D(A)A + AD(A)P. (9)

Applying (9) in the relation (7), we obtain

n(2n + 1)D(A2) = n(2n + 1)D(A)A + 2nAD(A)

+ n(2n − 1)
(
AD(A)P + A2D(P )

)
. (10)

A left multiplication by A in (8) gives

AD(A) = AD(A)P + A2D(P ).

By applying the above relation in (10), we get

D(A2) = D(A)A + AD(A). (11)

From relation (8) one can conclude that D is a linear mapping, which maps
F(X) into itself. By relation (11) D is a Jordan derivation on F(X). Since
F(X) is prime, it follows that D is a derivation by Herstein’s theorem. In
view of Theorem D one can conclude that

D(A) = [A,B] (12)

for all A ∈ F(X) and some B ∈ L(X). It remains to prove that (12) holds for
all A ∈ A(X). For this purpose we introduce the mapping D1 : A(X) → L(X)
by D1(A) = [A,B], where B is from (12) and consider D0 = D − D1. The
mapping D0 is linear, satisfies the relation (4) and it vanishes on F(X).
Our aim is to prove that D0 vanishes on A(X) as well. Let A ∈ A(X),
let P be a one-dimensional projection and let us introduce S ∈ A(X) by
S = A + PAP − (AP + PA). We have SP = PS = 0. It is easy to see that
D0(S) = D0(A) and D0(S2n) = D0(A2n). The relation (4) now leads to

D0(S2n)S + S2nD0(S)
= D0(S2n+1) = D0(S2n+1 + P ) = D0((S + P )2n+1)
= D0((S + P )2n)(S + P ) + (S + P )2nD0(S + P )
= D0(S2n)S + D0(S2n)P + (S2n + P )D0(S)
= D0(S2n)S + D0(S2n)P + S2nD0(S) + PD0(S).

Therefore,

D0(S2n)P + PD0(S) = 0,
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which can be written as

D0(A2n)P + PD0(A) = 0.

Replacing A with −A in the above relation and comparing the relation so
obtained with the above relation, we obtain

PD0(A) = 0

for all A ∈ A(X). Since P is an arbitrary one-dimensional projection, it now
follows that D0(A) = 0 for all A ∈ A(X), which completes the proof of the
theorem. �

Theorem 4. Let X be a real or complex Banach space, let A(X) be a s-
tandard operator algebra on X. Suppose that there exists a linear mapping
D : A(X) → L(X) satisfying either the relation

D(A2n+1) = D(A2n)A − A2nD(A)

or the relation

D(A2n+1) = D(A)A2n − AD(A2n)

for all A ∈ A(X) and some integer n ≥ 1. Then D(A) = 0 for all A ∈ A(X).

Proof. In case when the second relation holds true, then the proof runs sim-
ilarly, and therefore, it will be omitted. We have

D(A2n+1) = D(A2n)A − A2nD(A) (13)

for all A ∈ A(X). First we shall restrict D on F(X). Let A ∈ F(X) and
P ∈ F(X) be a projection with AP = PA = A. From the relation (4) we
obtain

D(P ) = D(P )P − PD(P ). (14)

A right multiplication by P in the above relation gives

PD(P )P = 0

and a left multiplication by P in (14) gives, considering the above relation,

PD(P ) = 0. (15)

Putting A + P for A in (13), we get

2n+1∑

i=0

(
2n+1

i

)
D(A2n+1−iP i) =

( 2n∑

i=0

(
2n
i

)
D(A2n−iP i)

)
(A + P )

−
( 2n∑

i=0

(
2n
i

)
A2n−iP i

)
D(A + P ).

Rearranging the above relation and considering (13), we obtain

2n∑

i=1

fi(A,P ) = 0,
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where fi(A,P ) stands for the expression of terms involving i factors of P ,
that is

fi(A,P ) =
(
2n+1

i

)
D(A2n+1−iP i)

− (
2n
i

)(
D(A2n−iP i)A − (A2n−iP i)D(A)

)

− (
2n
i−1

)(
D(A2n+1−iP i)P − (A2n+1−iP i)D(P )

)
.

Replacing A by A + 2P , A + 3P, . . . , A + 2nP 2n times in the relation (13)
and expressing the resulting system of 2n homogeneous equations of variables
fi(A,P ), i = 1, 2, . . . , 2n, we see that the coefficient matrix of the system is
a Vandermonde matrix ⎡

⎢⎢⎢⎣

1 1 . . . 1
2 22 . . . 22n
...

...
. . .

...
2n (2n)2 . . . (2n)2n

⎤

⎥⎥⎥⎦ .

Since the determinant of the above matrix is different from zero, it follows
immediately that the system has only a trivial solution. In particular

f2n(A,P ) =
(
2n+1
2n

)
D(A) − (

2n
2n

)(
D(P )A − PD(A)

)

− (
2n

2n−1

)(
D(A)P − AD(P )

)
= 0.

The above relation reduces to

(2n + 1)D(A) = D(P )A − PD(A) + 2nD(A)P − 2nAD(P )

and using (15) in the above relation gives

(2n + 1)D(A) = D(P )A − PD(A) + 2nD(A)P. (16)

Two-sided multiplication by P in the above relation leads to

PD(A)P = 0.

By left multiplying by P in the relation (16) and considering (15) together
with the above relation, we obtain

PD(A) = 0. (17)

A left multiplication by A in the above relation gives

AD(A) = 0. (18)

An application (17) in (16) leads to

(2n + 1)D(A) = D(P )A + 2nD(A)P. (19)

A right multiplication by P in the above relation gives

D(A)P = D(P )A.

Considering the above relation in (19), we obtain

D(A) = D(A)P. (20)

From the relation (20) one can conclude that D maps F(X) into itself. We
have, therefore, a linear mapping D, which maps F(X) into itself satisfying
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the relation (18). Applying Lemma 2, we can conclude that D(A) = 0 for all
A ∈ F(X).

It remains to prove that D(A) = 0 holds for all A ∈ A(X) as well. The
mapping D on A(X) is linear, satisfies the relation (13) and it vanishes on
F(X). Our aim is to prove that D vanishes on A(X) as well. Let A ∈ A(X),
let P be a one-dimensional projection and let us introduce S ∈ A(X) by
S = A + PAP − (AP + PA). We have SP = PS = 0. It is easy to see that
D(S) = D(A) and D(S2n) = D(A2n). The relation (13) now leads to

D(S2n)S − S2nD(S)
= D(S2n+1) = D(S2n+1 + P ) = D((S + P )2n+1)
= D((S + P )2n)(S + P ) − (S + P )2nD(S + P )
= D(S2n)S + D(S2n)P − (S2n + P )D(S)
= D(S2n)S + D(S2n)P − S2nD(S) − PD(S).

Therefore,

D(S2n)P − PD(S) = 0

which can be written as

D(A2n)P − PD(A) = 0.

Replacing A with −A in the above relation and comparing the relation so
obtained with the above relation gives

PD(A) = 0.

Since P is arbitrary one-dimensional projection, it follows from the above
relation that D(A) = 0 for all A ∈ A(X). The proof of the theorem is now
complete. �

We are now in the position to prove Theorem 1.

Proof of Theorem 1. In the case when the second system of the relation holds
true, then the proof runs similarly, and therefore, it will be omitted. We have

D(A2n+1) = D(A2n)A + A2nG(A),

G(A2n+1) = G(A2n)A + A2nD(A)

for all A ∈ A(X). Subtracting the above relations gives

T (A2n+1) = T (A2n)A − A2nT (A), (21)

where T = D − G. Using Theorem 4, we can conclude that T (A) = 0 for all
A ∈ A(X), which implies D = G. This ascertainment enables us to combine
the given two relations into only one relation

D(A2n+1) = D(A2n)A + A2nD(A)

for all A ∈ A(X). From Theorem 3 it follows that D(A) = G(A) = [A,B] for
all A ∈ A(X), and so the proof is complete. �

We conclude the paper with the following purely algebraic conjecture.
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Conjecture 5. Let R be semiprime ring with suitable torsion restrictions and
let D,G : R → R be additive mappings satisfying either the relations

D(x2n+1) = D(x2n)x + x2nG(x),

G(x2n+1) = G(x2n)x + x2nD(x)

or the relations

D(x2n+1) = D(x)x2n + xG(x2n),

D(x2n+1) = D(x)x2n + xG(x2n)

for all x ∈ R and some integer n ≥ 1. Then D and G are derivations and
D = G.
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