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Numerical Solution Based on Hat
Functions for Solving Nonlinear Stochastic
Itô Volterra Integral Equations Driven by
Fractional Brownian Motion
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Abstract. This paper presents a numerical method for solving nonlinear
stochastic Itô Volterra integral equations driven by fractional Brownian
motion with Hurst parameter H ∈ (0, 1) via of hat functions. Using
properties of the generalized hat basis functions and fractional Brownian
motion, new stochastic operational matrix of integration is achieved and
the nonlinear stochastic equation is transformed into nonlinear system of
algebraic equations which by solving it, an approximation solution with
high accuracy is obtained. In addition, error analysis of the method
is investigated, and by some examples, efficiency and accuracy of the
suggested method are shown.
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1. Introduction

Recently, there is an increasing demand for solving stochastic differential
equations and stochastic integral equations numerically. These equations
appear in models of various problems in science and engineering events and
so on. They are often dependent on a Gaussian white noise which governed by
some probability rules and mathematically described as a formal derivative of
a Brownian motion process. Such phenomena needs to model using stochastic
differential equations or, stochastic Volterra integral equations and stochas-
tic integro-differential equations. Most of them cannot be solved analytically;
therefore, numerical computation and analysis will become important [1–8].

Some stochastic differential and integral equations have been caused by
fractional Brownian motion and have many applications in models arising
in physics, telecommunication networks, and finance [9]. There exist several
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ways to solve them, pathwise and related techniques, Dirichlet forms, Euler
approximations, Malliavin calculus, and Skorohod integral [10–14]; almost
all methods have very poor numerical convergence, so it is important to find
approximation solutions with reasonable accuracy for them. For example,
Ezzati et al. in “Numerical Implementation of Stochastic Operational Matrix
Driven by a Fractional Brownian Motion for Solving a Stochastic Differential
Equation” have used block pulse functions for solving stochastic differential
equations driven by fractional Brownian motion with Hurst parameter H ∈
( 12 , 1) [15].

In this paper, we consider the following nonlinear stochastic Itô Volterra
integral equation which has been caused by a fractional Brownian motion:

X(t) = h(t) +

t∫

0

f(s)μ(X(s))ds +

t∫

0

g(s)σ(X(s))dB(H)(s), t ∈ [0, T ], (1)

where B(H)(t) is a fractional Brownian motion with Hurst parameter H ∈
(0, 1), X(t), h(t), f(t), and g(t), for t ∈ [0, T ], are stochastic processes defined
on the same probability space (Ω, F, P ), X(t) is unknown function, and μ(s)
and σ(s) are analytic functions.

We try to solve Eq. (1), using hat functions. Previously in [16], Heydari
et al. solved the case which has been caused by simple Brownian motion.

For computing the approximation solution of above equation, we first
bring some properties of the generalized hat basis functions, then we get the
new operational matrix of stochastic integration driven by fractional Brown-
ian motion and obtain a system of nonlinear algebraic equations. Finally, we
look into error analysis of this method and illustrate some examples to show
accuracy of the suggested method.

2. Fractional Brownian Motion and its Properties

2.1. Fractional Brownian Motion

A standard fractional Brownian motion (B(H)(t))t≥0 with Hurst parameter
H ∈ (0, 1) is a continuous Gaussian process with zero mean and a covariance
function:

Cov(B(H)(s), B(H)(t)) =
1
2
(s2H + t2H− | t − s |2H).

Fractional Brownian motion has the following properties:

(a) B(H)(0) = 0 and E(B(H)(t)) = 0 for all t ≥ 0 .
(b) B(H) has homogeneous increments.
(c) E(B(H)(t)2) = t2H , t ≥ 0.
(d) B(H) has continuous trajectories.
If H = 1/2, we get to a standard Brownian motion [9].
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2.2. Fractional Itô Formula

Let H ∈ (0, 1). Assume that f(s, x) : R × R → R belongs to C1,2(R × R),
and assume that the random variables

f(t, B(H)(t)),

t∫

0

∂f

∂s
(s,B(H)(s))ds,

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1ds,

all belong to L2(Ω). Then:

f(t, B(H)(t)) = f(0, 0) +

t∫

0

∂f

∂s
(s,B(H)(s))ds +

t∫

0

∂f

∂x
(s,B(H)(s))dBH(s)

+H

t∫

0

∂2f

∂x2
(s,B(H)(s))s2H−1ds. (2)

For more details, see [9].

3. Hat Functions and Their Properties

The family of first (n+1) hat functions on [0, T] are defined as follows [17–
20]:

φ0(t) =
{

h−t
h 0 ≤ t ≤ h,

0 otherwise,

φi(t) =

⎧⎪⎨
⎪⎩

t−(i−1)h
h (i − 1)h ≤ t ≤ ih,

(i+1)h−t
h ih ≤ t ≤ (i + 1)h,

0 otherwise,

which i=1,2,...,n-1 and h = T
n . In addition, we have:

φn(t) =
{

t−(T−h)
h T − h ≤ t ≤ T ,

0 otherwise.

From the above definitions, we have:

φi(kh) =
{

1 i = k,
0 i �= k,

(3)

and
φi(t)φk(t) = 0, | i − k |≥ 2. (4)

An arbitrary function f(t) ∈ L2[0, T ] can be expanded by the general-
ized hat basis functions as:

f(t) �
n∑

i=0

fiφi(t) = FT Φ(t) = Φ(t)T
F, (5)

where
F = [f0, f1, ..., fn]T , (6)
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and

Φ(t) = [φ0(t), φ1(t), ..., φn(t)]T . (7)

The coefficients fi in (5) are given by:

fi = f(ih), i = 0, 1, ...,n. (8)

From relation (4), we have:

Φ(t)Φ(t)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ2
0(t) φ0(t)φ1(t)

φ0(t)φ1(t) φ2
1(t) φ1(t)φ2(t)
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . . φn−1(t)φn(t)

φn−1(t)φn(t) φ2
n(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

According to (3) and expanding elements of Φ(t)Φ(t)T by generalized
hat functions, we have:

Φ(t)Φ(t)T �

⎛
⎜⎜⎜⎝

φ0(t) 0 · · · 0
0 φ1(t) · · · 0
...

...
. . .

...
0 0 · · · φn(t)

⎞
⎟⎟⎟⎠ .

Integrating of vector Φ(t) which is given by (7) yields [21]:

t∫

0

Φ(s)ds � PΦ(t), t ∈ [0, T ], (9)

where P is (n + 1) × (n + 1), and called operational matrix of integration for
the generalized hat basis functions, and is given by the following:

P =
h

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1 1
0 1 2 · · · 2 2
0 0 1 · · · 2 2
...

...
...

. . .
...

...
0 0 0 · · · 1 2
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

4. Stochastic Operational Matrix

Theorem 4.1. The Itô integral of Φ(t) which is given by (7) yields:

t∫

0

Φ(s)dB(s) � PsΦ(t), (10)
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where the matrix Ps is (n + 1) × (n + 1), and called operational matrix of
stochastic integration for the generalized hat functions, and is given by the
following:

Ps =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α0 α0 · · · α0 α0

0 B(h) + β1 β1 + α1 · · · β1 + α1 β1 + α1

0 0 B(2h) + β2 β2 + α2 · · · β2 + α2 β2 + α2

...
...

...
...

. . .
...

...
0 0 0 0 · · · B((n − 1)h) + βn−1 βn−1 + αn−1

0 0 0 0 · · · 0 B(T ) + βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
⎧⎨
⎩

αi = 1
h

∫ (i+1)h

ih
B(s)ds, i = 0, 1, 2, ...,n − 1,

βi = − 1
h

∫ ih

(i−1)h
B(s)ds, i = 1, 2, ...,n.

Proof. See [16]. �

Theorem 4.2. Integrating of Φ(t) which is given by (7), according to fractional
Brownian motion, yields:

t∫

0

Φ(s)dB(H)(s) � PsHΦ(t), (11)

where the matrix PsH is (n+1)×(n+1), and called operational matrix of sto-
chastic integration driven by fractional Brownian motion for the generalized
hat functions, and is given by the following:

PsH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α0 α0 α0 · · · α0 α0

0 B(H)(h) + β1 β1 + α1 β1 + α1 · · · β1 + α1 β1 + α1

0 0 B(H)(2h) + β2 β2 + α2 · · · β2 + α2 β2 + α2

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 0 · · · B(H)((n − 1)h) + βn−1 βn−1 + αn−1

0 0 0 0 · · · 0 B(H)(T ) + βn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
⎧⎨
⎩

αi = 1
h

∫ (i+1)h

ih
B(H)(s)ds, i = 0, 1, 2, ...,n − 1,

βi = − 1
h

∫ ih

(i−1)h
B(H)(s)ds, i = 1, 2, ...,n.

Proof. To compute
∫ t

0
φ(s)dB(H)(s), choose Xt = B(H)(t) and f(t, x) =

φi(t) × x. Then, according to relation (2), we have:

Yt = f(t, B(H)(t)) = φi(t) × B(H)(t).

Therefore

d(φi(t) × B(H)(t)) = B(H)(t) × φ′
i(t)dt + φi(t)dB(H)(t).
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By integrating from 0 to t, we have:

φi(t)B(H)(t) − φi(0)B(H)(0) =

t∫

0

B(H)(y)φ′
i(y)dy +

t∫

0

φi(y)dB(H)(y).

Therefore:
t∫

0

φi(y)dB(H)(y) = φi(t)B(H)(t) −
t∫

0

B(H)(y)φ′
i(y)dy. (12)

By expanding
∫ t

0
φi(y)dB(H)(y) in terms of hat functions, we will have:

t∫

0

φi(y)dB(H)(y) �
n∑

j=0

aijφj(t) =
n∑

j=0

⎛
⎝

jh∫

0

φi(y)dB(H)(y)

⎞
⎠ φj(t).

Using (12), we have:

aij =

jh∫

0

φi(y)dB(H)(y) = φi(jh)B(H)(jh) −
jh∫

0

B(H)(y)φ′
i(y)dy.

Using definition and properties of hat functions which has been men-
tioned in Sect. 3, aij have the following form:

a0j =
{

0 j = 0,
1
h

∫ h

0
B(H)(y)dy j ≥ 1,

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 j ≤ i − 1,

B(H)(ih) − 1
h

∫ ih

(i−1)h
B(H)(y)dy j = i,

− 1
h

(∫ ih

(i−1)h
B(H)(y)dy − ∫ (i+1)h

ih
B(H)(y)dy

)
j ≥ i + 1 and i �= n,

where i = 1, ..., n and j = 0, 1, ..., n.
Therefore, by substituting, αi = 1

h

∫ (i+1)h

ih
B(H)(s)ds and βi =

− 1
h

∫ ih

(i−1)h
B(H)(s)ds, the matrix PsH , and so the Itô integral driven by frac-

tional Brownian motion of Φ(x) will be obtained. �

In this paper, we will work with matrix PsH and its entries.

5. Some Effective Properties of the Generalized Hat Basis
Functions

In this part, we will introduce some effective properties of the generalized hat
basis functions, which Heydari et al. have used them to solve nonlinear Itô
Volterra integral equations for simple Brownian motion [16].
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For any two constant vectors XT = [x0, x1, ..., xn] and Y T =
[y0, y1, ..., yn], we define XT � Y T = [x0y0, x1y1, ..., xnyn] and G(XT ) =
[G(x0), G(x1),
..., G(xn)], for any analytic function G.

Lemma 5.1. Suppose XT Φ(t) and Y T Φ(t) be expansions of X(t) and Y (t) by
the generalized hat basis functions. Then, we have:

X(t)Y (t) � (XT � Y T )Φ(t). (13)

Proof. See [16]. �

Corollary 5.2. Suppose XT Φ(t) be the expansion of X(t) by the generalized
hat basis functions. Then, for any integer m ≥ 2, we have:

[X(t)]m � [xm
0 , xm

1 , ..., xm
n ]Φ(t). (14)

Proof. See [16]. �

Theorem 5.3. If XT Φ(t) be the expansion of X(t) by the generalized hat basis
functions and G be an analytic function, and then, we have:

G[X(t)] � G(XT )Φ(t). (15)

Proof. See [16]. �

Corollary 5.4. Suppose F and G be two analytic functions, and also XT Φ(t)
and Y T Φ(t) be the expansions of X(t) and Y (t) by the generalized hat basis
functions, and then, we have:

F (X(t))G(Y (t)) � (F (XT ) � G(Y T ))Φ(t). (16)

Proof. See [16]. �

6. Numerical Method

In this section, we employ the operational matrices of integration and sto-
chastic integration which has been caused by fractional Brownian motion
with Hurst parameter H ∈ (0, 1). Therefore, using hat basis functions and
their effective properties, we try to solve the following equation:

X(t) = h(t) +

t∫

0

f(s)μ(X(s))ds +

t∫

0

g(s)σ(X(s))dB(H)(s), t ∈ [0, T ]. (17)

We approximate X(t), h(t), f(t), and g(t) as follows:

X(t) � XT Φ(t) = Φ(t)T X, (18)

h(t) � HT Φ(t) = Φ(t)T H, (19)

and

f(t) � FT Φ(t) = Φ(t)T F, (20)
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g(t) � GT Φ(t) = Φ(t)T G, (21)

where X, H, F , and G are the generalized hat functions coefficients vectors.
By results from the previous section, we have:

μ(X(t)) � μ(XT )Φ(t), (22)

σ(X(t)) � σ(XT )Φ(t), (23)

and

f(t)μ(X(t)) � (FT � μ(XT ))Φ(t), (24)

g(t)σ(X(t)) � (GT � σ(XT ))Φ(t). (25)

By substituting above relations and operational matrices of integration
in Eq. (17), we have:

XT Φ(t) � HT Φ(t) + (FT � μ(XT ))PΦ(t) + (GT � σ(XT ))(PsH)Φ(t).(26)

If we replace � by =, we get the following system of nonlinear algebraic
equations in which we try to solve it:

XT − (FT � μ(XT ))P − (GT � σ(XT ))(PsH) = HT . (27)

Therefore, the approximation solution of Eq. (17) is X � XT Φ(t).

7. Error Analysis

If we approximate the unknown error function en(t) = X(t) − Xn(t), where
Xn(t) is an approximation solution of Eq. (17), using the proposed method
for the following nonlinear stochastic integral equation:

en(t) = −εn(t) +

t∫

0

f(s)(μ(X(s)) − μ(Xn(s)))ds

+

t∫

0

g(s)(σ(X(s)) − σ(Xn(s)))dB(H)(s), (28)

we can estimate en(t), where εn(t) is the residual function, and can be
obtained from the following equation:

εn(t) = Xn(t)−h(t)−
t∫

0

f(s)μ(Xn(s))ds−
t∫

0

g(s)σ(Xn(s))dB(H)(s), t∈ [0, T ].

To estimate en(t) from Eq. (28), we should approximate μ(X(t)) −
μ(Xn(t)) and σ(X(t)) − σ(Xn(t)), because X(t) is unknown.
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Since μ and σ are analytic functions, using Taylor’s theorem, we have

μ(X(t)) − μ(Xn(t)) = μ(Xn(t) + en(t)) − μ(Xn(t))

= μ′(Xn(t)) × en(t) +
1
2!

μ′′(Xn(t))en(t)2

+
1
3!

μ′′′(θn(t))en(t)3,

and

σ(X(t))−σ(Xn(t)) = σ′(Xn(t))en(t)+
1
2!

σ′′(Xn(t))en(t)2+
1
3!

σ′′′(δn(t))en(t)3,

where θn(t) = Xn(t) + θen(t), δn(t) = Xn(t) + δen(t), and θ, δ ∈ (0, T ).
By substituting above relations in Eq. (28), we have a nonlinear sto-

chastic integral equation with unknown function en(t), which by applying
the proposed method, we can approximate it.

8. Numerical Examples

To clarify the method, we illustrate the following examples which their exact
solutions are exist. Note that n is the number of basis functions and m is the
number of iterations.

Example 8.1. Consider the following nonlinear stochastic Itô Volterra inte-
gral equation which has been caused by fractional Brownian motion and has
exact solution:

X(t) = X0 − 2 × H × a2

t∫

0

s2H−1X(s)(1 − X(s)2)ds

+ a ×
t∫

0

(1 − X2(s))dB(H)(s), t ∈ (0, 1).

The exact solution of above equation is:

X(t) = tanh(aB(H)(t) + arctanh(X0)).

For H = 0.5, this equation has been given in [5]. For different values of
H and with 200 iterations, the absolute error of approximation solutions for
n = 32 is given in Tables 1, 2, and 3. This example is solved for a = 1

30 and
X0 = 1

10 .
The exact and approximation solutions of the Example 8.1 for n = 32,

t = 0.05, and H = 0.5 with 200 iterations are given in Fig. 1, and for H = 0.8,
n = 64 with 500 iterations are shown in Fig. 2.

Example 8.2. Consider the following nonlinear stochastic Itô Volterra inte-
gral equation which has been caused by fractional Brownian motion. When
H = 0.5, this equation is illustrated in [5]:
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Table 1. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.1 with Hurst
parameter H = 0.2

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 2.040843×10−3 6.240495×10−4 4.607550×10−4 9.033127×10−4

0.1 2.623988×10−3 8.251740×10−4 6.370481×10−4 1.222236×10−3

0.15 3.195517×10−3 9.966029×10−4 7.282005×10−4 1.434961×10−3

0.2 3.812141×10−3 1.170226×10−3 8.300452×10−4 1.659933×10−3

Table 2. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.1 with Hurst
parameter H = 0.5

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 3.210683×10−5 1.014270×10−5 6.743902×10−6 1.393679×10−5

0.1 6.638530×10−5 2.054621×10−5 1.386075×10−5 2.843149×10−5

0.15 8.861528×10−5 2.773538×10−5 1.904823×10−5 3.871731×10−5

0.2 1.209729×10−4 3.842619×10−5 2.675356×10−5 5.400423×10−5

Table 3. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.1 with Hurst
parameter H = 0.8

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 1.277309×10−7 3.960305×10−8 5.699309×10−8 8.507835×10−8

0.1 2.842930×10−7 8.753508×10−8 1.291663×10−7 1.912435×10−7

0.15 5.783858×10−7 1.891093×10−7 3.106045×10−7 4.447140×10−7

0.2 8.224517×10−7 2.593554×10−7 4.144255×10−7 5.983523×10−7

X(t) = X0 − H × a2

t∫

0

tanh(X(s))s2H−1sech2(X(s))ds

+ a

t∫

0

sech(X(s))dB(H)(s), t ∈ (0, 1).
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Figure 1. Exact and approximation solutions of Example 8.1
for n = 32, m = 200, H = 0.5, and t = 0.05
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Exact solution

Figure 2. Exact and approximation solutions of Example 8.1
for n = 64, m = 500, H = 0.8, and t = 0.05

Table 4. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.2 with Hurst
parameter H = 0.2

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 1.085271×10−3 3.367596×10−4 2.486759×10−4 4.874955×10−4

0.1 1.316461×10−3 4.079752×10−4 3.098707×10−4 5.991941×10−4

0.15 1.603519×10−3 5.030140×10−4 3.653977×10−4 7.221197×10−4

0.2 1.736776×10−3 5.482654×10−4 3.936551×10−4 7.824681×10−4

The exact solution of above equation is:

X(t) = arcsinh(aBH(t) + sinh(X0)).
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Table 5. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.2 with Hurst
parameter H = 0.5

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 1.499915×10−5 4.643697×10−6 3.196107×10−6 6.489274×10−6

0.1 3.020395×10−5 9.367891×10−6 6.135273×10−6 1.277869×10−5

0.15 4.306922×10−5 1.386794×10−5 9.253781×10−6 1.908850×10−5

0.2 6.165456×10−5 1.908316×10−5 1.324612×10−5 2.677931×10−5

Table 6. Error mean, X̄E , error standard deviation, SE , and
confidence interval for error mean of Example 8.2 with Hurst
parameter H = 0.8

t X̄E SE %95 confidence interval for error
mean
Lower Upper

0.05 4.067660×10−8 1.311433×10−8 2.024607×10−8 2.954635×10−8

0.1 1.726966×10−7 5.879228×10−8 9.222035×10−8 1.339140×10−7

0.15 2.418395×10−7 7.841807×10−8 1.108158×10−7 1.664275×10−7

0.2 4.282123×10−7 1.375553×10−7 2.301637×10−7 3.277137×10−7

For different values of H and 200 iterations, the absolute error of approx-
imation solutions for n = 32 is given in Tables 4, 5, and 6. In addition, in
this equation, a = 1

30 and X0 = 1
10 .

The exact and approximation solutions of the Example 8.2 for n = 32,
t = 0.05, and H = 0.5 with 200 iterations are given in Fig. 3, and for H = 0.8,
n = 64 with 500 iterations are shown in Fig. 4.

9. Conclusion

Since it may be hard or impossible to find exact solution of nonlinear sto-
chastic Itô Volterra integral equations, specially some type of them which has
been caused by fractional Brownian motion, we tried to solve them numer-
ically. Previously, these type of equations for simple Brownian motion has
been solved numerically in [16]. Using stochastic operational matrix of inte-
gration for the generalized hat basis functions, we transformed our nonlinear
stochastic Itô Volterra integral equation into a nonlinear system of algebraic
equations. By solving this system, we obtained an approximation solution.
Finally, we looked into error analysis of the method and with some examples,
and showed accuracy and efficiency of the suggested method.
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Figure 3. Exact and approximation solutions of Example 8.2
for n = 32, m = 200, H = 0.5, and t = 0.05
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Figure 4. Exact and approximation solutions of Example 8.2
for n = 64, m = 500, H = 0.8, and t = 0.05
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