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On Szász–Mirakyan Operators Preserving
e2ax, a > 0
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Abstract. A modification of Szász–Mirakyan operators is presented that
reproduces the functions 1 and e2ax, a > 0 fixed. We prove uniform
convergence, order of approximation via a certain weighted modulus of
continuity, and a quantitative Voronovskaya-type theorem. A compar-
ison with the classical Szász–Mirakyan operators is given. Some shape
preservation properties of the new operators are discussed as well. Using
a natural transformation, we also present a uniform error estimate for
the operators in terms of the first- and second-order moduli of smooth-
ness.
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1. Introduction

The mappings which are nowadays called Szász–Mirakyan operators were
introduced independently by the two authors mentioned and Favard between
1941 and 1950 (see [10,14,18]). For x ∈ [0,∞) and f : [0,∞) → R for which
the right-hand side is absolutely convergent, they are defined by

Snf(x) = Sn (f ;x) =
∞∑

k=0

f

(
k

n

)
e−nx (nx)k

k!
, n ∈ N. (1.1)

The operators Sn have many properties similar to those of the classical
Bernstein operators given for f ∈ C[0, 1], say. In particular, both are positive,
linear and, for i = 0, 1, reproduce the functions ei (x) = xi. In 2003, King[13]
introduced a sequence of positive linear operators which modify the Bernstein
operators and preserve the test functions e0 and e2 on [0, 1]. King’s approach
was further investigated by several authors which we do not cite in this text.

King-type modifications of Szász–Mirakyan operators were also consid-
ered. For example, Duman and Özarslan [9] constructed Szász–Mirakyan-type
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operators which reproduce the test functions e0 and e2 on [0,∞), and quite
a general approach is described by Aral et al. in [4].

Motivated by the above-mentioned papers, we propose to construct
Szász–Mirakyan-type operators which reproduce the functions e0 and e2ax,
a > 0 fixed and we formulate a sufficient condition under which the new
operators perform better than Sn.

For functions f ∈ C [0,∞) , such that the right-hand side below is ab-
solutely convergent, we introduce operators as

R∗
a,n (f ;x) := R∗

n (f ;x) := e−nαn(x)
∞∑

k=0

(nαn (x))k

k!
f

(
k

n

)
, (1.2)

x ≥ 0, n ∈ N, such that the conditions

R∗
n

(
e2at;x

)
= e2ax (1.3)

are satisfied for all x and all n. The operators R∗
n are linear, positive and

preserve the constant functions. Note that for αn (x) = x, the operators (1.2)
reduce to the classical Szász–Mirakyan operators (1.1). However, this case
will not be included in our considerations.

Using (1.2) and (1.3), we explicitly require

e2ax = enαn(x)(e2a/n−1)

which is the case for

αn (x) =
2ax

n
(
e2a/n − 1

) . (1.4)

Thus, the operator (1.2) can be rewritten in the form:

R∗
n (f ;x) = e−nαn(x)

∞∑

k=0

(nαn (x))k

k!
f

(
k

n

)

= e
− 2ax

(e2a/n−1)
∞∑

k=0

(2ax)k

k!
(
e2a/n − 1

)k
f

(
k

n

)
(1.5)

= Sn (f, ϕn (x)) ,

where
ϕn (x) := (Sn

(
e2at

)
)−1 ◦ e2ax.

Note that in the excellent paper [3], Aldaz and Render introduced linear
positive operators which preserve the same exponential functions. In addition,
general King-type operators which preserve some exponential functions were
studied by Birou [6].

Quantitative Voronovskaya theorems for various types of operators have
been studied intensively in the last decade. This kind of results is useful to
describe the rate of pointwise convergence and the error of approximation
simultaneously. In the recent paper [2], Acar et al. proved quantitative forms
of Voronvskaya’s theorem on unbounded intervals for general linear positive
operators by means of a weighted modulus of smoothness. Moreover, a similar
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theorem for generalized Szász–Mirakyan operators was proved via different
weighted moduli of smoothness by Acar et al. [1].

The paper is organized as follows. In Sect. 2, we give some lemmas
which will be necessary to prove our main results. Section 3 contains the
proof of uniform convergence of the operators and also a statement concern-
ing the degree of this uniform convergence. A quantitative Voronovskaya-type
theorem for R∗

n is given in Sect. 4. In Sect. 5, we present some shape preserv-
ing properties of the operators (1.2) and we compare the operators R∗

n with
the classical ones. In the last Sect. 6, considering an isomorphism between
(C∗[0,∞), ‖·‖[0,∞)) and (C [0, 1] , ‖·‖[0,1]), we present a uniform estimate for
R∗

n in terms of the first- and second-order moduli of smoothness.

2. Preliminary Results

We give the following lemmas without proofs, since they are similar to the
corresponding results for Szász–Mirakyan operators and require some ele-
mentary calculations.

Lemma 1. Let a ≥ 0. Then, we have

R∗
n

(
eat;x

)
= enαn(x)(ea/n−1)

= e
2ax

(e2a/n−1) (ea/n−1)

= e
2ax

(ea/n+1) . (2.1)

Lemma 2. We have

R∗
n (e0;x) = 1, R∗

n (e1;x) = αn (x) ,

R∗
n (e2;x) = α2

n (x) +
αn (x)

n
.

Lemma 3. Let ϕk
x (t) := (t − x)k

, k = 0, 1, 2, ... Then

R∗
n

(
ϕ0

x (t) ;x
)

= 1, (2.2)

R∗
n

(
ϕ1

x (t) ;x
)

= αn (x) − x (2.3)

R∗
n

(
ϕ2

x (t) ;x
)

= (αn (x) − x)2 +
αn (x)

n
. (2.4)

Moreover, considering equality (1.4), we find

lim
n→∞ n

(
2ax

n
(
e2a/n − 1

) − x

)
= −ax, (2.5)

lim
n→∞ n

⎛

⎝
(

2ax

n
(
e2a/n − 1

) − x

)2

+
2ax

n2
(
e2a/n − 1

)

⎞

⎠ = x. (2.6)
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3. A Quantitative Result

Here, we explore the rate of uniform convergence of the operators R∗
n on

[0,∞). The use of the unweighted Chebyshev norm makes sense in C∗[0,∞).
This is the (small) subspace of C[0,∞) of all real-valued continuous functions
on [0,∞) with the property that limx→∞f(x) exists and is finite, endowed
with the uniform norm.

In 1970, Boyanov and Veselinov [7] showed that uniform convergence of
any sequence of positive linear operators in the above setting can be checked
as follows.

Theorem 1. The sequence An : C∗[0,∞) → C∗[0,∞) of positive linear oper-
ators satisfies the conditions

lim
n→∞An

(
e−kt;x

)
= e−kt, k = 0, 1, 2,

uniformly in [0,∞), if and only if

lim
n→∞ An (f ;x) = f (x)

uniformly in [0,∞), for all f ∈ C∗[0,∞).

The two authors mentioned applied their theorem to Szász–Mirakyan
and Baskakov operators.

To obtain an estimate for the rate of convergence in the above theorem,
we will use the following modulus of continuity:

ω∗ (f ; δ) := sup
x,t>0

|e−x−e−t|≤δ

|f (t) − f (x)| ,

which is well defined for every δ ≥ 0 and every function f ∈ C∗[0,∞) (see
Holhoş [12]). The modulus ω∗ (·; δ) has the property:

|f (t) − f (x)| ≤
(

1 +
(e−x − e−t)2

δ2

)
ω∗ (f ; δ) , δ > 0. (3.1)

For more details on ω∗ (·; δ), we refer the reader to [12]. There also the fol-
lowing statement can be found.

Theorem 2. If a sequence of positive linear operators An : C∗[0,∞) → C∗

[0,∞) satisfy the equalities:

‖Ane0 − 1‖[0,∞) = αn,
∥∥An

(
e−t

) − e−t
∥∥
[0,∞)

= βn,
∥∥An

(
e−2t

) − e−2t
∥∥
[0,∞)

= γn,

then

‖Anf − f‖[0,∞) ≤ 2ω∗
(
f ;

√
αn + 2βn + γn

)
, f ∈ C∗[0,∞).

Remark 1. The assumption that αn, βn, γn tend to zero as n goes to infinity
(made in [12]) is not needed.

The following theorem deals with uniform convergence of R∗
n.
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Theorem 3. For f ∈ C∗[0,∞), we have

‖R∗
nf − f‖[0,∞) ≤ 2ω∗

(
f ;

√
2βn + γn

)
,

where

βn =
∥∥R∗

n

(
e−t

) − e−t
∥∥
[0,∞)

,

γn =
∥∥R∗

n

(
e−2t

) − e−2t
∥∥
[0,∞)

.

Moreover, βn and γn tend to zero as n goes to infinity, so that R∗
nf

converges uniformly to f .

Proof. The inequality immediately follows from Theorem 2. Taking definition
(1.5) and equality (1.4) into account, for λ ≥ 0, one can write as

R∗
n

(
e−λt;x

)
= e−nαn(x)

∞∑

k=0

(nαn (x))k

k!
e− λk

n

= e−nαn(x)enαn(x)e− λ
n

= enαn(x)(e−λ/n−1)

= e
2ax

(e2a/n−1) (e−λ/n−1)

= e
− 2ax

eλ/n

(
eλ/n−1
e2a/n−1

)

.

Take λ = 1 first. Using the inequality

u − v

ln u − ln v
<

u + v

2
for 0 < v < u,

we have

e−xun − e−x <
1 − un

2
(
xe−xun + xe−x

)
,

where un = 2a
e1/n

(
e1/n−1
e2a/n−1

)
. On the other hand, since

max
x>0

xe−bx =
1
eb

for every b > 0, we can write as

e−xun − e−x <
(1 − un)

2

(
1

eun
+

1
e

)

=

(
1 − u2

n

)

2eun
.

Thus
∥∥R∗

n

(
e−t;x

) − e−x
∥∥
[0,∞)

= βn <

(
1 − u2

n

)

2eun
→ 0 (3.2)

as n → ∞.



6 Page 6 of 14 T. Acar et al. MJOM

For λ = 2, we have

e−xvn − e−2x <
2 − vn

2
(
xe−xun + xe−2x

)

<
(2 − vn)

2

(
1

eun
+

1
2e

)

=

(
4 − v2

n

)

4evn
,

where vn = 2a
e2/n

(
e2/n−1
e2a/n−1

)
. Therefore

∥∥R∗
n

(
e−2t;x

) − e−2x
∥∥
[0,∞)

= γn <

(
4 − v2

n

)

4evn
→ 0 (3.3)

as n → ∞. Hence, by Theorem 2 (or Theorem 1), the proof is complete. �

4. A Quantitative Voronovskaya-Type Theorem

We will now examine the asymptotic behavior of the operators R∗
n by proving

a quantitative Voronovskaya theorem.

Theorem 4. Let f, f ′′ ∈ C∗[0,∞). Then, the inequality
∣∣∣n [R∗

n (f ;x) − f (x)] + axf ′ (x) − x

2
f ′′ (x)

∣∣∣

≤ |pn (x)| |f ′ (x)|+|qn (x)| |f ′′ (x)|+2 (2qn (x)+x+rn (x)) ω∗ (
f ′′; 1/

√
n
)

holds for any x ∈ [0,∞), where

pn (x) := nR∗
n

(
ϕ1

x (t) ;x
)

+ ax,

qn (x) :=
1
2

(
nR∗

n

(
ϕ2

x (t) ;x
) − x

)
,

rn (x) = n2

√
R∗

n

(
(e−x − e−t)4 ;x

)√
R∗

n

(
(t − x)4 ;x

)
.

Proof. By the Taylor expansion of f at the point x ∈ R
+, we can write as

f (t) = f (x) + f ′ (x) (t − x) +
f

′′
(x)
2

(t − x)2 + h (t, x) (t − x)2 , (4.1)

where

h (t, x) :=
f ′′ (η) − f ′′ (x)

2
and η is a number between x and t. If we apply the operator R∗

n to both sides
of equality (4.1), we immediately have

∣∣∣∣R
∗
n (f ;x) − f (x) − f ′ (x) R∗

n

(
ϕ1

x (t) ;x
) − f ′′ (x)

2
R∗

n

(
ϕ2

x (t) ;x
)∣∣∣∣

≤ ∣∣R∗
n

(
h (t, x) ϕ2

x (t) , x
)∣∣ .
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Considering the equalities (2.2)–(2.4), we can write as
∣∣∣n [R∗

n (f ;x) − f (x)] + axf ′ (x) − x

2
f ′′ (x)

∣∣∣

≤ ∣∣nR∗
n

(
ϕ1

x (t) ;x
)

+ ax
∣∣ |f ′ (x)| +

1
2

∣∣nR∗
n

(
ϕ2

x (t) ;x
) − x

∣∣ |f ′′ (x)|
+

∣∣nR∗
n

(
h (t, x) ϕ2

x (t) ;x
)∣∣ .

Put pn (x) := nR∗
n

(
ϕ1

x (t) ;x
)
+ax and qn (x) := 1

2

(
nR∗

n

(
ϕ2

x (t) ;x
) − x

)
.

Hence
∣∣∣n [R∗

n (f ;x) − f (x)] + axf ′ (x) − x

2
f ′′ (x)

∣∣∣

≤ |pn (x)| |f ′ (x)| + |qn (x)| |f ′′ (x)| +
∣∣nR∗

n

(
h (t, x) ϕ2

x (t) ;x
)∣∣ .

Note that, by the equalities (2.5) and (2.6), pn (x) → 0, qn (x) → 0 as n → ∞
at any point x ∈ R

+. To complete the proof, we must estimate the last term∣∣nR∗
n

(
h (t, x) ϕ2

x (t) , x
)∣∣. Using the inequality (3.1), we get

|h (t, x)| ≤
(

1 +
(e−x − e−t)2

δ2

)
ω∗ (f ′′; δ) .

If |e−x − e−t| ≤ δ, then |h (t, x)| ≤ 2ω∗ (f ′′; δ). If |e−x − e−t| > δ, then

|h (t, x)| ≤ 2(e−x−e−t)2
δ2 ω∗ (f ′′; δ) . Therefore, we have |h (t, x)| ≤ 2(

1 + (e−x−e−t)2
δ2

)
ω∗ (f ′′; δ). Using this, we obtain

nR∗
n

(|h (t, x)|ϕ2
x (t) , x

) ≤ 2nω∗ (f ′′; δ) R∗
n

(
(t − x)2 ;x

)

+
2n

δ2
ω∗ (f ′′; δ) R∗

n

((
e−x − e−t

)2 (t − x)2 ;x
)

.

Applying the Cauchy–Schwarz inequality, we infer

nR∗
n

(|h (t, x)|ϕ2
x (t) , x

) ≤ 2nω∗ (f ′′; δ) R∗
n

(
(t − x)2 ;x

)

+
2n

δ2
ω∗ (f ′′; δ)

√
R∗

n

(
(e−x − e−t)4 ;x

)√
R∗

n

(
(t − x)4 ;x

)
.

Choosing δ = 1/
√

n and using the notation

rn (x) :=
√

n2R∗
n

(
(e−x − e−t)4 ;x

)√
n2R∗

n

(
(t − x)4 ;x

)

we arrive at
∣∣∣n [R∗

n (f, x) − f (x)] + axf ′ (x) − x

2
f ′′ (x)

∣∣∣

≤ |pn (x)| |f ′ (x)|+|qn (x)| |f ′′ (x)|+2 (2qn (x) + x+rn (x)) ω∗ (
f ′′; 1/

√
n
)

which was our claim. �
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Remark 2. Direct calculations give

lim
n→∞ n2R∗

n

(
(t − x)4 ;x

)
=

22
3

a2x4 + 4a2x2

(
6
a
x +

7
4a2

+
5
2
x2

)

−2ax

(
2
a
x +

2
3
ax3+3x2

)
− 8a3x3

(
2
a
x+

9
4a2

)
.

Furthermore, using Mathematica, the following was obtained:

lim
n→∞ n2R∗

n

((
e−t − e−x

)4 ;x
)

= e−4x

(
2a2x2

(
4
a

+ 2
)2

− 2ax

(
2
3
a +

16
3a

+ 4
))

− 4e−4x

(
2a2x2

(
1
4a

+
1
2

)2

− 2ax

(
1
6
a +

1
12a

+
1
4

))

− 4e−4x

(
2a2x2

(
9
4a

+
3
2

)2

− 2ax

(
1
2
a +

9
4a

+
9
4

))

+ 6e−4x

(
2a2x2

(
1
a

+ 1
)2

− 2ax

(
1
3
a +

2
3a

+ 1
))

.

An immediate consequence of the last remark is

Corollary 1. Let f, f ′′ ∈ C∗[0,∞). Then, the inequality

lim
n→∞ n [R∗

n (f, x) − f (x)] = −axf ′ (x) +
x

2
f ′′ (x)

holds for any x ∈ [0,∞).

5. Comparison with Classical Szász–Mirakyan Operators

In this section, we compare the operators R∗
n with classical Szász–Mirakyan

operators. The results obtained in this section show that the new operators
present a better approximation under certain conditions, such as generalized
convexity. A function f ∈ C [0,∞) is said to be strictly (1, ϕ) convex if

∣∣∣∣∣∣

1 1 1
ϕ (x0) ϕ (x1) ϕ (x2)
f (x0) f (x1) f (x2)

∣∣∣∣∣∣
> 0, 0 ≤ x0 < x1 < x2 < ∞.

This is equivalent to f ◦ ϕ−1 being strictly convex in the classical sense. For
this concept cf. Ziegler [20] (his remark on p. 426 is important!), his earlier
paper [19], and the very instructive thesis of Bessenyei [5], see Th. 2.7, p. 34,
in particular.

A function f ∈ C2 [0,∞) (the space of twice continuously differentiable
functions) is strictly (1, ϕ) convex with respect to ϕ (x) = e2ax, a > 0, if and
only if

f
′′

(x) > 2af
′
(x) , x > 0. (5.1)



MJOM On Szász–Mirakyan Operators... Page 9 of 14 6

This follows immediately from the definition in the limiting case x0 = x1 =
x2 = x.

By Corollary 1 and (5.1), we have the following

Corollary 2. If the function f ∈ C2 [0,∞) is strictly (1, ϕ) convex with respect
to ϕ (x) = e2ax, a > 0, then for all x ≥ 0, there exists n0 = n0(x) ∈ N, such
that for n ≥ n0, there holds:

f (x) ≤ R∗
n (f, x) .

On the other hand, we recall the following theorem of Cheney and Shar-
ma [8] (see also Stancu [17]).

Theorem 5. 1. If f ∈ C [0,∞) is convex, then f (x) ≤ Sn (f, x) x ≥ 0.
2. If f ∈ C [0,∞) is convex, then Sn+1 (f, x) ≤ Sn (f, x) x ≥ 0, n ≥ 1.
3. If f is decreasing (increasing), then Sn (f) is decreasing (increasing).

Theorem 6. Let f ∈ C [0,∞) be decreasing and convex. Then, for each x ≥ 0,
there exists n1 = n1(x) ∈ N, such that for n ≥ n1, the inequalities

R∗
n (f, x) ≥ R∗

n+1 (f, x) ≥ f(x)

hold.

Proof. Using 2. and 3. of Theorem 5 and recalling that

ϕn (x) := (Sn

(
e2at

)
)−1 ◦ e2ax

(see 1.5), one has ϕn (x) ≤ ϕn+1 (x) and hence

R∗
n (f, x) − R∗

n+1 (f, x) = Sn (f, ϕn (x)) − Sn+1 (f, ϕn+1 (x))
= [Sn (f, ϕn (x)) − Sn+1 (f, ϕn (x))]

+ [Sn+1 (f, ϕn (x)) − Sn+1 (f, ϕn+1 (x))]
≥ 0.

This means
R∗

n (f, x) ≥ R∗
n+1 (f, x) , x ≥ 0.

Since f is decreasing and convex, by Corollary 1, there exists n1 = n1(x) ∈ N,
such that for n ≥ n1, we get

R∗
n+1 (f ;x) ≥ f (x) .

This completes the proof. �

Theorem 7. Let f ∈ C [0,∞) be increasing and strictly (1, ϕ) convex with
respect to ϕ (x) = e2ax, a > 0. Then

f (x) ≤ R∗
n (f, x) ≤ Sn (f, x) , x ≥ 0.

Proof. From the remark of Ziegler in [20, p. 426], we know that

f (x) ≤ R∗
n (f, x) , x ≥ 0, n ≥ 1,

because the function f is (1, ϕ) convex with respect to ϕ (x) = e2ax, a > 0.
Since ϕ (x) = e2ax is convex and by Theorem 5, 1, we have

Sn (ϕ) ≥ ϕ. (5.2)
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Since (Sn (ϕ))−1 is increasing, using (5.2), we get

(Sn (ϕ))−1 ◦ Sn (ϕ) ≥ (Sn (ϕ))−1 ◦ ϕ.

Thus
x ≥

(
(Sn (ϕ))−1 ◦ ϕ

)
(x) ,

and hence
R∗

n (f, x) ≤ Sn (f, x) .

�

6. One Further Uniform Estimate

In this section, employing a technique developed by Gonska [11] and Pältănea
[15], we present another quantitative result for the uniform convergence of the
operators R∗

n in terms of the first- and second-order moduli of smoothness.
Very recently, Pältănea at al. [16] have obtained quantitative results on the
degree of approximation using a suitable transformation which reduces the
approximation problem on [0,∞) to that one on [0, 1]. We will use a similar
approach adopted to our situation.

The spaces (C∗[0,∞), ‖·‖[0,∞)) and (C [0, 1] , ‖·‖[0,1]) are isometrically
isomorphic. Define

ψ (y) := e−y, y ∈ [0,∞),

and let
T : C [0, 1] → C∗[0,∞)

be given by

T (f) (y) = f∗(y) = f (ψ (y)) , f ∈ C [0, 1] , y ∈ [0,∞) .

with the observation

lim
t→∞ f∗ (t) = lim

t→∞ f (ψ (t)) = f (0) .

Clearly, T is linear and bijective. Moreover, for all f ∈ C [0, 1], one has

‖Tf‖[0,∞) = sup
t∈[0,∞)

|f (ψ (t))| = ‖f‖[0,1] .

Hence, T is isometric with

T−1 (f∗) = f∗ ◦ ψ−1, for f∗ ∈ C∗[0,∞).

We recall here a general quantitative result involving the first- and second-
order moduli of smoothness. Such estimates were first established by Gonska
(see [11]) and later refined by Pältănea as far as the constants are concerned.
Pältănea’s result (see [15, Corollary 2.2.1]) reads as follows.

Theorem 8. Let K = [a, b] , K ′ ⊂ K and for i ∈ N∪ {0} , x ∈ R, we consider
the ith monomial ei (x) := xi. If L : C (K) → C (K ′) is a positive linear
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operator, then for f ∈ C (K) , x ∈ K ′, and each 0 < h ≤ 1
2 length (K) , the

following holds:

|L (f ;x) − f (x)| ≤ |L (e0;x) − 1| |f (x)| +
1
h

|L (e1 − x;x)|ω1 (f ;h)

+
[
L (e0;x) +

1
2h2

L
(
(e1 − x)2 ;x

)]
ω2 (f ;h) ,

where ω1 (f ;h) and ω2 (f ;h) are the first-order modulus of continuity and the
second-order modulus of continuity is given by

ω1 (f ;h) = sup {|f (x) − f (y)| : x, y ∈ [0, 1] , |x − y| ≤ h} ,

ω2 (f ;h) = sup
{∣∣∣∣f (x) − 2f

(
x + y

2

)
+ f (y)

∣∣∣∣ : x, y ∈ [0, 1] , |x − y| ≤ 2h

}
,

respectively.

Remark 3. The condition h ≤ 1
2 length (K) in the above can be eliminated for

operators which preserve linear functions. For K = K ′ = [0, 1] and Le0 = e0,
this implies

‖Lf − f‖[0,1] ≤ 1
h

‖Le1 − e1‖[0,1] ω1 (f ;h)

+
[
1 +

1
2h2

(
2 ‖Le1 − e1‖[0,∞) + ‖Le2 − e2‖[0,1]

)]
ω2 (f ;h)

for 0 < h ≤ 1
2 .

The above uniform estimate follows from

|L (e1 − x;x)| = |L (e1;x) − xL (1;x)|
≤ ‖Le1 − e1‖[0,∞)

and

L
(
(e1 − x)2 ;x

)
= L (e2;x) − 2xL (e1;x) + x2L (e0;x)

≤ ‖Le2 − e2‖[0,∞) + 2 ‖Le1 − e1‖[0,∞) .

Let S∗ : C∗[0,∞) → C∗[0,∞) be a positive linear operator reproducing
the constant functions. Then, L : T−1 ◦ S∗ ◦ T : C [0, 1] → C [0, 1] is a
positive linear operator to which the uniform version of P ältănea’s theorem
is applicable. This leads to the following.

Theorem 9. If S∗ and L are as given above, then for all f∗ ∈ C∗[0,∞) and
all 0 < h ≤ 1

2 , the following inequality holds:

‖S∗f∗ − f∗‖[0,∞)

≤ 1
h

‖S∗ (ψ) − ψ‖[0,∞) ω1 (f ;h)[0,1]

+
[
1 +

1
2h2

(∥∥S∗ (
ψ2

) − ψ2
∥∥
[0,∞)

+ 2 ‖S∗ (ψ) − ψ‖[0,∞)

)]

×ω2 (f ;h)[0,1] . (6.1)

Here, f = f∗ ◦ ψ−1.
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Proof. For L : T−1 ◦ S∗ ◦ T , the quantities from Remark 3 can be rewritten
as follows:

(i).

‖Lf − f‖[0,1] =
∥∥(

T−1 ◦ S∗) (f ◦ ψ) − T−1 (f ◦ ψ)
∥∥
[0,1]

=
∥∥T−1 (S∗f∗) − T−1 (f∗)

∥∥
[0,1]

=
∥∥(S∗f∗) ◦ ψ−1 − f∗ ◦ ψ−1

∥∥
[0,1]

= ‖S∗f∗ − f∗‖[0,∞) .

(ii). Using the fact T−1 (f∗) = f∗ ◦ ψ−1 = f, T (f) = f∗ = f ◦ ψ, we
get

‖Le1 − e1‖[0,1] =
∥∥(

T−1 ◦ S∗ ◦ T
)
(e1) − e1

∥∥
[0,1]

=
∥∥(

T−1 ◦ S∗) (ψ) − e1
∥∥
[0,1]

=
∥∥S∗ (ψ) ◦ ψ−1 − (

T−1 ◦ T
)
(e1)

∥∥
[0,1]

=
∥∥S∗ (ψ) ◦ ψ−1 − T−1 (ψ)

∥∥
[0,1]

=
∥∥S∗ (ψ) ◦ ψ−1 − ψ ◦ ψ−1

∥∥
[0,1]

= ‖S∗ (ψ) − ψ‖[0,∞) .

(iii).

‖Le2 − e2‖[0,1] =
∥∥(

T−1 ◦ S∗) (T (e2)) − T−1 (T (e2))
∥∥
[0,1]

=
∥∥(

T−1 ◦ S∗) (
ψ2

) − T−1
(
ψ2

)∥∥
[0,1]

=
∥∥S∗ (

ψ2
) ◦ ψ−1 − ψ2 ◦ ψ−1

∥∥
[0,1]

=
∥∥S∗ (

ψ2
) − ψ2

∥∥
[0,∞)

.

Hence, we have

‖S∗f∗ − f∗‖[0,∞) ≤ 1
h

‖S∗ (ψ) − ψ‖[0,∞) ω1 (f ;h)[0,1]

+
[
1+

1
2h2

(∥∥S∗ (
ψ2

) − ψ2
∥∥
[0,∞)

+2 ‖S∗ (ψ) − ψ‖[0,∞)

)]

×ω2 (f ;h)[0,1] .

�

Remark 4. In the statement of the theorem, the quantities ω1 (f ;h)[0,1] and
ω2 (f ;h)[0,1] may be rewritten as follows:

ω1 (f ;h)[0,1] = ω∗ (f∗;h)

from above. Moreover

ω2 (f ;h)[0,1] = sup {|f (x − s) − 2f (x) + f (x + s)| : x ± s ∈ [0, 1] , |s| ≤ h}

= sup
{∣∣∣∣

(
f∗ ◦ ψ−1

)
(x) − 2

(
f∗ ◦ ψ−1

) (
x + y

2

)

+
(
f∗ ◦ ψ−1

)
(y)

∣∣ : |x − y| ≤ 2h, h ≤ 1/2
}
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= sup
{∣∣f∗ (t) − 2f∗ (

ln 2 − ln
(
e−t + e−s

))
+ f∗ (s)

∣∣
: |ψ (t) − ψ (s)| ≤ 2h, h ≤ 1/2} .

Note that in the above, since |x − y| ≤ 1 and |e−t − e−s| ≤ e−t + e−s ≤ 2,
then ln 2 − ln (e−t + e−s) ≥ 0, so f∗ is defined there.

From Theorem 9, choosing h =
√

1
2 (γn + 2βn), there for n large enough,

and recalling (3.2) and (3.3), we arrive at the following.

Corollary 3. For all f∗ ∈ C∗[0,∞) (f = f∗ ◦ ψ−1) and n large enough, we
have

‖R∗
nf∗ − f∗‖[0,∞)

≤ ω1

(
f ;

√
1
2

(γn + 2βn)

)

[0,1]

+ 2ω2

(
f ;

√
1
2

(γn + 2βn)

)

[0,1]

.
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