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Abstract. A new technique has been developed for analytical solutions
of fractional order nonlinear ODE system. We propose a reliable method
called the fractional natural decomposition method
(FNDM). The FNDM is based on the natural transform method (NTM)
and the Adomian decomposition method. We use the FNDM to con-
struct new analytical approximate and exact solutions to systems of non-
linear fractional ordinary differential equation (NLFODEs). The frac-
tional derivatives are described in the Caputo sense.
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1. Introduction

Differential equations with fractional order have recently proved to be valu-
able tools to the modeling of many physical phenomena and started to attract
much more attention of Physicists and Mathematicians [4–6,8–10,18,20].
These equations are represented by linear and nonlinear ODEs and solving
such fractional differential equations (FDEs) is very important. So it is very
important to find efficient methods for solving FDEs. Most of the fractional
differential equations do not have exact analytical solutions; hence consider-
able effort has been focused on approximate and numerical solutions of these
equations.
Recently, various researchers have introduced new methods in the literature.
These methods include fractional Sumudu Transform [12,16], fractional ma-
trix method [6], fractional Adomian decomposition method (FADM) [7,19,
27], the fractional reduced differential transform method (FRDTM) [25,26],
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fractional Laplace decomposition method (FLDM) [30], the fractional homo-
topy analysis method (FHAM) [11,31] and the fractional homotopy pertur-
bation method (FHPM) [28,29].
In this paper, we introduce a new method, called the fractional natural de-
composition method (FNDM). The suggested FNDM provides the solution
in a rapid convergent series which may lead us to the solution in a closed
form. This method combines two powerful methods, the Natural transform
method (NTM) [3,13] and the Adomian decomposition method (ADM) [1,2],
for obtaining approximate solutions for systems of fractional partial differen-
tial equations. It is worth mentioning that the FNDM is applied without any
discretization or restrictive assumptions or transformations and it is free from
round-off errors. Also this method provides an analytical solution by using
the initial conditions only, unlike the variables separation method, which re-
quires initial and boundary conditions. The boundary conditions can be used
to justify the obtained results. The natural decomposition method (NDM)
was first introduced by Rawashdeh and Maitama in 2014 [21,23,24], to solve
linear and nonlinear ODEs and PDEs that appears in many mathematical
physics and engineering applications.
In this paper, we give analytical approximate solutions for 0 < α, β, γ < 1
and exact solutions in the case when α = β = γ = 1 to two nonlinear systems
of fractional ordinary differential equations.
The rest of this paper is organized as follows: in Sect. 2, we give some pre-
liminaries and definitions of fractional calculus. In Sects. 3 and 4, the natural
transform method is introduced. Section 4 is devoted to apply the method to
two test problems and presents graphs to show the effectiveness of the FNDM
for some values of x and t. In Sect. 5, we present tables for different values
of α, β, γ and t. Section 6 is for discussion and conclusion of this paper.

2. Preliminaries of Fractional Calculus

In this section, we give some of the main definitions and facts that we will
use in our study. Some of these basic definitions are due to Liouville which
are given as follows [4,5,9,15]:

Definition 2.1. A real function f(x), x > 0 is said to be in the space Cμ, μ ∈
R if there exists a real number q(> μ), such that f(x) = xqg(x), where
g(x) ∈ C [0,∞), and it is said to be in the space Cm

μ if f (m) ∈ Cμ, m ∈ N.

Definition 2.2. For an integrable function f ∈ Cμ, the Riemann–Liouville
fractional integral operator of order α ≥ 0 is defined as{

Jαf(x) = 1
Γ(α)

∫ x

0
(x − t)α−1f(t) dt, when α > 0, x > 0

J0f(x) = f(x).

Caputo and Mainardi [5] presented a modified fractional differentiation op-
erator Dα in their work on the theory of viscoelasticity to overcome the dis-
advantages of the Riemann–Liouville derivative when someone tries to model
real-world problems.
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Definition 2.3. The fractional derivative of f ∈ Cm
−1 in the Caputo sense can

be defined as

Dαf(x) = Jm−αDmf(x)

=
1

Γ(m − α)

∫ x

0

(x − t)m−α−1f (m)(t)dt,

where m − 1 < α ≤ m, m ∈ N, x > 0

Lemma 2.1 [14]. If m − 1 < α ≤ m, m ∈ N and f ∈ Cm
μ , μ ≥ −1, then⎧⎨

⎩
DαJαf(x) = f(x), if x > 0

JαDαf(x) = f(x) −
m−1∑
k=0

f (k)(0+)xk

k! , if m − 1 < α < m.

We would like to mention here the Caputo fractional derivative is used be-
cause it allows traditional initial and boundary conditions to be included in
the formulation of our problem.

3. Definitions and Properties of the N–Transform

In this section, we present some background about the nature of the natural
transform method (NTM). Given a function f(t), t ∈ R, the general integral
transform is defined by [3,13]:

� [f(t)] (s) =
∫ ∞

−∞
K(s, t) f(t) dt, (3.1)

where K(s, t) represent the kernel of the transform and s is the real (complex)
number which is independent of t. Note that when K(s, t) is e−st, t Jn(st)
and ts−1(st), Eq. (3.1) gives, respectively, Laplace transform, Hankel trans-
form and Mellin transform. Now, for f(t), t ∈ (−∞,∞) consider the integral
transforms defined by

� [f(t)] (u) =
∫ ∞

−∞
K(t) f(ut) dt, (3.2)

and

� [f(t)] (s, u) =
∫ ∞

−∞
K(s, t) f(ut) dt. (3.3)

It is worth mentioning that when K(t) = e−t, Eq. (3.2) gives the integral
Sumudu transform, where the parameter s is replaced by u. Moreover, for any
value of n the generalized Laplace and Sumudu transform are, respectively,
defined by [3,13]:

� [f(t)] = F (s) = sn

∫ ∞

0

e−sn+1t f(snt) dt, (3.4)

and

S [f(t)] = G(u) = un

∫ ∞

0

e−unt f(tun+1) dt. (3.5)
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Note that when n = 0, Eqs. (3.4) and (3.5) are the Laplace and Sumudu
transform, respectively. The natural transform of the function f(t) for t ∈ R

is defined by [8,10]:

N [f(t)] = R(s, u) =
∫ ∞

−∞
e−st f(ut) dt; s, u ∈ (−∞,∞) , (3.6)

where N [f(t)] is the natural transformation of the time function f(t) and the
variables s and u are the natural transform variables. Note that Eq. (3.6) can
be written in the following form [3,13]:

N [f(t)] = R−(s, u) + R+(s, u).

It is worth mentioning here that if the function f(t)H(t) is defined on the
positive real axis, where H(.) is the Heaviside function, t ∈ (0,∞), and

suppose that A =

{
f(t) : ∃ M, τ1, τ2 > 0, with |f(t)| < Me

|t|
τj , for

t ∈ (−1)j × [0,∞) , j ∈ Z
+

}
.

Then, we define the Natural transform (N-Transform) as

N [f(t)H(t)] = N
+ [f(t)] = R+(s, u) =

∫ ∞

0

e−st f(ut) dt; s, u ∈ (0,∞) .

(3.7)
Note if u = 1 Eq. (3.7) can be reduced to the Laplace transform and if s = 1
Eq. (3.7) can be reduced to the Sumudu transform.
Important properties: Some basic properties of the N-Transforms are given
as follows [3,13]:

1. N
+ [1] = 1

s .
2. N

+ [tα] = Γ(α+1) uα

sα+1 , where α > −1.

4. Analysis of the Fractional Natural Decomposition Method

In this section, we present some theorems of the fractional natural transform
method. Such results are in [22]. Also, in [17] the authors used different
approach to prove Theorems 4.1 and 4.3.

Theorem 4.1. If R(s, u) is the Natural transform of f(t), then the Natural
transform of the Riemann–Liouville fractional integral for f(t) of order α
denoted by Jα f(t) is given by

N
+ [Jαf(t)] =

uα

sα
R(s, u).

Theorem 4.2. If n is any positive integer, where n − 1 ≤ α < n and R(s, u)
is the Natural transform of the function f(t), then the Natural transform,
Rα(s, u) of the Riemann–Liouville fractional derivative of the function f(t)
of order α denoted by Dαf(t) is given by

N
+ [Dαf(t)] = Rα(s, u) =

sα

uα
R(s, u) −

n−1∑
k=0

sk

uk+1

(
Dα−k−1f(t)

)
t=0

.
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Theorem 4.3. If n is any positive integer, where n − 1 ≤ α < n and R(s, u)
is the Natural transform of the function f(t), then the Natural transform,
Rc

α(s, u) of the Caputo fractional derivative of the function f(t) of order α
denoted by cDαf(t) is given by

N
+ [cDαf(t)] = Rc

α(s, u) =
sα

uα
R(s, u) −

n−1∑
k=0

sα−(k+1)

uα−k

[
Dkf(t)

]
t=0

.

Methodology of the FNDM : We illustrate the FNDM by considering the gen-
eral fractional nonlinear ODEs system of the form

Dα
t x(t) + R x(t) + F x(t) = g(t)

Dβ
t y(t) + R y(t) + F y(t) = h(t),

(4.1)

where 0 < α, β ≤ 1,
subject to the initial conditions

x(0) = g(t); y(0) = h(t). (4.2)

Note that Dα
t x(t), Dβ

t y(t) are the Caputo fractional derivative of the func-
tions x(t), y(t), respectively, R is the linear differential operator, F represents
the general nonlinear differential operator and g(t), h(t) are the source terms.
We apply the N-Transform and Theorem 4.3 to Eq. (4.1) to get

X(s, u) =
uα

sα

n−1∑
k=0

sα−(k+1)

uα−k

[
Dkx(t)

]
t=0

+
uα

sα
N

+ [g(t)]

−uα

sα
N

+ [R x(t) + F x(t)]

Y (s, u) =
uβ

sβ

n−1∑
k=0

sβ−(k+1)

uβ−k

[
Dky(t)

]
t=0

+
uβ

sβ
N

+ [h(t)]

−uβ

sβ
N

+ [R y(t) + F y(t)] . (4.3)

Using Eq. (4.2), Eq. (4.3) becomes

X(s, u) = g(t) +
uα

sα
N

+ [g(t)] − uα

sα
N

+ [R x(t) + F x(t)]

Y (s, u) = h(t) +
uβ

sβ
N

+ [h(t)] − uβ

sβ
N

+ [Ry(t) + Fy(t)] . (4.4)

Now we apply the inverse Natural transform of Eq. (4.4) to obtain

x(t) = G(t) − N
−1

[
uα

sα
N

+ [R x(t) + F x(t)]
]

y(t) = H(t) − N
−1

[
uβ

sβ
N

+ [R y(t) + F y(t)]
]

. (4.5)

Note G(t) and H(t) are arising from the nonhomogeneous term and the pre-
scribed initial conditions.
Now we assume an infinite series solutions form:

x(t) =
∞∑

n=0
xn(t), y(t) =

∞∑
n=0

yn(t). (4.6)
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Using Eq. (4.6) we can re-write Eq. (4.5) as follows:
∞∑

n=0

xn(t) = G(t) − N
−1

[
uα

sα
N

+

[
R

∞∑
n=0

xn(t)

]
+

∞∑
n=0

An

]

∞∑
n=0

yn(t) = H(t) − N
−1

[
uβ

sβ
N

+

[
R

∞∑
n=0

yn(t)

]
+

∞∑
n=0

Bn

]
, (4.7)

where the An, Bn are the polynomials representing the nonlinear term F x(t),
F y(t), respectively.
By comparing both sides of Eq. (4.7) we conclude

x0(t) = G(t),
x1(t) = −N

−1
[

uα

sα N
+ [R x0(t)] + A0

]
,

x2(t) = −N
−1

[
uα

sα N
+ [R x1(t)] + A1

]
,

y0(t) = H(t)
y1(t) = −N

−1
[

uβ

sβ N
+ [R y0(t)] + B0

]
y2(t) = −N

−1
[

uβ

sβ N
+ [R y1(t)] + B1

]
.

We continue in this manner to get the general recursive relation given by

xn+1(t) = −N
−1

[
uα

sα N
+ [R xn(t)] + An

]
, n ≥ 1

yn+1(t) = −N
−1

[
uβ

sβ N
+ [R yn(t)] + Bn

]
, n ≥ 1.

(4.8)

5. Applications

To demonstrate the effectiveness of the FNDM, two examples of nonlinear
systems will be studied. We choose two nonlinear systems to show the features
of FNDM and the convergence of the FNDM solution.

Example 5.1. Consider the nonlinear systems of fractional ordinary differen-
tial equations of the form

Dαx(t) = 1
2x(t)

Dβy(t) = y(t) + x2(t) , 0 < α, β ≤ 1 (5.1)

subject to the initial conditions

x(0) = 1, y(0) = 0. (5.2)

The exact solutions in the case, α = β = 1, are x(t) = e
t
2 and y(t) = t et.

First, we apply the N-transform to Eq. (5.1) to get

N
+ [Dαx(t)] = 1

2N
+ [x(t)]

N
+

[
Dβy(t)

]
= N

+ [y(t)] + N
+

[
x2(t)

]
.

(5.3)

Apply Theorem 4.3 to Eq. (5.3) to obtain

sα

uα N
+ [x(t)] −

n−1∑
k=0

uα−(k+1)

sα−k

[
Dkx(t)

]
t=0

= 1
2N

+ [x(t)]

sβ

uβ N
+ [y(t)] −

n−1∑
k=0

uβ−(k+1)

sβ−k

[
Dky(t)

]
t=0

= N
+ [y(t)] + N

+
[
x2(t)

]
.

(5.4)

Substitute Eq. (5.2) into Eq. (5.4) to get

N
+ [x(t)] = 1

s + 1
2

uα

sα N
+ [x(t)]

N
+ [y(t)] = uβ

sβ N
+ [y(t)] + uβ

sβ N
+

[
x2(t)

]
.

(5.5)
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Take the inverse N-Transform of Eq. (5.5) to get

x(t) = 1 + 1
2N

−1
[

uα

sα N
+ [x(t)]

]
y(t) = N

−1
[

uβ

sβ N
+ [y(t)]

]
+ N

−1
[

uβ

sβ N
+

[
x2(t)

]]
.

(5.6)

Now from Eq. (5.6) we conclude
∞∑

n=0
xn(t) = 1 + 1

2N
−1

[
uα

sα N
+

[ ∞∑
n=0

xn(t)
]]

∞∑
n=0

yn(t) = N
−1

[
uβ

sβ N
+

[ ∞∑
n=0

yn(t) +
∞∑

n=0
An

]]
.

(5.7)

Also note that x2(t) =
∑∞

n=0 An.
Thus

A0 = x2
0

A1 = 2x0x1

A2 = 2x0x2 + x2
1

A3 = 2x0x3 + 2x1x2.

Since x0(t) = 1 and y0(t) = 0, using Eq. (5.7) we can find the following
components:

x1(t) =
1
2
N

−1

[
uα

sα
N

+ [x0]
]

=
1
2

tα

Γ (α + 1)
.

And

y1(t) = N
−1

[
uβ

sβ
N

+ [y0 + A0]
]

= N
−1

[
uβ

sβ

1
s

]

=
tβ

Γ (β + 1)
.

Similarly,

x2(t) =
1
2
N

−1

[
uα

sα

1
2

uα

sα+1

]

=
1
4

t2α

Γ (2α + 1)
.

And

y2(t) = N
−1

[
uβ

sβ
N

+ [y1 + A1]
]

= N
−1

[
uβ

sβ
N

+

[
tβ

Γ (β + 1)
+

tα

Γ (α + 1)

]]

=
t2β

Γ (2β + 1)
+

tα+β

Γ (α + β + 1)
.
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We continue in this manner to get

x3(t) = 1
8

t3α

Γ(3α+1)

y3(t) = t3β

Γ(3β+1) + tα+2β

Γ(α+2β+1) + 1
2

t2α+β

Γ(2α+β+1) + t3β

Γ(3β+1)
Γ(2β+1)

4(Γ(β+1))2
.

Finally, the approximate solutions are given by

x(t) = 1 +
1
2

tα

Γ (α + 1)
+

1
4

t2α

Γ (2α + 1)
+

1
8

t3α

Γ (3α + 1)
+

1
16

t4α

Γ (4α + 1)
+ · · ·

y(t) = 0 +
tβ

Γ (β + 1)
+

t2β

Γ (2β + 1)
+

tα+β

Γ (α + β + 1)
+

t3β

Γ (3β + 1)

+
tα+2β

Γ (α + 2β + 1)
+

1
2

t2α+β

Γ (2α + β + 1)
+

t3β

Γ (3β + 1)
Γ (2β + 1)

4 (Γ (β + 1))2
+ · · ·

Now when α = β = 1, we get

x(t) = e
t
2 , y(t) = t et.

This is the exact solution of Eq. (5.1).

Remark 5.1. Clearly, from Figs. 1 and 2 below, the FNDM approximation
and the exact solution are in excellent agreement for different values of α, β.

Example 5.2. Consider the nonlinear systems of fractional ordinary differen-
tial equations of the form

Dαx(t) = x(t)
Dβy(t) = 2x2(t),
Dγz(t) = 3x(t) y(t)

0 < α, β, γ ≤ 1 (5.8)

subject to the initial conditions

x(0) = 1, y(0) = 1, z(0) = 0. (5.9)

The exact solutions in the case when α = β = γ = 1 are x(t) = et , y(t) = e2t

and z(t) = e2t − 1.

Figure 1. The approximate and exact solutions of x(t) for
Example 5.1 for different values of α when 0 < x < 2
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Figure 2. The approximate and exact solutions of y(t) for
Example 5.1 for different values of α, β when 0 < x < 2

First, we apply the N-transform to Eq. (5.8) to get

N
+ [Dαx(t)] = N

+ [x(t)]

N
+

[
Dβy(t)

]
= 2N+

[
x2(t)

]
N

+ [Dγz(t)] = 3N+ [x(t)y(t)] . (5.10)

Apply Theorem 4.3 to Eq. (5.10) to get

sα

uα
N

+ [x(t)] −
n−1∑
k=0

uα−(k+1)

sα−k

[
Dkx(t)

]
t=0

= N
+ [x(t)]

sβ

uβ
N

+ [y(t)] −
n−1∑
k=0

uβ−(k+1)

sβ−k

[
Dky(t)

]
t=0

= 2N+
[
x2(t)

]
sγ

uγ
N

+ [z(t)] −
n−1∑
k=0

uγ−(k+1)

sγ−k

[
Dkz(t)

]
t=0

= 3N+ [x(t)y(t)] . (5.11)

Substitute Eq. (5.9) into Eq. (5.11) to get

N
+ [x(t)] =

1
s

+
uα

sα
N

+ [x(t)]

N
+ [y(t)] =

1
s

+ 2
uβ

sβ
N

+
[
x2(t)

]
N

+ [z(t)] = 3
uγ

sγ
N

+ [x(t)y(t)] . (5.12)

Take the inverse N-Transform of Eq. (5.12) to get

x(t) = 1 +
1
2
N

−1

[
uα

sα
N

+ [x(t)]
]

y(t) = 1 + 2N−1

[
uβ

sβ
N

+
[
x2(t)

]]

z(t) = 3 N
−1

[
uγ

sγ
N

+ [x(t)y(t)]
]

. (5.13)
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Assume our approximate solutions are given by

x(t) =
∞∑

n=0

xn(t)

y(t) =
∞∑

n=0

yn(t)

z(t) =
∞∑

n=0

zn(t). (5.14)

Note that the Adomian Polynomials are

x2(t) =
∞∑

n=0

An, x(t)y(t) =
∞∑

n=0

Bn.

Thus,

A0 = x2
0B0 = x0y0

A1 = 2x0x1B1 = x0y1 + y0x1

A2 = 2x0x2 + x2
1B2 = y0x2 + y1x1 + y2x0

A3 = 2x0x3 + 2x1x2B3 = y0x3 + y1x2 + y2x1 + y3x0.

Now from Eqs. (5.12) and (5.14) we conclude

∞∑
n=0

xn(t) = 1 + N
−1

[
uα

sα
N

+

[ ∞∑
n=0

xn(t)

]]

∞∑
n=0

yn(t) = 1 + 2N−1

[
uβ

sβ
N

+

[ ∞∑
n=0

An

]]

∞∑
n=0

zn(t) = 3 N
−1

[
uγ

sγ
N

+

[ ∞∑
n=0

Bn

]]
. (5.15)

Note that

A0 = x2
0

A1 = 2x0x1

A2 = 2x0x2 + x2
1

A3 = 2x0x3 + 2x1x2,

where x0(t) = 1, y0(t) = 1 and z0(t) = 0.
Using Eq. (5.15) we can find the following components:

x1(t) = N
−1

[
uα

sα
N

+ [x0]
]

=
tα

Γ (α + 1)

y1(t) = 2N−1

[
uβ

sβ
N

+ [A0(t)]
]

= 2N−1

[
uβ

sβ

1
s

]
= 2

tβ

Γ (β + 1)

z1(t) = 3N−1

[
uγ

sγ
N

+ [B0(t)]
]

= 3N−1

[
uγ

sγ

1
s

]
= 3

tγ

Γ (γ + 1)
.
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Similarly,

x2(t) = N
−1

[
uα

sα
N

+ [x1]
]

= N
−1

[
uα

sα

uα

sα+1

]

=
t2α

Γ (2α + 1)
.

And

y2(t) = 2N−1

[
uβ

sβ
N

+ [A1(t)]
]

= 4N−1

[
uβ

sβ

uα

sα+1

]

= 4
tβ+α

Γ (α + β + 1)
.

z2(t) = 3N−1

[
uγ

sγ
N

+ [B1(t)]
]

= 3N−1

[
uγ

sγ

[
2

uβ

sβ+1
+

uα

sα+1

]]

= 6
tγ+α2

Γ (γ + β + 1)
+ 3

tγ+α1

Γ (γ + α1 + 1)
.

We continue in this manner to get

x3(t) = N
−1

[
uα

sα
N

+ [x1(t)]
]

= N
−1

[
uα

sα

u2α

s2α+1

]

=
t3α

Γ (3α + 1)
.

y3(t) = 2N−1

[
uβ

sβ
N

+ [A1(t)]
]

= 4N−1

[
uβ

sβ

u2α1

s2α1+1

]
+ 2N−1

[
uβ+2α

sβ+2α+1

Γ (2α + 1)
(Γ (α + 1))2

]

= 4
tβ+2α

Γ (β + 2α + 1)
+ 2

Γ (2α + 1)
(Γ (α + 1))2

tβ+2α

Γ (β + 2α + 1)
.

z3(t) = 3N−1

[
uγ

sγ
N

+

[
t2α

Γ (2α + 1)
+

2tα+β

Γ (α + 1) Γ (β + 1)
+ 4

tα+β

Γ (α + β + 1)

]]

= 3
t2α+γ

Γ (2α + γ + 1)
+ 6

Γ (α + β + 1) tα+β+γ

Γ (α + 1) Γ (β + 1) Γ (γ + β + 1)

+ 12
tα+β+γ

Γ (α + β + γ + 1)
.
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Finally, the approximate solution is given by

x(t) = 1 +
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)
+

t3α

Γ (3α + 1)
+

t4α

Γ (4α + 1)
+ · · ·

y(t) = 1 +
2tβ

Γ (β + 1)
+

4tα+β

Γ (α + β + 1)
+

4t2α+β

Γ (2α + β + 1)

+
2Γ (2β + 1) tα+β

(Γ (α + 1))2 Γ (2α + β + 1)
+

4t3α+β

Γ (3α + β + 1)

+
4Γ (3α + 1) t3α+β

Γ (α + 1) Γ (2α + 1) Γ (3α + β + 1)
+

tα+3β

Γ (α + 3β + 1)
+ · · · z

z(t) =
3tγ

Γ (α3 + 1)
+

6tβ+γ

Γ (α3 + β + 1)
+

3tα+γ

Γ (α3 + α1 + 1)
+

3t2α+γ

Γ (2α + γ + 1)

+
6Γ (α + β + 1) tα+β+γ

Γ (α + 1) Γ (β + 1) Γ (α + β + γ + 1)
+

12tα+β+γ

Γ (α + β + γ + 1)
+ · · ·

Now when α = β = γ = 1, we get

x(t) = et, y(t) = e2t, z(t) = e3t − 1.

This is the exact solution of Eq. (5.8).

Remark 5.2. Clearly, from Figs. 3, 4 and 5 below, the FNDM approximation
and the exact solution are in excellent agreement for different values of α, β.
Finally, from Fig. 5 below, the FNDM approximation and the exact solution
are in excellent agreement for different values of α, β, γ.

Figure 3. The approximate and exact solutions of x(t) for
Example 5.2 for different values of α when 0 < x < 2
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Figure 4. The approximate and exact solutions of y(t) for
Example 5.2 for different values of α, β when 0 < x < 2

Figure 5. The approximate and exact solutions of z(t) for
Example 5.2 for different values of α, β, γ when 0 < x < 2

6. Numerical Tables

In this section, we shall illustrate the accuracy and efficiency of the FNDM
by comparing the approximate and exact solutions. In Tables 1, 2 we consider
the same values of t for x(t) and y(t), specifically, t = {0, 0.5, 1, 1.5, 2}. Also,
In Tables 3, 4 and 5 we consider the same values of t for x(t), y(t) and z(t),
specifically, t = {0.2, 0.4, 0.6, 0.8, 1}.

Table 1. The approximate and exact solution of x(t) for Ex-
ample 5.1 with n = 6 for different values of α

t α = 0.5 α = 0.75 α = 1

Approximate Exact
0 1 1 1 1
0.5 1.565 1.40158 1.28402 1.28403
1 1.93947 1.79155 1.64844 1.64872
1.5 2.30905 2.24013 2.11475 2.117
2 2.68885 2.76345 2.70833 2.71828
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Table 2. The approximate and exact solution of y(t) for Ex-
ample 5.1 with n = 6 for values of α and β

t α = β = 0.5 α = β = 0.75 α = β = 1

Approximate Exact
0 0 0 0 0
0.5 3.02474 1.50472 0.82487 0.824361
1 7.15762 4.42537 2.69792 2.71828
1.5 12.5724 9.41998 6.43945 6.72253
2 19.2289 17.0667 13.1667 14.7781

Table 3. The approximate and exact solutions of x(t) for
Example 5.2 with n = 6 for different values of α

t α = 0.5 α = 0.75 α = 1

Approximate Exact
0.2 1.79191 1.40452 1.2214 1.2214
0.4 2.38396 1.79815 1.49173 1.49182
0.6 3.00365 2.25167 1.8214 1.82212
0.8 3.66752 2.78142 2.2224 2.22554
1 4.38063 3.39926 2.70833 2.71828

Table 4. The approximate and exact solutions of y(t) for
Example 5.2 with n = 6 for values of α and β

t α = β = 0.5 α = β = 0.75 α = β = 1

Approximate Exact
0.2 3.44972 2.01141 1.49173 1.49182
0.4 6.07314 3.34422 2.2224 2.22554
0.6 9.23683 5.21482 3.2944 3.32012
0.8 12.9423 7.74447 4.83573 4.95303
1 17.1814 11.0466 7 7.38906

Table 5. The approximate and exact solutions of z(t) for
Example 5.2 with n = 6 for values of α, β, γ

t α = β = γ = 0.5 α = β = γ = 0.75 α = β = γ = 1

Approximate Exact
0.2 5.82993 1.92092 0.8214 0.822119
0.4 14.0205 5.23594 2.2944 2.32012
0.6 24.8723 10.6418 4.8294 5.04965
0.8 38.2985 18.6998 8.9664 10.0232
1 54.2354 29.9561 15.375 19.0855
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7. Conclusion

In this work, the FNDM has been successfully applied to construct approxi-
mate solutions for nonlinear fractional systems of ordinary differential equa-
tions. The FNDM provides the solution in terms of convergent series with
easily computable components. We successfully found exact solutions to both
example 1, in the case when α = β = 1 and example 2 in the case when
α = β = γ = 1. The FNDM is effective and simple to solve fractional non-
linear systems of ODES. Our goal in the future is to apply the FNDM to
other systems of fractional differential equations that arise in other areas of
science.
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