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Higher Order Tangent Bundles

Ali Suri

Abstract. The tangent bundle T kM of order k, of a smooth Banach
manifold M consists of all equivalent classes of curves that agree up to
their accelerations of order k. For a Banach manifold M and a natural
number k, first we determine a smooth manifold structure on T kM
which also offers a fiber bundle structure for (πk, T kM, M). Then we
introduce a particular lift of linear connections on M to geometrize T kM
as a vector bundle over M . More precisely based on this lifted nonlinear
connection we prove that T kM admits a vector bundle structure over M
if and only if M is endowed with a linear connection. As a consequence,
applying this vector bundle structure we lift Riemannian metrics and
Lagrangians from M to T kM . In addition, using the projective limit
techniques, we declare a generalized Fréchet vector bundle structure for
T ∞M over M .
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Keywords. Banach manifold, linear connection, connection map, higher
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1. Introduction

Higher order tangent bundles T kM of a smooth manifold M as the space of
all equivalent classes of curves that agree up to their accelerations of order
k, is a natural generalization of the notion of tangent bundle TM . Higher
order geometry had witnessed a wide interest due to the works of Bucataru,
Crampin etc., Dodson and Galanis, de León and Rodrigues, Miron, Morimoto
and others [4,7,8,13,15,16]. The geometry of T kM in the finite dimensional
case is developed by Miron and his school [15]. They studied higher order
Lagrangians and also prolongation of Riemannian metrics, Finsler structures
and Lagrangians to T kM .

However, even for the case of n = 2, constructing a vector bundle (for
abbreviation v.b.) structure on T 2M over M is not as evident as in the case
of TM . More precisely sometimes it is impossible to define a v.b. structure on
T 2M . Dodson and Galanis [8] proved that for a Banach manifold M,T 2M can
be thought of as a Banach vector bundle over M if and only if M is endowed
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with a linear connection. The author proved the same result in a different way
to geometrize the bundle of accelerations with more tools like second order
covariant derivative, exponential mapping and an appropriate second order
Lie bracket [18]. In this paper, to geometrize higher order tangent bundles,
first we introduce an special lifted connection which will plays a pivotal role
in our main theorem. Then we prove that for any k ∈ N, T kM can be thought
of as a v.b. over M with the structure group GL(Ek) if and only if M admits
a linear connection. Furthermore, this result considerably eases constructing
a v.b. structure on πji : T jM −→ T iM for j > i. We shall also show that if
for some k ≥ 2, (πk, T kM,M) becomes a v.b. isomorphic to ⊕k

i=1TM , then
for any n ∈ N ∪ {∞}, TnM admits a v.b. structure over M . More precisely
in the case of infinite order, T∞M becomes a Fréchet manifold which may
be thought of as a generalized v.b. over M . Moreover, the structure group
becomes a generalized Fréchet lie group which represents the advantage of
using projective limit techniques.

Another old problem in geometry is that of prolongation of Riemannian
and Lagrangian structures to the tangent bundles T kM . These problems
can also be solved as a consequence of our main theorem. Finally, using the
restricted symplectic group and the classical Lagrangian of electrodynamics
we propose two examples to support our theory. However, for more examples
we refer to [19,20].

Through this paper all the maps and manifolds are assumed to be s-
mooth, but except in Sect. 4, a lesser degree of differentiability can be as-
sumed. Whenever partition of unity is necessary, we assume that our mani-
folds are partitionable [12,18].

Most of the results of this paper are novel even for the case that M is
a finite dimensional manifold.

2. Preliminaries

Let M be a manifold, possibly infinite dimensional, modeled on the Banach
space E. For any x0 ∈ M define

Cx0 := {γ : (−ε, ε) −→ M ; γ(0) = x0 and γ is smooth}.

As a natural extension of the tangent bundle TM define the following e-
quivalence relation. The curves γ1, γ2 ∈ Cx0 are said to be k-equivalent,
denoted by γ1 ≈k

x0
γ2, if and only if γ

(j)
1 (0) = γ

(j)
2 (0) for 1 ≤ j ≤ k. De-

fine T k
x0

M := Cx0/ ≈k
x0

and the tangent bundle of order k or k-osculating

bundle of M to be T kM :=
⋃

x∈M T k
x M . Denote by [γ, x0]k the representa-

tive of the equivalence class containing γ and define the canonical projection
πk : T kM −→ M which projects [γ, x0]k onto x0.

Let A = {(Uα, ψα)}α∈I be a C∞ atlas for M . For any α ∈ I define

Ψk
α : πk

−1(Uα) −→ ψα(Uα) × E
k

[γ, x0]k 
−→
(

(ψα ◦ γ)(0), (ψα ◦ γ)′(0), . . . ,
1
k!

(ψα ◦ γ)(k)(0)
)
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Theorem 2.1. The family B = {(πk
−1(Uα),Ψk

α)}α∈I declares a smooth man-
ifold structure on T kM which models it on E

k+1.

Proof. Clearly Ψk
α is well defined and

⋃
α∈I πk

−1(Uα) = T kM . Ψk
α is surjec-

tive. In fact, for any (x, ξ1, . . . , ξk) ∈ ψa(Uα)×E
k the class [γ, ψ−1

α (x)]k, with
γ := ψ−1

α ◦ γ̄ and γ̄(t) = x + tξ1 + · · · + tkξk, is mapped to (x, ξ1, . . . , ξk) via
Ψk

α. It is easy to show that Ψk
α is also injective.

For any α, β ∈ I with Uβα := Uβ ∩ Uα = ∅, the overlap map

Ψk
βα := Ψk

β ◦ Ψk
α

−1
: ψα(Uβα) × E

k −→ ψβ(Uβα) × E
k

is given by

Ψk
βα(x, ξ1, . . . , ξk) = Ψk

β([γ, x0]k)

=
(

(ψβ ◦ γ)(0), (ψβ ◦ γ)′(0), . . . ,
1
k!

(ψβ ◦ γ)(k)(0)
)

=
(

(ψβ ◦ ψ−1
α ◦ γ̄)(0), (ψβ ◦ ψ−1

α ◦ γ̄)′(0), . . . ,
1
k!

(ψβ ◦ ψ−1
α ◦ γ̄)(k)(0)

)

=
(

ψβα(x),dψβα(x)ξ1, . . . ,
1
k!

{
dψβα(x)[γ̄(k)(0)]

+
∑

j1+j2=k

ak
(j1,j2)

d2ψβα(x)[γ̄(j1)(0), γ̄(j2)(0)]

+ · · · + dkψβα(x)(γ̄′(0), . . . , γ̄′(0)]
})

=
(

ψβα(x),dψβα(x)ξ1,dψβα(x)(ξ2) +
1
2
d2ψβα(x)(ξ1, ξ1), . . . ,

× 1
k!

⎧
⎨

⎩
dψβα(x)[k!ξk] +

∑

j1+j2=k

ak
(j1,j2)

d2ψβα(x)[j1!ξj1 , j2!ξj2 ]

+ · · · + dkψβα(x)(ξ1, . . . , ξ1)

⎫
⎬

⎭

⎞

⎠

where ψβα = ψβ ◦ ψ−1
α and γ̄(t) = x + tξ1 + · · · + tkξk as before. Moreover,

we used the following explicit formula for the chain rule of order k

(ψβα ◦ γ̄)(k)(0) = dk(ψβα ◦ γ̄)(0)(1, . . . , 1)

=
k∑

i=1

∑ k!
j1! · · · ji!m1! · · · mk!

diψβα(γ̄(0))[γ̄(j1)(0), . . . , γ̄(ji)(0)] (1)

where the second sum is over all (ordered) i-tuples (j1, . . . , ji) of positive
integers, such that j1 + · · ·+ji = k and m1 of the numbers l1, . . . , li are equal
to 1,m2 are equal to 2 and so on ([3, p. 234], [14, p. 359]). The coefficient

k!
j1!···ji!m1!···mk! will henceforth be denoted by ak

(j1,...,ji)
. �
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Due to the transition functions of the bundle (πk, T kM,M), we can see
that generally it is a smooth fiber bundle.

To compute the local forms for the change of charts of TT kM on over-
laps, we remind some facts about fiber bundles. Let p : E −→ M be a smooth
Banach fiber bundle with fibers diffeomorphic to the Banach manifold F and
the Banach spaces E and B are the model spaces for F and M respectively.
Suppose that Φ = (φ, φ̄) : E|U −→ φ(U)×φ̄(E|U ) ⊆ φ(U)×E be a local trivi-
alization where (U, φ) is a chart of M and let (Ψ = (ψ, ψ̄), V ) be another local
trivialization with U ∩V = ∅. Then Ψ◦Φ−1(x, ξ) = ((ψ ◦φ−1)(x), GΨΦ(x, ξ))
where GΨΦ : U ∩V × φ̄(E|U∩V ) ⊆ U ∩V ×E −→ E is smooth. The canonical
induced trivialization for TE is

T (Ψ ◦ Φ−1)(x, ξ; y, η) =
(
(ψ ◦ φ−1)(x), GΨΦ(x, ξ), d(ψ ◦ φ−1)(x)y,

∂1GΨΦ(x, ξ)y + ∂2GΨΦ(x, ξ)η
)
. (2)

for any (x, ξ, y, η) ∈ φ(U ∩V )×φ̄(E|U∩V )×B×E. (Throughout this paper the
symbol ∂i denotes the partial derivative with respect to the i-th variable.)
Now using the transition functions for the bundle πk : T kM −→ M we
can compute the transformation rule of natural charts of TT kM . For any
u = (x, ξ1, . . . , ξk) ∈ Uα × E

k and (y, η1, . . . , ηk) ∈ E
k+1, we have

TΨk
βα(u; y, η1, . . . , ηk) =

(
Ψk

βα(u); dψβα(x)y , η̄1, . . . , η̄k)
)

(3)

where

η̄i =
1
i!

{dψβα(x)(i!ηi) +
∑

j1+j2=i

ai
(j1,j2)

[d2ψβα(x)(j1!ηj1 , j2!ξj2)

+ d2ψβα(x)(j1!ξj1 , j2!ηj2)] + · · · + idiψβα(x)(ξ1, ξ1, . . . , ξ1, η1)

+ d2ψβα(x)(i!ξi, y) +
∑

j1+j2=i

ai
(j1,j2)

d3ψβα(x)(j1!ξj1 , j2!ξj2 , y)

+ · · · + di+1ψβα(x)(ξ1, ξ1, . . . , ξ1, y)}

=
1
i!

∂i+1

∂s∂ti
(ψβα ◦ c̄)(t, s)|t=s=0

and

c̄ : (−ε, ε)2 −→ ψα(Uα) ⊆ E

(t, s) 
−→ x + sy +
i∑

j=1

tj(ξj + ηj).

3. Tangent Bundle of Order k for Banach Manifolds

This section includes two parts. In the first part for any linear connection
∇ on M , in the sense of Vilms [21], we determine a v.b. morphism K :
TT kM −→ ⊕k

i=1TM which may be thought as an special lift of connections.
This kind of lift, named connection maps by Bucataru [4], induces nonlinear
connections on T kM . Then using K as a key, we determine a v.b. structure
on πk : T kM −→ M which is followed with a suitable converse.
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3.1. Connection Maps in Higher Order Geometry

Consider the C∞(T kM)-linear map J : X(T kM) −→ X(T kM) such that
locally on a chart (π−1

k (Uα),Ψk
α) is given by

Jα(u; y, η1, . . . , ηk) = (u; 0, y, η1, . . . , ηk−1).

for any u = (x, ξ1, . . . , ξk) ∈ T kM and every (u; y, η1, . . . , ηk) ∈ TuT kM .

Definition 3.1. A connection map on T kM is a vector bundle morphism

K = (
1

K,
2

K, . . . ,
k

K) : TT kM −→
(

⊕k
i=1 TM,⊕k

i=1τM ,⊕k
i=1M

)

such that for any 1 ≤ a ≤ k − 1,
k

K ◦Ja =
k−a

K and
k

K ◦Jk = πk∗

Bucataru defined this connection map in the finite dimensional context
[4]. Note that

a

K=
k

K ◦Jk−a =
k

K ◦Jk−a−1 ◦ J =
a+1

K ◦J

and
a

K ◦Ja = (
k

K ◦Jk−a) ◦ Ja = πk∗.

Lemma 3.2. Locally on a chart (π−1
k (Uα),Ψk

α) the connection map

⊕k
i=1Ψ

1
α ◦ K ◦ TΨk

α

−1
:= Kα = (

1

Kα, . . . ,
k

Kα)

at (u; y, η1, . . . , ηk) ∈ TuT kM is given by

K|α(u; y, η1, . . . , ηk)

=
k⊕

i=1

(
x, ηi+

1

Mα (u)ηi−1+
2

Mα (u)ηi−2 + · · · + i

Mα (u)y
)

(4)

Proof. Since K is bundle morphism there are local maps
i

Mα: Uα × E
k −→

L(E,E), 1 ≤ i ≤ k, such that

Kα(u; y, 0, . . . , 0) = (x,
1

Mα (u)y) ⊕ (x,
2

Mα (u)y) ⊕ · · · ⊕ (x,
k

Mα (u)y).

Moreover, due to the facts
a

K ◦Ja = πk∗ and
a

K=
a+1

K ◦J , we get

Kα(u; 0, η1, 0, . . . , 0) = Kα ◦ J(u; η1, 0, . . . , 0)

= (x, η1) ⊕ (x,
1

M (u)η1) ⊕ · · · ⊕ (x,
k−1

M (u)η1)

and likewise

Kα(u; 0, 0, η2, 0, . . . , 0) = (x, 0) ⊕ (x, η2) ⊕ (x,
1

M (u)η2) · · · ⊕ (x,
k−2

M (u)η2).

which completes the proof. �
For any α, β ∈ I with Uβα = ∅, the compatibility condition for M i

α

and M i
β , 1 ≤ i ≤ k, on the overlaps comes from the fact ⊕k

i=1Tψβα ◦ Kα =
Kβ ◦ TΨk

βα. We apply equality (3) and the local form of K to obtain

dψβα(x)[ηi+
1

Mα (u)ηi−1 + · · · + i

Mα (u)y]

= η̄i+
1

Mβ (ū)η̄i−1+
2

Mβ (ū)η̄i−2 + · · · + i

Mβ (ū)ȳ (5)
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for any u ∈ T kM and any (u, y, η1, . . . , ηk) ∈ TuT kM . Moreover, ȳ =
dψβα(x)y and η̄1, . . . , η̄k are as in the Eq. (3).

Theorem 3.3. Let ∇ be a (linear) connection on M with the local components
{Γα}α∈I . There exists an induced connection map on T kM with the following
local components.

1

Mα (x, ξ1)y = Γα(x, ξ1)y

2

Mα (x, ξ1, ξ2)y =
1
2

( 2∑

i=1

∂i

1

Mα (x, ξ1)(y, iξi)+
1

Mα (x, ξ1)[
1

Mα (x, ξ1)y]
)
,

...
k

Mα (x, ξ1, . . . , ξk)y =
1
k

( k∑

i=1

∂i

k−1

M α (x, ξ1, . . . , ξk−1)(y, iξi)

+
1

Mα (x, ξ1)[
k−1

M α (x, ξ1, . . . , ξk−1)y]
)

The proof of the compatibility condition for
i

Mα and
i

Mβ on overlaps can be
found in [19].

Note that kernel of K is a distribution, say Hπk, on T kM complemen-
tary to the canonical vertical distribution V πk. The horizontal distribution
Hπk is called the nonlinear connection associated to K [15].

3.2. T kM as a Vector Bundle

For k ≥ 2, the bundle structure defined in Theorem 2.1 is quite far from
being a v.b. due to the complicated nonlinear transition functions. Here we
propose a v.b. structure on πk : T kM −→ M which makes it a smooth v.b.
isomorphic to k copies of TM . The converse of the problem is also true,
i.e., a v.b. structure on T kM isomorphic to ⊕k

i=1TM , for k ≥ 2, yields a
linear connection on M . Moreover, it will be shown that if for some integer
k ≥ 2, T kM becomes a v.b over M with the before-mentioned property then
T iM also admits a v.b. structure over M for any i ∈ N. These v.b. structures
simplifies the study of higher tangent bundles. For example as a consequence,
we propose a lifted Riemannian metric to T kM which only depends to the
original given metric on the base manifold M .

Theorem 3.4. Let ∇ be a (linear) connection on M and K be the induced
connection map introduced in Theorem 3.3. The following trivializations de-
fine a vector bundle structure on πk : T kM −→ M with the structure group
GL(Ek).

Φk
α : π−1

k (Uα) −→ ψα(Uα) × E
k

[γ, x]k 
−→ (γα(0), γ′
α(0), z2

α([γ, x]k), . . . , zk
α([γ, x]k))
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where γα = ψα ◦ γ and

z2
α([γ, x]k) =

1
2

{ 1
1!

γ′′
α(0)+

1

Mα [γα(0), γ′
α(0)]γ′

α(0)
}

, . . . ,

zk
α([γ, x]k) =

1
k

{ 1
(k − 1)!

γ(k)
α (0) +

1
(k − 2)!

1

Mα [γα(0), γ′
α(0)]γ(k−1)

α (0)

+ · · · + k−1

M α [γα(0), γ′
α(0), . . . ,

1
(k − 1)!

γ(k−1)
α (0)]γ′

α(0)
}

.

Moreover, for any (x, ξ1, . . . ξk) ∈ ψα(Uαβ) × E
k we have

Φk
β ◦ Φk

α

−1
(x, ξ1, ξ2, . . . , ξk) =

(
ψβα(x),dψβα(x)ξ1, . . . ,dψβα(x)ξk

)
.

Proof. Clearly for any α ∈ I,Φk
α is well defined and injective.

For any (x, ξ1, . . . , ξk) ∈ ψα(Uα)×E
k we show that there exits a curve γ

in M such that Φk
α([γ, x]k) = (x, ξ1, . . . , ξk). If γ̄2(t) = x+ tξ1 + t2

2 {2ξ2−
1

Mα

(x, ξ1)ξ1} then z2
α([γ2, x]k) = ξ2 where γ2(t) = ψ−1

α ◦ γ̄2(t). Now by induction
we assume that for i − 1 < k there exists γ̄i−1, a polynomial of degree i − 1,
such that γi−1 = ψ−1

α ◦ γ̄i−1 and zj
α([γj , x]k) = ξj for 2 ≤ j ≤ i − 1. Now γ̄i

is defined by setting

γ̄i(t) = γ̄i−1(t) +
ti

i

{

iξi − 1
(i − 2)!

1

Mα (x, ξ1)γ̄
(i−1)
i−1 (0)

− · · · i−1

M α (x, ξ1,
1
2!

γ̄
(2)
2 (0), . . . ,

1
(i − 1)!

γ̄
(i−1)
i−1 (0))ξ1

}

and γi(t) = ψ−1
α ◦ γ̄i(t). Set γ = γk. As a result, zk([γ, x]k) = ξk which means

that Φk
α([γ, x]k) = (x, ξ1, . . . , ξk). Since proj1 ◦ Φk

α = πk it follows that T kM
is a fiber bundle.

For any α, β ∈ I with Uβα = ∅, we prove that Φk
βα := Φk

β ◦Φk
α

−1 induces
a linear isomorphism between fibers. In fact, we have

Φk
βα(x, ξ1, ξ2, . . . , ξk) = Φk

β([γ, x]k)

=
(
(ψβ ◦ γ)(0), (ψβ ◦ γ)′(0), z2

β([γ, x]k), . . . , zk
β([γ, x]k)

)
.

Step 1. Since ψβ ◦ γ = ψβ ◦ ψ−1
α ◦ ψα ◦ γ = ψβα ◦ γ̄, for any 2 ≤ i ≤ k, we get

izi
β([γ, x]k) =

(ψβα ◦ γ̄)(i)(0)
(i − 1)!

+
1

Mβ (ψβα(x), (ψβα ◦ γ̄)′(0))

× (ψβα ◦ γ̄)(i−1)(0)
(i − 2)!

+ · · · + i−1

M β

(

ψβα(x), . . . ,
(ψβα ◦ γ̄)(i−1)(0)

(i − 1)!

)

(ψβα ◦ γ̄)′(0).
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Using the chain rule formula (1), we conclude that

izi
β([γ, x]k) =

(ψβα ◦ γ̄)(i)(0)
(i − 1)!

+
1

Mβ

(
ψβα(x), (ψβα ◦ γ̄)′(0)

)

× (ψβα ◦ γ̄)(i−1)(0)
(i − 2)!

+ · · · + i−1

M β

(

ψβα(x), . . . ,
(ψβα ◦ γ̄)(i−1)(0)

(i − 1)!

)

(ψβα ◦ γ̄)′(0)

=
1

(i − 1)!

{
dψβα(x)(γ̄(i)(0))

+
∑

j1+j2=i

ai
(j1,j2)

d2ψβα(x)[γ̄(j1)(0), γ̄(j2)(0)]

+ · · · + diψβα(x)[γ̄′(0), . . . , γ̄′(0)]
}

+
1

Mβ (ψβα(x), (ψβα ◦ γ̄)′(0))
(ψβα ◦ γ̄)(i−1)(0)

(i − 2)!

+ · · · + i−1

M β

(

ψβα(x), . . . ,
(ψβα ◦ γ̄)(i−1)(0)

(i − 1)!

)

(ψβα ◦ γ̄)′(0)

= dψβα(x)
[

iξi−
1

Mα (x, ξ1)
γ̄(i−1)

(i − 2)!
− · · ·

− i−1

M α

(

x, ξ1, . . . ,
γ̄(i−1)

(i − 1)!

)

γ̄′(0)
]

× 1
(i − 1)!

⎧
⎨

⎩

∑

j1+j2=i

ai
(j1,j2)

d2ψβα(x)[γ̄(j1)(0), γ̄(j2)(0)]

+ · · · + diψβα(x)[γ̄′(0), . . . , γ̄′(0)]
}

+
1

Mβ

(
ψβα(x), (ψβα ◦ γ̄)′(0)

) (ψβα ◦ γ̄)(i−1)(0)
(i − 2)!

+ · · · + i−1

M β

(

ψβα(x), . . . ,
(ψβα ◦ γ̄)(i−1)(0)

(i − 1)!

)

(ψβα ◦ γ̄)′(0)

Step 2. Setting x = γ̄(0), ξ1 = γ̄′(0), . . . , ξi−1 = γ̄(i−1)

(i−1)! , y = γ̄′(0), η1 =
γ̄(2)(0)

1! , . . . , ηi−1 = γ̄(i)

(i−1)! and

c̄i(t, s) = γ̄(0) + sγ̄′(0) +
i−1∑

l=1

tl

l!
(γ̄(l)(0) + sγ̄(l+1)(0)),

then, Eq. (5) implies that
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dψβα(x)
[ 1

Mα (x, ξ1)
γ̄(i−1)

(i − 2)!
+ · · ·+ i−1

M α

(
x, ξ1, . . . ,

γ̄(i−1)

(i − 1)!

)
γ̄′(0)

]

= −dψβα(x)
γ̄(i)(0)

(i − 1)!
+

∂i

∂s∂ti−1

(ψβα ◦ c̄i)

(i − 1)!
(0, 0)

+
1

Mβ

(
(ψβα ◦ c̄i)(0, 0),

∂

∂t
(ψβα ◦ c̄i)(0, 0)

) ∂i−1

∂s∂ti−2

(ψβα ◦ c̄i)

(i − 2)!
(0, 0)

+ · · ·+ i−1
M β

(
(ψβα ◦ c̄i)(0, 0), . . . ,

∂i−1

∂ti−1

(ψβα ◦ c̄i)

(i − 1)!
(0, 0)

) ∂

∂s
(ψβα ◦ c̄i)(0, 0).

It is not hard to check that for any 1 ≤ l ≤ i − 1, ∂l

∂s∂tl−1 (ψβα ◦ c̄i)(0, 0) =
(ψβα ◦ γ̄)(l)(0) and ∂l

∂tl (ψβα ◦ c̄i)(0, 0) = (ψβα ◦ γ̄)(l)(0).
These last two equations yield

dψβα(x)
[
− 1

Mα (x, ξ1)
γ̄(i−1)

(i − 2)!
− · · · − i−1

M α

(
x, ξ1, . . . ,

γ̄(i−1)

(i − 1)!
)
γ̄′(0)

]

= +dψβα(x)
γ̄(i)(0)
(i − 1)!

− (ψβα ◦ γ̄)(i)(0)
(i − 1)!

− 1

Mβ

(
ψβα(x), (ψβα ◦ γ̄)′(0)

) (ψβα ◦ γ̄)(i−1)(0)
(i − 2)!

− · · · − i−1

M β

(
ψβα(x), . . . ,

(ψβα ◦ γ̄)(i−1)(0)
(i − 1)!

)
(ψβα ◦ γ̄)′(0)

= − 1
(i − 1)!

⎧
⎨

⎩

∑

j1+j2=i

ai
(j1,j2)

d2ψβα(x)[γ̄(j1)(0), γ̄(j2)(0)]

+ · · · + diψβα(x)[γ̄′(0), . . . , γ̄′(0)]

⎫
⎬

⎭

− 1

Mβ

(
ψβα(x), (ψβα ◦ γ̄)′(0)

) (ψβα ◦ γ̄)(i−1)(0)
(i − 2)!

− · · · − i−1

M β

(
ψβα(x), . . . ,

(ψβα ◦ γ̄)(i−1)(0)
(i − 1)!

)
(ψβα ◦ γ̄)′(0)

Step 3. As a consequence of steps 1 and 2, we get

izi
β([γ, x]k) = idψβα(x)ξi; 2 ≤ i ≤ k

that is

Φk
βα(x, ξ1, ξ2, . . . , ξk) =

(
ψβα(x),dψβα(x)ξ1, . . . ,dψβα(x)ξk

)
.

This last means that for any α, β ∈ I with Uβα = ∅
Φk

βα : Uβα −→ GL(Ek)

x 
−→
(
dψβα(x)(.), . . . ,dψβα(x)(.)

)
.

is smooth. As a result, the family of trivializations {(π−1
k (Uα),Φk

α)}α∈I pro-
vides a vector bundle structure for πk : T kM −→ M with the fibers isomor-
phic to E

k. Moreover, since πk : T kM −→ M and ⊕k
i=1π1 : ⊕k

i=1TM −→ M
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have the same transition functions and fibers, then they are isomorphic vector
bundles over M . �

The v.b. structure which is proposed in Theorem 3.4 is affective in the
following sense:

Proposition 3.5. Suppose that for some k ≥ 2, πk : T kM −→ M admits a v.b.
structure isomorphic to ⊕k

i=1TM . Then πk−1 : T k−1M −→ M also possesses
a v.b. structure isomorphic to ⊕k−1

i=1 TM .

Proof. Let {(πk
−1(Uα),Φk

α)}α∈I be a family of trivializations for πk : T k

M −→ M induced by the atlas A = {(Uα, ψα)}α∈I of M as in Theorem 3.4.
Then for any [γ, x]k ∈ T k

x M , we have

Φk
α([γ, x]k) =

(
ψα(x), (ψα ◦ γ)′(0), z2

α([γ, x]k), . . . , zk
α([γ, x]k)

)
.

We claim that {(πk−1
−1(Uα),Φk−1

α )}α∈I defines a v.b. structure on πk−1 :
T k−1M −→ M where

Φk−1
α ([γ, x]k) =

(
ψα(x), (ψα ◦ γ)′(0), z2

α([γ, x]k), . . . , zk−1
α ([γ, x]k−1)

)
.

We show that Φk−1
α is bijective. In fact, suppose that Φk−1

α ([γ1, x]k−1) =
Φk−1

α ([γ2, x]k−1) then consider representatives of the classes [γ1, x]k−1 and
[γ2, x]k−1 such that γ

(k)
1 (0) = γ

(k)
2 (0). Since Φk

α([γ1, x]k) = Φk
α([γ2, x]k) then

injectivity of Ψk
α yields [γ1, x]k = [γ2, x]k which means that [γ1, x]k−1 =

[γ2, x]k−1.
Suppose that (x, ξ1, . . . , ξk−1) ∈ ψα(Uα)×E

k−1 be an arbitrary element.
Since Φk

α is bijective, there exists [γ, x]k ∈ T k
x M such that

Φk
α([γ, x]k) = (x, ξ1, . . . , ξk−1, 0).

Clearly Φk−1
α ([γ, x]k−1) = (x, ξ1, . . . , ξk−1), that is, Φk−1

α is surjective. Final-
ly,

Φk−1
βα : ψα(Uβα) −→ GL(Ek−1)

x 
−→
(

dψβα(x)(.), . . . ,dψβα(x)(.)
︸ ︷︷ ︸

(k−1)−times

)

is smooth. According to proposition 1.2 page 45 of [12], we deduce that πk−1 :
T k−1M −→ M admits a v.b. structure isomorphic to ⊕k−1

i=1 TM . �

If we restrict our attention to Ck-partitionable manifolds (see e.g. [18])
then, we have the following inverse for Theorem 3.4.

Theorem 3.6. Suppose that k ≥ 2. If πk : T kM −→ M admits a v.b. structure
isomorphic to ⊕k

i=1TM , then a linear connection on M can be defined.

Proof. For k > 2 one can iterate Lemma 3.5 and conclude that π2 : T 2M −→
M admits a v.b. structure isomorphic to TM ⊕ TM . Then according to [8]
Theorem 3.4 or [18] Theorem 2.3 there exists a linear connection on M . �

Corollary 3.7. i. For k ≥ 2, πk : T kM −→ M admits a v.b. structure
isomorphic to ⊕k

i=1TM if and only if M is endowed with a linear con-
nection.
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ii. If for some k ≥ 2, πk becomes a v.b. isomorphic to ⊕k
i=1TM then for

every i ∈ N the tangent bundle T iM also admits a v.b. structure iso-
morphic to ⊕i

j=1TM .

3.3. Lifting of a Riemannian Metric

Invoking Theorem 3.4, we introduce an special lift of a given Riemannian
metric g from the base manifold M to its higher order tangent bundle T kM .
Let {(Uα, ψα)}α∈I be an atlas for M . Denote by gα : TUα × TUα −→ R

the local representative of the metric g restricted to the chart (Uα, ψα). Fix
k ∈ N and consider the v.b. trivializations introduced in Theorem 3.4. For
every α ∈ I define the bilinear symmetric form

Gk
α : π−1

k (Uα) × π−1
k (Uα) −→ R

mapping
(
[γ1, x]k, [γ2, x]k

)
to

k∑

i=1

gα(x)
(
proji ◦ Φk

α([γ1, x]k),proji ◦ Φk
α([γ2, x]k)

)

where proji stands for the projection to the (i + 1)’th factor.
Due to the transition functions Φk

βα the family {Gα}α∈I defines a Rie-
mannian metric on T kM .

Remark 3.8. In the case that M is modeled on a Hilbert manifold (or a self
dual Banach space [12]), we deal with Riemannian metrics. But if we go one
step further then we will loose the definiteness condition of our metrics.

Remark 3.9. Let M be a Hilbert manifold. As a result of Theorem 3.4 and
theorem 3.1, chapter VII [12] we can assume that a system of local trivializa-
tions {(Φk

α, π−1
k (Uα))}α∈I consists only orthogonal trivializations that is the

transition maps take values in the orthogonal (or Hilbert) group

O(Ek) = {h ∈ GL(Ek); 〈hv, hw〉 = 〈v, w〉; v, w ∈ E
k}

(see also [20]).

3.4. Lifting of Lagrangians to Higher Order Tangent Bundles

In this section, using Theorem 3.4, we introduce a lift for Lagrangian form
the base manifold to its higher order tangent bundles. To this end, we first
review the concepts of Lagrangian and Lagrangian vector field from [6,15].

Let M be smooth manifold modeled on the Banach space E. A La-
grangian on M is a smooth map L : TM −→ R and the associated fiber
derivative is the map

FL : TM −→ T ∗M

where FL(v)w = d
dtL(v + tw)|t=0 for any v, w ∈ TxM .

Definition 3.10. A bilinear continuous map B : E× E −→ R is called weakly
nondegenerate if for any y ∈ E the map Bb : E −→ E

∗; Bb(y)z = B(y, z) is
injective. We call B nondegenerate (or strongly nondegenerate) if Bb is an
isomorphism [6].
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Note that if E is a finite dimensional Banach space, then there is no
difference between strong and weak nondegeneracy.

In a chart (Uα, ψ1
α) of TM , let Lα represent L, that is, Lα = L ◦

ψ1
α

−1. The Lagrangian L is called (weakly) nondegenerate if for any chart
(Uα, ψ1

α), ∂2
2Lα(x, y) : L2

sym(E,E) −→ R is (weakly) nondegenerate where ∂2

denotes the partial derivative with respect to the second variable.
In finite dimensions this reads

rank(gij(x, y)) = rank
(1
2

∂2Lα(x, y)
∂yi∂yj

)
1≤i,j≤dim(M)

= dim(M)

where ψ1
α = (xi, yi)1≤i≤n is a local chart of TM .

We define the action of L by A : TM −→ R, A(v) = FL(v)v and the
energy of L is E = A − L. Locally, we have

Eα(x, y) = ∂2Lα(x, y)y − Lα(x, y).

Definition 3.11. The vector field ZE ∈ X(TM) locally defined by

ZE : TM |Uα
−→ TTM |Uα

(x, y) 
−→ (x, y, y, 2Zα(x, y))

is called a Lagrangian vector filed for L ([6]) where

Zα(x, y) =
1
2
[∂2

2Lα(x, y)]
−1(

∂1Lα(x, y) − ∂1(∂2Lφ(x, y)y)
)

It is easily seen that ZE is a second order vector field and the family

{ 1

Mα= ∂2Za}α∈I defines a connection on M . Then theorem 3.4 guarantees
that (πk, T kM,M) admits a vector bundle structure. A (weakly) nondegen-
erate lagrangian of order k on M is a differentiable map Lk : T kM −→ M
for which ∂2

k+1Lα : L2
sym(E,E) −→ R, α ∈ I, is (weakly) nondegenerate.

Let L be a nondegenerate Lagrangian on M . Then Lk is a nondegenerate
Lagrangian of order where

Lk
α : π−1

k (Uα) −→ R

[γ, x]k 
−→
k∑

i=1

Lα

(
γα(0),proji ◦ Φk

α([γ, x]k)
)
; α ∈ I

(see also [17] and [15] for different lifted Lagrangians).

4. Infinite Order Tangent Bundle

For any x ∈ M and γ1, γ2 ∈ Cx define the infinite equivalence relation
denoted by ≈∞ as follows

γ1 ≈∞
x γ2 if and only if for any k ∈ N, γ1 ≈k

x γ2.

The equivalence class containing γ is called an infinite tangent vector at x and
is denoted by [γ, x]∞. Alternatively, we may set [γ, x]∞ = ∩∞

k=1[γ, x]k where
the intersection in non-empty since γ belongs to [γ, x]k for any k ∈ N. The
infinite tangent space at x, T∞

x M is defined to be T∞
x M := Cx/ ≈∞

x . The in-
finite tangent bundle to M is denoted by T∞M where T∞M := ∪x∈MT∞

x M .
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The canonical projection π∞ : T∞M −→ M projects the equivalence class
[γ, x]∞ onto x. If no confusion can rise, we write T∞M for both T∞M as a
manifold and T∞M as a bundle over M .

We now propose a generalized Fréchet manifold (v.b.) structure for
T∞M that will be of aid in considering T∞M as the projective limit of
Banach manifolds (v.b.’s) T kM .

There are natural difficulties with Fréchet manifolds, bundles and even
spaces. For example, the pathological structure of the general linear group on
Fréchet spaces puts in the question defining a v.b. structure for T∞M [2,9].
Moreover, there are serious drawbacks in the study of differential equations
on Fréchet manifolds [1,11]. To overcome these difficulties, we will use the
projective limit tools to endow T∞M with a reasonable manifold and v.b.
structure.

First, we give some hints about a wide class of Fréchet manifolds, i.e.,
those which may be considered as projective limits of Banach manifolds (For
more details see [8] and the references therein). Let {M i, φji}i,j∈N be a projec-
tive family of Banach manifolds where the model spaces {Ei}i,∈N, respective-
ly, also form a projective system of Banach spaces with the given connecting
morphisms {ρji : Ej −→ E

i; j ≥ i}i,j∈N. Elements of M := lim←−M i consist of
all threads (xi)i∈N

∈∏∞
i=1 M i where φji(xj) = xi for all j ≥ i. Suppose that

for every thread (xi)i∈N
∈ lim←−M i there exists a projective system of charts

{U i, φi}i∈N, such that xi ∈ U i and lim←−U i is open in M := lim←−M i. Then
M admits a Fréchet manifold structure on F with the corresponding charts
{lim←−U i, lim←− φi)}. Furthermore, for any i ∈ N we have the natural projections
φi : M −→ M i; (xk)k∈N 
−→ xi and ρi : (ek)k∈N 
−→ ei.

In our case for any natural number i,M i :=T iM and E
i :=

i+1 times
︷ ︸︸ ︷
E × E · · · × E

with the usual product norm ‖ . ‖i. For j ≥ i, the connecting morphism
φji : T jM −→ T iM maps the class [γ, x]j onto [γ, x]i and ρji : Ej −→ E

i

is just projection to the first i + 1 factors. The canonical projective systems
of charts are {(πi

−1(Uα),Φi
α

)}i∈N rising from Theorem 3.4. Consequently,
T∞M admits a smooth Fréchet manifold structure modeled on the Fréchet
space F = lim←−E

i ⊆∏∞
k=1. Note that F is a Fréchet space with the associated

metric

d(x, y) =
∞∑

i=1

‖ xi − yi ‖i

2i(1+ ‖ xi − yi ‖i)

where x, y ∈ F := lim←−E
i, xi = ρi(x), yi = ρi(y) and ρi : F −→ E

i; (xk)k∈N

−→

xi is the canonical projection.
In a further step, we will try to supply π∞ : T∞M −→ M with a gen-

eralized v.b. structure. Suppose that for any i ∈ N, (πi, E
i,M) be a Banach

v.b. on M with the fibers of type E
i where {Ei, ρji}i,j∈N also forms a pro-

jective system of Banach spaces. With these notations we state the following
definition from [9].

Definition 4.1. The system {(πi, E
i,M), f ji}i,j∈N is called a strong projec-

tive system of Banach v.b.’s over the same basis M if;
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(i) {Ei, f ji}i,j∈N is a projective system of Banach manifolds.
(ii) For any (xi)i∈N

∈ F := lim←−Ei, there exists a projective system of
trivializations τ i : πi

−1(U) −→ U × E
i of (Ei, πi,M), such that xi ∈

U ⊆ M and (idU × ρji) ◦ τ j = τ i ◦ f ji for all j ≥ i.

Now the projective systems of v.b’s is defined by setting Ei := T iM,
τ i
α := (ψ−1

α × idEi) ◦ Φi
α and φji, ρji as in the previous part.

For any i ∈ N define the Banach Lie group

H0
i (E

i) = {(l1, . . . , li) ∈
i∏

j=1

L(Ej ,Ej); ρjk ◦ lj = lk ◦ ρjk for all k ≤ j ≤ i}

Using proposition 1.2 of [9], we conclude that π∞ : T∞M −→ M admits a
generalized v.b. structure over M with fibers isomorphic to the Fréchet space
F = lim←−E

i and the structure group H0(F) := lim←−H0
i (E

i).

Remark 4.2. In the case where M is a finite dimensional manifold, T∞M
becomes a Fréchet v.b. over M with fibers isomorphic to the known Fréchet
space R

∞.

Example 4.3. In this example, we introduce the restricted symplectic group
Sp2(H) ([10]) and we propose a vector bundle structure for

(
πk, T kSp2(H),

Sp2(H
)

for k ∈ N∪ {∞}. Let (H, 〈, 〉) be an infinite dimensional real Hilbert
space and J be a complex structure on H. The symplectic group Sp(H) is
defined by

Sp(H) = {g ∈ GL(H) : g∗Jg = J}.

The Lie algebra of Sp(H) is

sp(H) = {x ∈ B(H); xJ = −Jx∗}
Denote by B2(H) the Hilbert?-Schmidt class B2(H) = {g ∈ B(H) : Tr(g∗g) <
∞} where Tr is the usual trace and B(H) is the set of all bounded linear
operators on H. Define the restricted symplectic group to be

Sp2(H) = {g ∈ Sp(H) : g − 1 ∈ B2(H)}
Then the Lie algebra of Sp2(H) is sp2(H) = {x ∈ B2(H) : xJ = −Jx∗} which
is a closed subspaces of B2(H), and hence a Hilbert space [10]. Moreover, for
any g ∈ Sp2(H),

(TSp2(H))g = gsp2(H) ⊂ B2(H)

is an inner product space endowed with the left invariant Riemannian metric

〈v, w〉g = 〈g−1v, g−1w〉 = Tr((gg∗)−1vw∗); v, w ∈ TgSp2(H) (6)

However, the Riemannian connection on Sp2(H) is given by the local form
(Christoffel symbol)

2g−1Γg(gx, gy) = xy + yx + x∗y + y∗x − xy∗ − yx∗

for any g ∈ Sp2(H) and x, y ∈ sp2(H).
As a consequence, for any k ∈ N, πk : T kSp2(H) −→ Sp2(H) admits a

vector bundle structure with fibers isomorphic to sp2(H)k and the structure
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group GL(sp2(H)). Since the base manifold is a Riemannian manifolds, for
k ∈ N, the above vector bundle can be considered as a vector bundle with
O(sp2(H)k) as its structure group (Remark 3.9).

Moreover, π∞ : T∞Sp2(H) −→ Sp2(H) becomes a generalized vector
bundle with fibers isomorphic to sp2(H)∞ = lim←− sp2(H)i and the structure
group H0(sp2(H)∞).

Example 4.4. Let (M, g) be a pseudo Riemannian manifold. Consider the
Lagrangian

L(x, y) = mcg(x)(y, y) +
2e

m
A(x)y; (x, y) ∈ TxM

where 0 = m, c, e are known physical constants and A is a 1-form on M . L
is known as the classical Lagrangian of electrodynamics and g is called the
gravitational potential and A is the electromagnetic potential [15].

Following the formalism of Sect. 3.4 and also [15] we consider the La-
grangian

Lk : T kM −→ R

[γ, x]k 
−→ mcg(x)
(
projk ◦ Φk

α([γ, x]k),projk ◦ Φk
α([γ, x]k)

)

+
2e

m
A(x)[projk ◦ Φk

α([γ, x]k)]

Clearly, Lk is a nondegenerate Lagrangian of order k on M which is known
as the Lagrangian of electrodynamics of order k [15].

We remind that a k-semispray on M is a map S : T kM −→ TT kM ,
such that for any u = (x, ξ1, . . . , ξk) ∈ T kM the map Sα := TΨk

α ◦ S ◦ Ψk
α

−1

is given by

Sα(u) =
(
u; ξ1, 2ξ2, . . . , kξk, (k + 1)Gα(u)

)

where Gα : π−1
k (Uα) −→ E is a differentiable map. The family {Gα}α∈I are

local components of the semispray S.
For U ⊆ M identify π−1

k (U) with its image Ψk
α(π−1

k (U)). For the La-
grangian Lk consider the k-semispray S with the local components

G(u) =
1

2(k + 1)mc
g(x)−1{∂kLk(u) − ∂1∂k+1L

k(u)ξ1

− ∂2∂k+1L
k(u)2ξ2 − · · · − ∂k∂k+1∂

2Lk(u)kξk}
where g(x) is considered as a map from TxM to T ∗

x M (see e.g. [5] for the
finite dimensional case).

Now the curve c : (−ε, ε) −→ M is a motion of the Lagrangian system
(T kM,Lk) if c satisfies the system of k + 1 order differential equation

dk+1

dtk+1
c(t) = (k + 1)G

(
c(t), c′(t),

1
2

d2

dt2
c(t)2, . . . ,

1
k!

dk

dtk
c(t)
)
.
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