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Abstract. In this paper, by constructing a cone K1 × K2 in the Carte-
sian product space C[0, 1] × C[0, 1], and using spectral analysis of the
relevant linear operator for the corresponding differential system, some
properties of the first eigenvalue corresponding to the relevant linear
operator are obtained, and the fixed-point index of nonlinear operator
in the K1 × K2 is calculated explicitly and the existence of at least one
positive solution or two positive solutions of the singular differential
system with integral boundary conditions is established.
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1. Introduction

Integral boundary value problems arise in different areas of applied math-
ematics and physics such as heat conduction, chemical engineering, under-
ground water flow, thermo-elasticity, and plasma physics. In mathematics
context, these phenomena can be reduced to some model for the nonlocal
problems with integral boundary conditions. On the other hand, integral
boundary conditions can cover other kinds of nonlocal boundary conditions,
such as three-point boundary conditions and multi-point boundary condi-
tions (see [1–7]), as special cases. Hence, boundary value problems with in-
tegral boundary conditions constitute a very interesting and important class
of problems and have received a great deal of attention, see [8–20] and the
references therein.

In [2], using the fixed-point theorem in cones, Ma and Wang studied
the existence of at least one positive solution for the following three-point
non-singular BVP

{
u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(u) = 0, t ∈ (0, 1),
u(0) = 0, αu(η) = u(1),
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where 0 < η < 1, 0 < αϕ1(η) < 1 (ϕ1 will be given in Sect. 2), h ∈
C([0, 1], [0,+∞)) and h(t) �≡ 0, f ∈ C([0,+∞), [0,+∞)) is either super-
linear or sublinear. Recently, by applying the fixed-point index theorems, Liu
et al. [17] studied the existence of positive solutions for the following singular
second-order integral boundary value problem under some weaker conditions
concerning the first eigenvalue corresponding to the relevant linear operator{

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(u) = 0, t ∈ (0, 1),
u(0) =

∫ 1

0
g(s)u(s)ds, u(1) =

∫ 1

0
h(s)u(s)ds,

where g, h ∈ L1(0, 1) are nonnegative, h(t) �≡ 0 is allowed to be singular at
t = 0, 1 and f ∈ C((0,+∞), [0,+∞)) may be singular at u = 0.

To study the case of systems of equation using the fixed-point theo-
rem in cones, Cheng [21,22] established a product formula for computing
the fixed-point index of the system of equations, especially inhomogeneous
system of equations with different nonlinear features can be solved by this
method. Following this strategy, Liu et al. [23] established the conditions for
the existence of at least one or at least two positive solutions for the following
singular impulsive BVP⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u′′(t) = h1(t)f1(t, u(t), v(t)), t ∈ J ′

−v′′(t) = h2(t)f2(t, v(t), u(t)), t ∈ J ′

−Δu′|t=tk = I1,k(u(tk)), k = 1, 2, . . . ,m,

−Δv′|t=tk = I2,k(v(tk)), k = 1, 2, . . . ,m,

αu(0) − βu′(0) = 0, αv(0) − βv′(0) = 0,
γu(1) + δu′(1) = 0, γv(1) + δv′(1) = 0,

with various kinds of nonlinear feature of f1, f2.
Motivated by the work mentioned above, in this paper, we are concerned

with the multiplicity of positive solutions for the following system of singular
differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) + a1(t)u′(t) + b1(t)u(t) + c1(t)f1(t, u(t), v(t)) = 0, t ∈ (0, 1),
v′′(t) + a2(t)v′(t) + b2(t)v(t) + c2(t)f2(t, v(t), u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1
0 g1(s)u(s)ds, u(1) =

∫ 1
0 h1(s)u(s)ds,

v(0) =
∫ 1
0 g2(s)v(s)ds, v(1) =

∫ 1
0 h2(s)v(s)ds,

(1.1)

where ai ∈ C([0, 1],R), bi ∈ C([0, 1], (−∞, 0)), fi ∈ C([0, 1] × (0,+∞) ×
(0,+∞), [0,+∞)), ci ∈ C((0, 1), [0,+∞)) and gi, hi ∈ L1[0, 1] are nonnega-
tive for i = 1, 2. In this paper, ci(t) �≡ 0 is allowed to be singular at t = 0, 1
and fi(t, x, y) may be singular at x = 0 or y = 0. We are mainly interested in
handling the singularity of f1, f2 on second and third variables, to overcome
this difficulty, we shall do spectral analysis for the relevant linear operator of
the corresponding differential system, and then construct a Cartesian prod-
uct cone K × K, and compute the fixed-point index in K × K under some
conditions on fi concerning the first eigenvalue corresponding to the rele-
vant linear operator. Based on the properties of the fixed-point index, the
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existence of at least one or at least two positive solutions for the singular
differential system (1.1) is established.

The paper is organized as follows. In Sect. 2, we give some preliminaries
and establish several lemmas. In Sect. 3, the main results are formulated and
proved. In Sect. 4, we give two examples.

2. Preliminaries and Lemmas

In this section, we present some preliminaries and lemmas that are useful to
the proof of our main results.

Let E = C([0, 1]) = {u | u : [0, 1] → R is continuous} be a Banach space
with the norm ‖u‖ = maxt∈[0,1] |u(t)| and P = {u ∈ C([0, 1], [0,+∞)) |u(t) ≥
0, t ∈ [0, 1]} be a cone in E. Clearly, E × E is also a Banach space with
norm ‖(u, v)‖ = max{‖u‖, ‖v‖} for any (u, v) ∈ E × E. A function u ∈
C([0, 1])∩C2((0, 1)) is said to be a positive solution of BVP (1.1) if it satisfies
the BVP (1.1) and u(t) > 0, v(t) > 0 for t ∈ (0, 1).

Lemma 2.1 [2]. Assume that ai ∈ C([0, 1]), bi ∈ C([0, 1], (−∞, 0)). Let ϕ1,i

and ϕ2,i be the unique solution of BVP{
ϕ′′
1,i(t) + ai(t)ϕ′

1,i(t) + bi(t)ϕ1,i(t) = 0,
ϕ1,i(0) = 0, ϕ1,i(1) = 1,

and {
ϕ′′
2,i(t) + ai(t)ϕ′

2,i(t) + bi(t)ϕ2,i(t) = 0,
ϕ2,i(0) = 1, ϕ2,i(1) = 0,

respectively. Then ϕ1,i is strictly increasing on [0, 1], while ϕ2,i is strictly
decreasing on [0, 1] (i = 1, 2).

For convenience in presentation, we now list some assumptions and lem-
mas which are used throughout the paper.

(H1) ai ∈ C([0, 1]), bi ∈ C([0, 1], (−∞, 0)), i = 1, 2;
(H2) gi, hi ∈ L1([0, 1]) are nonnegative, and k1,i > 0, k4,i > 0, ki > 0, where

k1,i = 1 − ∫ 1

0
ϕ2,i(s)gi(s)ds, k2,i =

∫ 1

0
ϕ1,i(s)gi(s)ds,

k3,i =
∫ 1

0
ϕ2,i(s)hi(s)ds, k4,i = 1 − ∫ 1

0
ϕ1,i(s)hi(s)ds,

ki = k1,ik4,i − k2,ik3,i, i = 1, 2.

Lemma 2.2 [17]. Assume that (H1) and (H2) hold. Then for any y ∈ C((0, 1))
∩ L1((0, 1)), i = 1, 2, the BVP

{
u′′

i (t) + ai(t)u′(t) + bi(t)u(t) + y(t) = 0, t ∈ (0, 1),
ui(0) =

∫ 1

0
gi(s)ui(s)ds, ui(1) =

∫ 1

0
hi(s)ui(s)ds,

(2.1)

has a unique solution ui that can be expressed in the form

ui(t) =
∫ 1

0

Hi(t, s)y(s)ds, t ∈ [0, 1], (2.2)
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where

Hi(t, s) = Gi(t, s)pi(s) +
ϕ1,i(t)k3,i + ϕ2,i(t)k4,i

ki

∫ 1

0

Gi(τ, s)pi(s)gi(τ)dτ

+
ϕ1,i(t)k1,i + ϕ2,i(t)k2,i

ki

∫ 1

0

Gi(τ, s)pi(s)hi(τ)dτ,

pi(t) = exp
(∫ t

0

ai(s)ds

)
,

Gi(t, s) =
1
ρi

{
ϕ1,i(t)ϕ2,i(s), 0 ≤ t ≤ s ≤ 1,
ϕ1,i(s)ϕ2,i(t), 0 ≤ s ≤ t ≤ 1,

ρi = ϕ′
1,i(0). (2.3)

Furthermore, ui(t) ≥ 0 on [0, 1] provided that yi(t) ≥ 0 on (0, 1).

Lemma 2.3 [17]. Suppose that (H1) and (H2) hold, then for any t, s ∈ [0, 1],
i = 1, 2, we have

0 ≤ Gi(t, s) ≤ Gi(s, s), 0 ≤ Hi(t, s) ≤ Hi(s), (2.4)

Hi(t, s) ≥ γi(t)Hi(s), (2.5)
where γi(t) = min{φ1,i(t), φ2,i(t)}, t ∈ [0, 1], and

Hi(s) = Gi(s, s)pi(s) +
k3,i + k4,i

ki

∫ 1

0

Gi(τ, s)pi(s)gi(τ)dτ

+
k1,i + k2,i

ki

∫ 1

0

Gi(τ, s)pi(s)hi(τ)dτ.

Since ci ∈ C((0, 1), [0,+∞)) and ci(t) �≡ 0, there exists t0,i ∈ (0, 1) such
that ci(t0,i) > 0, i = 1, 2. Choose δ ∈ (0, 1

2 ) such that t0,i ∈ (δ, 1 − δ) , then
we have

Hi(t, s) ≥ γδHi(s), t ∈ [δ, 1 − δ], s ∈ [0, 1],

where

0 < γδ = min
i∈{1,2}

min
t∈[δ,1−δ]

{φ1,i(t), φ2,i(t)}= min
i∈{1,2}

min{φ1,i(δ), φ2,i(1 − δ)} < 1.

Let
K = {u ∈ P |u(t) ≥ γ(t)‖u‖, t ∈ [0, 1]},

where γ(t) = min{γ1(t), γ2(t)}. Then K is a subcone of P . It is easy to verify
that for any u ∈ K, we have mint∈[δ,1−δ] u(t) ≥ γδ‖u‖. For any r > 0, let
Kr = {u ∈ K | ‖u‖ < r}, ∂Kr = {u ∈ K | ‖u‖ = r} and K̄r = {u ∈ K | ‖u‖ ≤
r}.

To deal with the singularity of ci and fi, we list here two more assump-
tions:
(H3) ci ∈ C((0, 1), [0,+∞)), ci(t) �≡ 0 and

∫ 1

0
Hi(s)ci(s)ds < +∞, i = 1, 2.

(H4) ci ∈C((0, 1), [0,+∞)), ci(t) �≡0, fi ∈C([0, 1]× (0,∞)× (0,∞), [0,+∞))
and for any 0 < ri < Ri < +∞, i = 1, 2,

lim
n→+∞ sup

(u,v)∈K̄R1\Kr1×K̄R2\Kr2

∫
e(n)

Hi(s)ci(s)fi(s, u(s), v(s))ds = 0,

where e(n) = [0, 1
n ] ∪ [n−1

n , 1].
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It is easy to see that (H4) is strong enough to imply (H3). In fact, from
(H4) it follows that for any 0 < r < R < +∞ by taking u(t) ≡ v(t) ≡ R ∈
K̄R\Kr, we have

lim
n→+∞

∫
e(n)

Hi(s)ci(s)fi(s,R,R)ds = 0,

then
∫

e(n)
Hi(s)ci(s)fi(s,R,R)ds < +∞. Since fi ∈ C([0, 1], (0,+∞),

(0,+∞),R+) and ci ∈ C[ 1n , n−1
n ], we have

∫ 1

0

Hi(s)ci(s)ds < +∞,

i.e., that (H4) implies (H3).
For any (u, v) ∈ (K\{0}) × (K\{0}), we can define mappings Av :

K\{0} → P, Bu : K\{0} → P and T : K\{0} × K\{0} → P × P as follows

Av(u)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds, (2.6)

Bu(v)(t) =
∫ 1

0

H2(t, s)c2(s)f2(s, v(s), u(s))ds, (2.7)

T (u, v)(t) = (Av(u)(t), Bu(v)(t)), t ∈ [0, 1]. (2.8)

Also we can define mapping Ti : E → E as

(Tiu)(t) =
∫ 1

0

Hi(t, s)ci(s)u(s)ds, t ∈ [0, 1], i = 1, 2. (2.9)

It is well known that if (u, v) solves the operator equation (u, v) = T (u, v),
then (u, v) is a positive solution of system (1.1).

For any τ : 0 < τ < δ, we define Tτ,i : E → E:

(Tτ,iu)(t) =
∫ 1−τ

τ

Hi(t, s)ci(s)u(s)ds, for all t ∈ [0, 1], u ∈ E, i = 1, 2 . . .

(2.10)

Lemma 2.4 [17]. Suppose that (H1)–(H3) are satisfied, then for the operators
Ti defined by (2.9) and Tτ,i defined by (2.10),

(i) Ti : K → K is completely continuous linear operators;
(ii) the spectral radius r(Ti) �= 0, Ti has positive eigenfunction corresponding

to its first eigenvalue λ1,i = (r(Ti))−1 ; and Tτ,i has positive eigenfunc-
tion corresponding to its first eigenvalue λτ,i = (r(Tτ,i))−1;

(iii) there exists an eigenvalue λ̃1,i of Ti such that λτ,i → λ̃1,i, as τ → 0+.

Lemma 2.5. If (H1), (H2) and (H4) hold, then

(i) for any R > r > 0 and v ∈ K\{0}, Av : K̄R\Kr → P is completely
continuous;

(ii) for any R > r > 0 and u ∈ K\{0}, Bu : K̄R\Kr → P is completely
continuous;

(iii) T : (K\{0}) × (K\{0}) → P × P is completely continuous.
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Proof. (i) First, for any r > 0, and v ∈ K\{0}, we will show

sup
u∈∂Kr

∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds < +∞. (2.11)

At the same time, this implies Av : K\{0} → P is well defined.
In fact, by (H4), for any fixed v ∈ K\{0}, there exists a natural number

l such that

sup
u∈∂Kr

∫
e(l)

H1(s)c1(s)f1(s, u(s), v(s))ds < 1.

If u ∈ ∂Kr, then γlr ≤ u(t) ≤ r for t ∈ [1l ,
l−1

l ], where γl = mint∈[ 1l , l−1
l ]

{φ1,1(t), φ2,1(t)} > 0. Let Ml = max{f1(t, u(t), v(t)) | t ∈ [1l ,
l−1

l ], u ∈ ∂Kr},
then we have

sup
u∈∂Kr

∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds

≤ sup
u∈∂Kr

∫
e(l)

H1(s)c1(s)f1(s, u(s), v(s))ds

+ sup
u∈∂Kr

∫ l−1
l

1
l

H1(s)c1(s)f1(s, u(s), v(s))ds

≤ 1 + Ml

∫ 1

0

H1c1(s)ds < +∞, (2.12)

i.e., (2.11) holds.
Next, for any v ∈ K\{0}, Av : K̄R\Kr → P is continuous. Let un, u0 ∈

K̄R\Kr and ‖un − u0‖ → 0(n → ∞). For any ε > 0, by (H4) there exists a
natural number m > 0 such that

sup
u∈K̄R\Kr

∫
e(m)

H1(s)c1(s)f1(s, u(s), v(s))ds <
ε

4
. (2.13)

Set γm = mint∈[ 1
m ,m−1

m ]{φ1,1(t), φ2,1(t)}, then γmr ≤ u0(t) ≤ R, γmr ≤
un(t) ≤ R, t ∈ [ 1

m , m−1
m ]. Let a1 = min{v(t) | t ∈ [ 1

m , m−1
m ]}, a2 =

max{v(t) | t ∈ [ 1
m , m−1

m ]}, since f1(t, x, y) is uniformly continuous w.r.t. x

on [ 1
m , m−1

m ] × [γmr,R] × [a1, a2], we have

lim
n→+∞ |f1(t, un(t), v(t)) − f1(t, u0(t), v(t))| = 0

holds uniformly on t ∈ [ 1
m , m−1

m ]. Then the Lebesgue-dominated convergence
theorem yields that

lim
n→+∞

∫ m−1
m

1
m

H1(s)c1(s)|f1(s, un(s), v(s) − f1(s, u0(s), v(s))|ds → 0.

Thus, for the above ε > 0, there exists a natural number N such that for
n > N , we have∫ m−1

m

1
m

H1(s)c1(s)|f1(s, un(s), v(s) − f1(s, u0(s), v(s))|ds <
ε

2
. (2.14)
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It follows from (2.4), (2.13) and (2.14) that when n > N ,

‖Avun − Avu0‖ ≤ 2 sup
u∈K̄R\Kr

∫
e(m)

H1(s)c1(s)f1(s, u(s), v(s))ds

+
∫ m−1

m

1
m

H1(s)c1(s)|f1(s, un(s), v(s)−f1(s, u0(s), v(s))|ds

< 2 × ε

4
+

ε

2
= ε.

Therefore, Av : K̄R\Kr → P is continuous.
Assume that B ⊂ K̄R\Kr is a bounded set. Then for any u ∈ B, r ≤

‖u‖ ≤ R, from (H4) and from (2.12), Av(B) is uniformly bounded. By the
Arzela–Ascoli Theorem, we only need to show Av(B) is equicontinuous.

For any ε > 0, from (H4), there exists a natural number k such that

sup
u∈K̄R\Kr

∫
e(k)

H1(s)c1(s)f1(s, u(s), v(s))ds <
ε

4
.

Let γk = mint∈[ 1k , k−1
k ]{φ1,1(t), φ2,1(t)}, Mk = max{f1(t, u(t), v(t)) |

t ∈ [ 1k , k−1
k ], u ∈ K̄R\Kr}. Since G1(t, s) is uniformly continuous on [0, 1] ×

[0, 1], φ1,1 and φ2,1 are uniformly continuous on [0, 1], then for the above ε > 0
and fixed s ∈ [ 1k , k−1

k ], there exists σ > 0, for all t, t′ ∈ [0, 1], |t− t′| < σ, such
that

|G1(t, s) − G1(t′, s)| ≤
(

6Mk

∫ 1

0

p1(s)c1(s)ds

)−1

ε,

|φ1,1(t) − φ1,1(t′)|

≤
(

6Mk

∫ 1

0

∫ 1

0

G1(s, τ)p1(τ)[k3,1g1(τ) + k1,1h1(τ)]c1(s)dτds

)−1

k1ε,

|φ2,1(t) − φ2,1(t′)|

≤
(

6Mk

∫ 1

0

∫ 1

0

G1(s, τ)p1(τ)[k4,1g1(τ) + k2,1h1(τ)]c1(s)dτds

)−1

k1ε.

Hence, for all t, t′ ∈ [0, 1], |t − t′| < σ and u ∈ B, we have

|Avu(t) − Avu(t′)| ≤ 2 sup
u∈K̄R\Kr

∫
e(k)

H1(s)c1(s)f1(s, u(s), v(s))ds

+ sup
u∈K̄R\Kr

∫ k−1
k

1
k

|G1(t, s) − G1(t′, s)|p1(s)c1(s)f1(s, u(s), v(s))ds

+ sup
u∈K̄R\Kr

∫ k−1
k

1
k

k−1
1 |φ1,1(t) − φ1,1(t′)|

∫ 1

0

G1(s, τ)p1(τ)[k3,1g1(τ)

+ k1,1h1(τ)]c1(s)f1(s, u(s), v(s))dτds

+ sup
u∈K̄R\Kr

∫ k−1
k

1
k

k−1
1 |φ2,1(t) − φ2,1(t′)|

∫ 1

0

G1(s, τ)p1(τ)[k4,1g1(τ)
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+ k2,1h1(τ)]c1(s)f1(s, u(s), v(s))dτds

< 2 × ε

4
+

ε

6
+

ε

6
+

ε

6
= ε.

Therefore, Av(B) is equicontinuous. (ii) In the similar way we can get the
proof. Then we can get (iii). �
Lemma 2.6. If (H1), (H2) and (H4) hold, then

(i) for any R > r > 0 and v ∈ K\{0}, Av(K̄R\Kr) ⊂ K;
(ii) for any R > r > 0 and u ∈ K\{0}, Bu(K̄R\Kr) ⊂ K;
(iii) T ((K\{0}) × (K\{0})) ⊂ K × K.

Proof. We only prove (i). For any u ∈ K̄R\Kr , t ∈ [0, 1], by (2.4) we have

(Avu)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds

≤
∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds,

hence

‖Avu‖ ≤
∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds.

On the other hand, by (2.5) we have

(Avu)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds

≥
∫ 1

0

γ(t)H1(s)c1(s)f1(s, u(s), v(s))ds

≥ γ(t)‖Avu‖.

Hence, Av(K̄R\Kr) ⊂ K. �
Lemma 2.7 [24]. Let T : K → k be a completely continuous mapping. If there
exists u0 ∈ K\{0} such that

u − Tu �= μu0, u ∈ ∂Kr, μ > 0,

then the fixed-point index i(T, Kr, K) = 0.

Lemma 2.8 [24]. Let T : K → K be a completely continuous mapping and
μTu �= u for u ∈ ∂Kr and 0 < μ ≤ 1. Then i(T, Kr, K) = 1.

Lemma 2.9 [21]. Let X be a Banach space and let Pi ⊂ X be a closed convex
cone in and Wi a bounded open subset of X with boundary ∂Wi (i = 1, 2).
Suppose that Ai : Pi ∩ Wi → Pi is a completely continuous mapping and that
Aiui �= ui, ∀ui ∈ Pi ∩ ∂Wi, then

i(A, P1×P2 ∩ (W1 × W2), P1 × P2)= i(A1, P1∩W1, P1)·i(A2, P2 ∩ W2, P2),

where A(u, v) := (A1u, A2v), ∀(u, v) ∈ (P1 × P2) ∩ (W1 × W2).

Lemma 2.10 [24]. Let P be a cone in Banach space X. For r > 0, denote
Pr = {x ∈ P : ‖x‖ < r}, P r = {x ∈ P : ‖x‖ ≤ r} and ∂Pr = {x ∈ P : ‖x‖ =
r}. Suppose that A : P r → P is a completely continuous operator.
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(i) If ‖Au‖ ≤ ‖u‖ for u ∈ ∂Pr, then the fixed-point index i(A,Pr, P ) = 1;
(ii) If ‖Au‖ ≥ ‖u‖ for u ∈ ∂Pr, then the fixed-point index i(A,Pr, P ) = 0.

3. Main Results

Lemma 3.1. If (H1), (H2), (H4) and the following condition hold:

(H5) There exist p > 0, η ≥ 0, λ̄ ≥ 0 such that for all 0 < x ≤ p, y > 0 and
0 ≤ t ≤ 1,

f1(t, x, y) ≤ ηp, η

∫ 1

0

H1(s)c1(s)ds < 1,

and for all 0 < γδp ≤ x ≤ p, y > 0 and t ∈ [δ, 1 − δ],

f2(t, x, y) ≥ λ̄p, λ̄

∫ 1−δ

δ

H2

(
1
2
, s

)
c2(s)ds > 1.

Then, for any u, v ∈ K\{0}, we have i(Av,Kp,K) = 1, i(Bu,Kp,K) = 0.

Proof. For any v ∈ K\{0} and u ∈ K\{0} with ‖u‖ = p > 0, we have
0 < u(s) ≤ p, v(s) > 0 for any s ∈ (0, 1). So, by (2.4), (2.6) and (H5), we
have

‖Avu‖ ≤
∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds

≤ pη

∫ 1

0

H1(s)c1(s)ds < p = ‖u‖;

that is ‖Avu‖ < ‖u‖ for any u ∈ ∂Kp, v ∈ K\{0}. Therefore, by Lemma
2.10, we obtain i(Av, Kp, K) = 1.

For any u ∈ K\{0} and v ∈ ∂Kp, we have γδp ≤ v(s) ≤ p, u(s) > 0 for
any s ∈ [δ, 1 − δ]. So, from (H5) and (2.7), we obtain

Buv

(
1
2

)
=

∫ 1

0

H2

(
1
2
, s

)
c2(s)f2(s, v(s), u(s))ds

≥
∫ 1−δ

δ

H2

(
1
2
, s

)
c2(s)f2(s, v(s), u(s))

≥ pλ̄

∫ 1−δ

δ

H2

(
1
2
, s

)
c2(s)ds

> p = ‖v‖;

that is, ‖Buv‖ > ‖v‖ for any v ∈ ∂Kp, u ∈ K\{0}. Therefore, by Lemma
2.10, we obtain i(Bu, Kp, K) = 0. �

In the same way, we can get the following three lemmas.
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Lemma 3.2. If (H1), (H2), (H4) and the following condition hold:

(H ′
5) There exist p > 0 and η1, η2 ≥ 0, such that for all 0 < x ≤ p, y > 0

and 0 ≤ t ≤ 1,

f1(t, x, y) ≤ η1p, η1

∫ 1

0

H1(s)c1(s)ds < 1,

and

f2(t, x, y) ≤ η2p, η2

∫ 1

0

H2(s)c2(s)ds < 1.

Then, for any u, v ∈ K\{0}, i(Av,Kp,K) = 1, i(Bu,Kp,K) = 1.

Lemma 3.3. If (H1), (H2), (H4) and the following conditions hold:

(H∗
5 ) There exist p > 0, and λ̄1, λ̄2 ≥ 0 such that for all γδp ≤ x ≤ p, y > 0

and t ∈ [δ, 1 − δ],

f1(t, x, y) ≥ λ̄1p, λ̄1

∫ 1−δ

δ

H1

(
1
2
, s

)
c1(s)ds > 1,

and

f2(t, x, y) ≥ λ̄2p, λ̄2

∫ 1−δ

δ

H2

(
1
2
, s

)
c2(s)ds > 1.

Then, for any u, v ∈ K\{0}, i(Av,Kp,K) = 0, i(Bu,Kp,K) = 0.

For any y > 0 and i = 1, 2, we denote

fi,0(y) = lim inf
x→0+

min
t∈[0,1]

fi(t, x, y)
x

, fi,∞(y) = lim inf
x→+∞ min

t∈[0,1]

fi(t, x, y)
x

,

f0
i (y) = lim sup

x→0+
max
t∈[0,1]

fi(t, x, y)
x

, f∞
i (y) = lim sup

x→+∞
max
t∈[0,1]

fi(t, x, y)
x

.

Lemma 3.4. Suppose the conditions (H1), (H2) and (H4) are satisfied.

(i) If

inf
y∈(0,+∞)

f1,0(y) > λ1,1, (3.1)

then for any v ∈ K\{0}, there exists r1 > 0 such that

i(Av,Kr,K) = 0, ∀ 0 < r < r1.

(ii) If
inf

y∈(0,+∞)
f2,0(y) > λ1,2, (3.2)

then for any u ∈ K\{0}, there exists r2 > 0 such that

i(Bu,Kr,K) = 0, ∀ 0 < r < r2.
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Proof. We only prove (i). It follows from (3.1) that for any prescribed y > 0
there exists a corresponding r1 > 0 such that f1(t, x, y) ≥ λ1,1x, 0 < x ≤
r1, y > 0, and thus for every u ∈ ∂Kr1 and any fixed v ∈ K\{0}, we have

(Avu)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds (3.3)

≥ λ1,1

∫ 1

0

H1(t, s)c1(s)u(s)ds

= λ1,1(T1u)(t), t ∈ [0, 1].

Let ϕ∗ be the positive eigenfunction of T1 corresponding to λ1,1, then ϕ∗ =
λ1,1T1ϕ

∗. We may suppose that Av has no fixed points on ∂Kr1 (otherwise,
the proof is ended). Now we show that

u − Avu �= μϕ∗, u ∈ ∂Kr1 , μ ≥ 0. (3.4)

Assume by contradiction that there exist u0 ∈ ∂Kr1 and μ0 ≥ 0 such
that u0 −Avu0 = μ0ϕ

∗, then μ0 > 0 and u0 = Avu0 +μ0ϕ
∗ ≥ μ0ϕ

∗. Let μ̄ =
sup{μ : u0 ≥ μϕ∗}, then μ̄ ≥ μ0, u0 ≥ μ̄ϕ∗, λ1,1T1u0 ≥ λ1,1μ̄T1ϕ

∗ = μ̄ϕ∗.
Therefore, by (3.3),

u0 = Avu0 + μ0ϕ
∗ ≥ λ1,1T1u0 + μ0ϕ

∗ ≥ μ̄ϕ∗ + μ0ϕ
∗ = (μ̄ + μ0)ϕ∗,

which contradicts the definition of μ̄. So (3.4) is true and by Lemma 2.7 we
have

i(Av,Kr1 ,K) = 0.

Then i(Av,Kr,K) = 0, ∀ 0 < r < r1, v ∈ K\{0}. �

Remark 3.5. If f1(t, x, y) is singular at x = 0 or f2(t, x, y) is singular at y = 0,
we have f1,0(y) = f2,0(x) = +∞ for any x, y > 0, hence infy∈(0,+∞) f1,0(y) >
λ1,1 or infx∈(0,+∞) f2,0(x) > λ1,2 holds automatically (see the assumptions
(3.1) and (3.2) in Lemma 3.4). But if f1(t, x, y) is continuous at x = 0 and
f1(t, 0, y) = 0 for any t ∈ [0, 1], y > 0, the assumption infy∈(0,+∞) f1,0(y) >

λ1,1 may not hold, since the limitation lim infx→0+ mint∈[0,1]
f1(t,x,y)

x is of 0
0

type.

Lemma 3.6. Suppose the conditions (H1), (H2) and (H4) are satisfied.

(i) If
sup

y∈(0,+∞)

f0
1 (y) < λ1,1, (3.5)

then for any v ∈ K\{0}, there exists r3 > 0 such that

i(Av,Kr,K) = 1, ∀ 0 < r < r3.

(ii) If
sup

y∈(0,+∞)

f0
2 (y) < λ1,2, (3.6)

then for any u ∈ K\{0}, there exists r4 > 0 such that

i(Bu,Kr,K) = 1, ∀ 0 < r < r4.



4774 F. Sun et al. MJOM

Proof. We only prove (i). It follows from (3.5) that for any prescribed y > 0
there exists a corresponding r3 > 0 such that for all 0 < r < r3,

f1(t, x, y) ≤ λ1,1x, 0 < x ≤ r3, y > 0. (3.7)

For any u ∈ ∂Kr, and any fixed v ∈ K\{0}, it follows from (3.7) that

(Avu)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds

≤ λ1,1

∫ 1

0

H1(t, s)c1(s)u(s)ds

= λ1,1(T1u)(t), t ∈ [0, 1],

and hence Avu ≤ λ1,1T1u, u ∈ ∂Kr v ∈ K\{0}. We may suppose that Av

has no fixed point on ∂Kr (otherwise, the proof is finished). Now we show
that Avu �= μu for any u ∈ ∂Kr, μ ≥ 1. Assume, by contradiction, that
there exist ϕ ∈ ∂Kr and μ2 ≥ 1 satisfying Avϕ = μ2ϕ. Then, μ2 > 1 and
μ2ϕ = Avϕ ≤ λ1,1T1ϕ. By induction, we have μn

2ϕ ≤ λn
1,1T

n
1 ϕ (n = 1, 2, . . .).

Thus,

‖Tn
1 ‖ ≥ ‖Tn

1 ϕ‖
‖ϕ‖ ≥ μn

2‖ϕ‖
λn
1,1‖ϕ‖ =

μn
2

λn
1,1

.

By the Gelfand’s formula we have

r(T1) = lim
n→∞

n

√
‖Tn

1 ‖ ≥ μ2

λ1,1
>

1
λ1,1

,

which is contradiction with r(T1) = λ−1
1,1. So Avu �= μu for any u ∈ ∂Kr, μ ≥

1. By Lemma 2.8, we have i(Av,Kr,K) = 1, ∀ 0 < r < r3, v ∈ K\{0}. �

Remark 3.7. If f1(t, x, y) is continuous at x = 0 and f1(t, 0, y) = 0 for any
t ∈ [0, 1], y > 0, the assumptions supy∈(0,+∞) f0

1 (y) < λ1,1 may hold, since

the limitation lim supx→0+ maxt∈[0,1]
f1(t,x,y)

x is of 0
0 type.

Lemma 3.8. Suppose the conditions (H1), (H2) and (H4) are satisfied.
(i) If

inf
y∈(0,+∞)

f1,∞(y) > λ̃1,1, (3.8)

then for any v ∈ K\{0}, there exists R1 > 0 such that

i(Av,KR,K) = 0, ∀R > R1.

(ii) If
inf

y∈(0,+∞)
f2,∞(y) > λ̃1,2, (3.9)

then for any u ∈ K\{0}, there exists R2 > 0 such that

i(Bu,KR,K) = 0, ∀R > R2.

Proof. We only prove (i). By (3.8) and Lemma 2.4, it is easy to see that for
any prescribed y > 0 there exists a corresponding sufficiently small τ > 0
and R1 > 0 such that for all R > R1,

f1(t, x, y) ≥ λτ,1x, x ≥ γτR, y > 0,
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where λτ,1 is the first eigenvalue of Tτ,1 defined by (2.10) and γτ =
mint∈[τ,1−τ ]{φ1,1(t), φ2,1(t)}.

Let ϕτ be the positive eigenfunction of Tτ,1 corresponding to λτ,1, then
ϕτ = λτ,1Tτ,1ϕτ . For every u ∈ ∂KR, t ∈ [τ, 1 − τ ] and any prescribed
v ∈ K\{0}, we have u(t) ≥ γτ‖u‖ = γτR, so

(Avu)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u(s), v(s))ds

≥
∫ 1−τ

τ

H1(t, s)c1(s)f1(s, u(s), v(s))ds

≥ λτ,1

∫ 1−τ

τ

H1(t, s)c1(s)u(s)ds

= λτ,1(Tτ,1u)(t), t ∈ [0, 1].

We may suppose that Av has no fixed points on ∂KR (otherwise, the
proof is ended). Following the procedure used in Lemma 3.4, we have

u − Avu �= μϕτ , u ∈ ∂KR, μ ≥ 0.

By Lemma 2.7, we have i(Av,KR,K) = 0, ∀R > R3, v ∈ K\{0}. �

Lemma 3.9. Suppose the conditions (H1), (H2) and (H4) are satisfied.

(i) If
sup

y∈(0,+∞)

f∞
1 (y) < λ1,1, (3.10)

then for any v ∈ K\{0}, there exists R3 > 0 such that

i(Av,KR,K) = 1, ∀R > R3.

(ii) If
sup

y∈(0,+∞)

f∞
2 (y) < λ1,2, (3.11)

then for any u ∈ K\{0}, there exists R4 > 0 such that

i(Bu,KR,K) = 1, ∀R > R4.

Proof. We only prove (i). By (3.5), for any prescribed y > 0 there exists
a corresponding R0 > 0 and 0 < σ < 1 such that f1(t, x, y) ≤ σλ1,1x for
x ≥ R0. Let T1,1u = σλ1,1T1u, then T1,1 : E → E is a bounded linear operator
and T1,1(K) ⊂ K. Since λ1,1 is the first eigenvalue of T1 and 0 < σ < 1, we
have

(r(T1,1))−1 = (σλ1,1)−1(r(T1))−1 = σ−1 > 1. (3.12)

Let ε0 = 1
2 (1 − r(T1,1)), then by the Gelfand’s formula, we know that there

exists a natural number N ≥ 1 such that n ≥ N implies that ‖Tn
1,1‖ ≤

[r(T1,1) + ε0]n. For any u ∈ E, define

‖u‖∗ =
N∑

i=1

[r(T1,1) + ε0]N−i‖T i−1
1,1 u‖,
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where T 0
1,1 = I is the identity operator. It is easy to verify that ‖u‖∗ is a new

norm in E. Let

M0 = sup
u∈∂KR0

∫ 1

0

H1(s)c1(s)f1(s, u(s), v(s))ds,

by (2.11) we know that M0 < +∞.
Select R′

0 > max{R0, 2M∗
0 ε−1

0 }, where M∗
0 = ‖M0‖∗. Since ‖u‖∗ >

[r(T1,1) + ε0]N−1‖u‖, we may choose R3 > R′
0 large enough such that ‖u‖ ≥

R3 implies ‖u‖∗ > R′
0.

Next, we prove

Avu �= μu, u ∈ ∂KR3 , μ ≥ 1. (3.13)

If otherwise, there exist u1 ∈ ∂KR3 and μ1 ≥ 1 such that Avu = μ1u1. Let
ũ(t) = min{u1(t), R0}, D(u1) = {t ∈ [0, 1] |u1(t) > R0}, then ũ ∈ ∂KR0 ,

μ1u1(t) = (Au1)(t) =
∫ 1

0

H1(t, s)c1(s)f1(s, u1(s), v(s))ds

≤
∫

D(u1)

H1(t, s)c1(s)f1(s, u1(s), v(s))ds

+
∫
[0,1]\D(u1)

H1(s)c1(s)f1(s, u1(s), v(s))ds

≤ σλ1,1

∫ 1

0

H1(t, s)c1(s)u1(s)ds +
∫ 1

0

H1(s)c1(s)f1(s, ũ(s), v(s))ds

≤ (T1,1u1)(t) + M0, t ∈ [0, 1].

Since T1,1(K) ⊂ K, we have 0 ≤ (T j
1,1(Avu1)(t)) ≤ (T j

1,1(T1,1u1+M0)(t)) (j =
0, 1, 2, . . . , N − 1), and consequently

‖T j
1,1(Avu1)‖ ≤ ‖T j

1,1(T1,1u1 + M0)‖, j = 0, 1, 2, . . . , N − 1.

Hence,

‖Avu1‖∗ =
N∑

i=1

[r(T1,1) + ε0]N−i‖T i−1
1,1 (Avu1)‖

≤
N∑

i=1

[r(T1,1) + ε0]
N−i ‖T i−1

1,1 (T1,1u1 + M0)‖ = ‖T1,1u1 + M0‖∗.

From the selection of R′
0, we obtain M∗

0 ≤ ε0
2 R′

0. Since ‖u1‖ = R3

implies ‖u1‖∗ > R′
0, we have
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μ1‖u1‖∗ = ‖Avu1‖∗ ≤ ‖T1,1u1‖∗ + M∗
0 =

N∑
i=1

[r(T1,1) + ε0]
N−i ‖T i

1,1u1‖ + M∗
0

= [r(T1,1) + ε0]
N−1∑
i=1

[r(T1,1) + ε0]
N−i−1 ‖T i

1,1u1‖ + ‖TN
1,1u1‖ + M∗

0

≤ [r(T1,1) + ε0]
N−1∑
i=1

[r(T1,1) + ε0]
N−i−1 ‖T i

1,1u1‖

+ [r(T1,1) + ε0]
N ‖u1‖ + M∗

0

= [r(T1,1) + ε0]
N∑

i=1

[r(T1,1) + ε0]
N−i ‖T i−1

1,1 u1‖ + M∗
0

= [r(T1,1) + ε0] ‖u1‖∗ + M∗
0 ≤ [r(T1,1) + ε0] ‖u1‖∗ +

ε0
2

R′
0

< [r(T1,1) + ε0] ‖u1‖∗ +
ε0
2

‖u1‖∗ =
[
1
4
r(T1,1) +

3
4

]
‖u1‖∗.

This together with μ1 ≥ 1 implies that 1
4r(T1,1) + 3

4 ≥ 1, that is r(T1,1) ≥ 1,
which is a contradiction with (3.12). This implies that (3.13) holds. It follows
from Lemma 2.8 that i(Av,KR3 ,K) = 1. �

Theorem 3.10. If (H1), (H2), (H4) and (H5) are satisfied, and the following
conditions hold:

(i)
inf

y∈(0,+∞)
f1,0(y) > λ1,1, inf

y∈(0,+∞)
f∞
1 (y) > λ̃1,1;

(ii)
sup

y∈(0,+∞)

f0
2 (y) < λ1,2, sup

y∈(0,+∞)

f∞
2 (y) < λ1,2.

Then, system (1.1) has at least two positive solutions (u1, v1) and (u2, v2)
with 0 < ‖(u1, v1)‖ < p < ‖(u2, v2)‖.

Proof. For any u ∈ K\{0}, v ∈ K\{0}, it follows from Lemma 3.1 that
i(Av,Kp,K) = 1, i(Bu,Kp,K) = 0. Next, according to Lemmas 3.4 and 3.9,
and then additivity of fixed-point index, we can find r1, r2, R1, R2, which
satisfy 0 < r1 < p < R1, 0 < r2 < p < R2, such that

i(Av,Kp\K̄r1 ,K) = 1, i(Av,KR1\K̄p,K) = −1;

i(Bu,Kp\K̄r2 ,K) = −1, i(Bu,KR2\K̄p,K) = 1.

Since Av : K\{0} → K, Bu : K\{0} → K, T : K\{0}×K\{0} → K×K
are completely continuous, from Theorem 2.9, we get

i(T, Kp\Kr1 × Kp\Kr2 , K × K) = i(Av, Kp\Kr1 , K)

× i(Bu, Kp\Kr2 , K) = −1,

i(T, KR1\Kp × KR2\Kp, K × K) = i(Av, KR1\Kp, K)

× i(Bu, KR2\Kp, K) = −1.
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So, system (1.1) has at least two positive solutions (u1, v1) and (u2, v2) with
0 < ‖(u1, v1)‖ < p < ‖(u2, v2)‖. �

In the same way, we can prove the following theorems.

Theorem 3.11. If (H1), (H2), (H4) and (H∗
5 ) are satisfied, and the following

conditions hold:
(i)

sup
y∈(0,+∞)

f0
1 (y) < λ1,1, sup

y∈(0,+∞)

f∞
1 (y) < λ1,1;

(ii)
sup

y∈(0,+∞)

f0
2 (y) < λ1,2, sup

y∈(0,+∞)

f∞
2 (y) < λ1,2.

Then, system (1.1) has at least two positive solutions (u1, v1) and (u2, v2)
with 0 < ‖(u1, v1)‖ < p < ‖(u2, v2)‖.

Theorem 3.12. If (H1), (H2), (H4) and (H ′
5) are satisfied, and the following

conditions hold:
(i)

inf
y∈(0,+∞)

f1,0(y) > λ1,1, inf
y∈(0,+∞)

f1,∞(y) > λ̃1,1;

(ii)
inf

y∈(0,+∞))
f2,0(y) > λ1,2, inf

y∈(0,+∞)
f2,∞(y) > λ̃1,2.

Then, system (1.1) has at least two positive solutions (u1, v1) and (u2, v2)
with 0 < ‖(u1, v1)‖ < p < ‖(u2, v2)‖.

By Lemma 2.9, we can also prove the following theorem.

Theorem 3.13. If (H1), (H2) and (H4) are satisfied, and one of the following
conditions holds:

(i)
sup

y∈(0,+∞)

f0
1 (y) < λ1,1, inf

y∈(0,+∞)
f1,∞(y) > λ̃1,1

and
inf

y∈(0,+∞)
f2,0(y) > λ1,2, sup

y∈(0,+∞)

f∞
2 (y) < λ1,2;

(ii)
sup

y∈(0,+∞)

f0
1 (y) < λ1,1, inf

y∈(0,+∞)
f1,∞(y) > λ̃1,1

and
sup

y∈(0,+∞)

f0
2 (y) < λ1,2, inf

y∈(0,+∞)
f2,∞(y) > λ̃1,2;

(iii)
inf

y∈(0,+∞)
f1,0(y) > λ1,1, sup

y∈(0,+∞)

f∞
1 (y) < λ1,1

and
inf

y∈(0,+∞)
f2,0(y) > λ1,2, sup

y∈(0,+∞)

f∞
2 (y) < λ1,2.

Then, system (1.1) has at least one positive solution.
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4. Examples

Consider the following integral boundary value system⎧⎪⎪⎨
⎪⎪⎩

u′′(t) − u(t) + 1
t y1(t) = 0, t ∈ (0, 1),

v′′(t) − v(t) + 1
t y2(t) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(s)ds, u(1) =

∫ 1

0
u(s)ds,

v(0) =
∫ 1

0
v(s)ds, v(1) =

∫ 1

0
v(s)ds,

(4.1)

where y1, y2 ∈ C((0, 1)) ∩ L1((0, 1)). System (4.1) is a special case of the
(1.1), where a1(t) = a2(t) ≡ 0, b1(t) = b2(t) ≡ −1, c1(t) = c2(t) = 1

t ,
h1(t) = h2(t) = g1(t) = g2(t) ≡ 1. Obviously c1(t), c2(t) are singular at
t = 0.

Based on Lemma 2.1, let ϕ1,i and ϕ2,i be the unique solutions of the
following two boundary value problems, respectively{

ϕ′′
1,i(t) − ϕ1,i(t) = 0, t ∈ (0, 1),

ϕ1,i(0) = 0, ϕ1,i(1) = 1, i = 1, 2,

{
ϕ′′
2,i(t) − ϕ2,i(t) = 0, t ∈ (0, 1),

ϕ2,i(0) = 1, ϕ2,i(1) = 0, i = 1, 2.

Then it is easy to verify that

ϕ1,i(t) = e
e2−1 (et − e−t), ϕ2,i(t) = 1

e2−1 (e2−t − et),

k1,i = k4,i = 2
e+1 , k2,i = k3,i = e−1

e+1 , ki = 4−(e−1)2

(e+1)2 ,

ρi = ϕ′
1,i(0) = 2e

e2−1 , pi(t) = 1,

Gi(t, s) = 1
2(e2−1)

{
(et − e−t)(e2−s − es), 0 ≤ t ≤ s ≤ 1,

(es − e−s)(e2−t − et), 0 ≤ s ≤ t ≤ 1.

By computation, we know that 0 ≤ Gi(t, s) ≤ 2s, t, s ∈ [0, 1] and

Hi(s) = Gi(s, s) +
1
k

∫ 1

0

Gi(s, τ)dτ +
1
k

∫ 1

0

Gi(s, τ)στ ≤ 2s

+
4s

k
≤ 80s, s ∈ [0, 1],

then 0 <
∫ 1

0
Hi(s)ci(s)ds < +∞ for i = 1, 2.

Example 4.1. Let

f1(t, x, y) =
(
x

1
3 + x3

) 2 + sin(ln y)
A

,

f2(t, x, y) =
(
x

1
2 + x2

) 2 + cos(ln y)
B

,

where A,B > 0 are arbitrary real positive numbers. Assume that p = 1, then
for all 0 < x ≤ 1, y > 0 and 0 ≤ t ≤ 1, we have

f1(t, x, y) ≤ 3
A

, f2(t, x, y) ≤ 3
B

.
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Since 0 <
∫ 1

0
Hi(s)ci(s)ds < +∞ for i = 1, 2, we can choose A,B large

enough such that

3
A

<
1∫ 1

0
H1(s)c2(s)ds

,
3
B

<
1∫ 1

0
H2(s)c2(s)ds

.

Choose η1 ∈
(

3
A , 1∫ 1

0 H1(s)c2(s)ds

)
and η2 ∈

(
3
B , 1∫ 1

0 H2(s)c2(s)ds

)
, then the as-

sumption (H ′
5) in Lemma 3.2 is satisfied. It is easy to verify that f1, f2 satisfy

(H4). Since infy∈(0,+∞) f1,0(y) = infy∈(0,+∞) f1,∞(y) = infy∈(0,+∞) f2,0(y) =
infy∈(0,+∞) f2,0(y) = +∞. So by Theorem 3.12, we conclude that the follow-
ing singular integral boundary value system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′(t) − u(t) + 1
t

(
u

1
3 (t) + u3(t)

)
2+sin(ln v(t))

A = 0, t ∈ (0, 1),

v′′(t) − v(t) + 1
t

(
v

1
2 (t) + v2(t)

)
2+cos(lnu(t))

B = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(s)ds, u(1) =

∫ 1

0
u(s)ds,

v(0) =
∫ 1

0
v(s)ds, v(1) =

∫ 1

0
v(s)ds,

has at least two positive solutions (u1, v1) and (u2, v2) with 0 < ‖(u1, v1)‖ <
1 < ‖(u2, v2)‖.
Example 4.2. Let

f1(t, x, y) = (1 + | ln x|) (2 + sin(ln y)) ,

f2(t, x, y) =
(

1 + sin2 1
x

)
(2 + cos(ln y)) .

It is easy to verify that f1, f2 satisfy the assumption (H4) and

inf
y∈(0,+∞)

f1,0(y) = inf
y∈(0,+∞)

f2,0(y) = +∞,

inf
y∈(0,+∞)

f∞
1 (y) = inf

y∈(0,+∞)
f∞
2 (y) = 0.

So by Theorem 3.13, we conclude that the following singular integral boundary
value system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) − u(t) + 1
t (1 + | ln u(t)|) (2 + sin(ln v(t))) = 0, t ∈ (0, 1),

v′′(t) − v(t) + 1
t

(
1 + sin2 1

u(t)

)
(2 + cos (ln u(t))) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
u(s)ds, u(1) =

∫ 1

0
u(s)ds,

v(0) =
∫ 1

0
v(s)ds, v(1) =

∫ 1

0
v(s)ds,

has at least one positive solution.
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