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Abstract. In this paper we investigate the relationship between some
spectra originating from Fredholm theory of a Drazin invertible oper-
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1. Introduction

Let L(X) be the Banach algebra of all bounded linear operators on an infinite-
dimensional complex Banach space X. If T ∈ L(X), we denote by σ(T ) the
spectrum of T , and we set α(T ) := dim ker T and β(T ) := codimT (X). A
simple consequence of the spectral mapping theorem for the spectrum shows
that if T ∈ L(X) is invertible then the points of the spectrum of its inverse
T−1 are the reciprocals of the spectrum σ(T ). If T is invertible, also some
other spectra that originated from Fredholm theory satisfy this relationship
of reciprocity, see next Corollary 2.6.

In literature, the concept of invertibility for an operator T ∈ L(X)
admits several generalizations and has some interest to investigate the rela-
tionships between the spectral properties of T and the spectral properties of
a “generalized inverse” of T , if this exists. For instance, the relationship of
“reciprocity” mentioned above between the nonzero parts of the spectrum
has been also observed in the case that the “generalized inverse” is given in
the sense of Drazin invertibility, while this relation of reciprocity between the
nonzero points of spectrum of T and the nonzero points of spectrum of any of
its “pseudo-inverses” may fail if we consider the concept of relatively regular
operators, see [13, p. 53] for definition and details. The concept of Drazin
invertibility has been introduced by Drazin in the more abstract setting of
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Banach algebras [14]. In the case of the Banach algebra L(X), an operator
R ∈ L(X) is said to be Drazin invertible (with a finite index) if there exists
an operator S ∈ L(X) and n ∈ N such that

RS = SR, SRS = S, RnSR = Rn, (1)

see [17, Chap. 3, Theorem 10]. The operator S is called Drazin inverse of R.
The smallest nonnegative integer ν such that (1) holds is called the index i(R)
of R. Recall that the ascent of an operator T ∈ L(X) is defined as the smallest
non-negative integer p := p(T ) such that ker T p = ker T p+1. If such integer
does not exist we set p(T ) = ∞. Analogously, the descent of T is defined as
the smallest non-negative integer q := q(T ) such that T q(X) = T q+1(X), and
if such integer does not exist we set q(T ) = ∞. A classical result establishes
that if p(T ) and q(T ) are both finite, then p(T ) = q(T ), see [1, Theorem 3.3].
An operator R ∈ L(X) is Drazin invertible if and only if p(R) = q(R) < ∞,
see [17, Chap. 3, Theorem 10]. Evidently, an invertible operator R is Drazin
invertible with Drazin inverse S := R−1, while if 0 ∈ σ(R) then R is Drazin
invertible if and only if 0 is a pole of the resolvent of R. In this case i(R) is
the order of the pole 0, i.e. i(R) = p(R) = q(R), see [13, § 5.2]. From [17,
Chap. 3, Theorem 10] we also know that if R ∈ L(X) is Drazin invertible
if and only if there exist two closed invariant subspaces Y and Z such that
X = Y ⊕ Z and, with respect to this decomposition,

R = R1 ⊕ R2, with R1 := R|Y nilpotent and R2 := R|Z invertible.
(2)

Note that the Drazin inverse S of an operator, if it exists, is uniquely deter-
mined ([13]), and with respect to the decomposition X = Y ⊕ Z, the Drazin
inverse S may be represented as the directed sum

S := 0 ⊕ S2 with S2 := R2
−1. (3)

The decompositions (2) and (3) are very useful to study the spectral prop-
erties of a Drazin invertible operator; in particular, the decomposition (3)
shows that the Drazin inverse S is itself Drazin invertible, since is the direct
sum of the nilpotent operator 0 and the invertible operator S2. It should be
noted that if 0 ∈ σ(R), then 0 ∈ σ(S) and 0 is a pole of the first order of the
resolvent of S, see [18]. Furthermore, the following relationship of reciprocity
holds for the spectra of S and R:

σ(S)\{0} =
{

1
λ

: λ ∈ σ(R)\{0}
}

, (4)

see [8].
The structure of the spectrum of the Drazin inverse S of a Drazin invert-

ible operator R is strongly related to the structure of the spectrum of R. In
[8] has been studied the transmission of several local spectral properties from
a Drazin invertible operator R to its Drazin inverse S. In this paper we show
that the nonzero points of some other spectra of R and S, that originated
from Fredholm theory, satisfy a relationship of reciprocity. This relationship
will be proved in the more general context of the spectrum generated by a
regularity. Furthermore, we shall show that if a Drazin invertible operator R
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is algebraic then also its Drazin inverse S is algebraic and analogously, if R
is a Riesz operator then also S is Riesz. In the last section, we also study
the transmission of Browder type theorems and Weyl type theorems from a
Drazin invertible operator R to its Drazin inverse S.

2. Preliminary Results

Given a bounded linear operator T ∈ L(X), the local resolvent set ρT (x) of
T at a point x ∈ X is defined as the union of all open subsets U of C such
that there exists an analytic function f : U → X satisfying

(λI − T )f(λ) = x for all λ ∈ U . (5)

The local spectrum σT (x) of T at x is the set defined by σT (x) := C\ρT (x).
Obviously, σT (x) ⊆ σ(T ).

An operator T ∈ L(X) is said to have the single valued extension prop-
erty at λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc Dλ0 centered
at λ0 the only analytic function f : Dλ0 → X which satisfies the equation

(λI − T )f(λ) = 0 (6)

is the function f ≡ 0. Evidently, every operator T has SVEP at the isolated
points of σ(T ). An operator T ∈ L(X) is said to have the SVEP if T has the
SVEP at every point λ ∈ C. It is easily seen from definition that the SVEP
is inherited by restrictions to invariant closed subspaces. The SVEP for T is
equivalent to saying that σT (x) = ∅ if and only if x = 0, see [15, Proposition
1.2.16]. Note that

p(λI − T ) < ∞ ⇒ T has SVEP at λ,

and, by duality,

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ,

see [1, Chap. 3].
The localized SVEP satisfies a spectral mapping theorem, see [1, The-

orem 2.39]:

Theorem 2.1. Let T ∈ L(X) and suppose that f is an analytic function on
the open neighborhood U of σ(T ) such that f is non-constant on each of the
connected components of U . Then f(T ) has the SVEP at λ ∈ C if and only
if T has the SVEP at every point μ ∈ σ(T ) for which f(μ) = λ.

Corollary 2.2. Let λ0 
= 0 and suppose that T is invertible. Then T−1 has
SVEP at 1/λ0.

Proof. Let g(λ) = 1
λ . Since 0 /∈ σ(T ), there is an open neighborhood U

containing the spectrum such that 0 /∈ U and obviously g is analytic on D.
Since T has SVEP at λ0, by Theorem 2.1, g(T ) = T−1 has SVEP at 1

λ0
. �

In [8] it has been proved that the SVEP for a Drazin invertible operator
R is transmitted to its Drazin inverse S. We give now a localized version of
this result.
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Theorem 2.3. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then R has SVEP at λ0 
= 0 if and only if S has SVEP at 1

λ0
.

Proof. Let X = Y ⊕ Z, R = R1 ⊕ R2 and S = 0 ⊕ S2, where S2 = R2
−1.

Suppose that R has SVEP at λ0. Then R2 = R|Z has SVEP at λ0, since the
localized SVEP is inherited by the restriction on invariant closed subspaces.
By Corollary 2.2, S2 has SVEP at 1

λ0
. Since the null operator has SVEP at

every point, by [1, Theorem 2.9], S has SVEP at 1
λ0

. The reverse is proved
similarly, since every nilpotent operator has SVEP. Let A be an unital Banach
algebra with unit u. �

Definition 2.4. A non-empty subset K of A is said to be a regularity if the
following conditions are satisfied:

(i) a ∈ K ⇔ an ∈ K for all n ∈ N.
(ii) If a, b, c, d are mutually commuting elements of A and ac + bd = u then

ab ∈ K ⇔ a ∈ K and b ∈ K.

Let us now consider the Banach algebra A = L(X) and let H(σ(T ))
denote the space of all analytic functions defined on an open neighborhood U
of σ(T ) which are non-constant on each component of its domain of definition.
Denote by

σK(T ) := {λ ∈ C : λI − T /∈ K},
the spectrum corresponding to the regularity K in L(X). It should be noted
that σK(T ) ⊆ σ(T ) for every regularity K and every T ∈ L(X). The proof of
the following theorem may be found in [17]:

Theorem 2.5. Let K be a regularity in L(X). Then

σK(f(T )) = f(σK(T ))

for every T ∈ L(X) and every f ∈ H(σ(T )).

The axioms of regularity are usually rather easy to verify and there
are many classes of operators in Fredholm theory which satisfy them. An
excellent survey concerning the regularity of various classes of bounded linear
operators in Banach spaces may be found in [16] and [17].

In the sequel we always assume the nontrivial case K 
= L(X). It should
be noted that σK(T ) may be empty. For instance, if T is algebraic (i.e., there
exists a non-trivial polynomial h such that h(T ) = 0) and K is the class
of Drazin invertible operators (this class is a regularity, see [10]), then the
Drazin spectrum is empty, since σ(T ) is a finite set of poles, see [1, Theorem
3.83]. In particular, σK(N) = ∅ for every nilpotent operator N , since N is
algebraic.

Corollary 2.6. If T ∈ L(X) is invertible and K is a regularity, then

σK(T−1) =
{

1
λ

: λ ∈ σK(T )
}

, (7)
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Proof. Suppose that T ∈ L(X) is invertible. Then 0 /∈ σ(T ). Consider the
function f(λ) = 1

λ defined on an open neighborhood U of σ(T ) which does
not contain 0. Then f(T ) = T−1, so, by Theorem 2.5, the statement follows.

�
Let K be a regularity in L(X) and suppose that X = X1 ⊕ X2 where,

X1 
= {0} and X2 
= {0}. If T ∈ L(X) and Xi are invariant under T , define
T1 := T |X1, T2 := T |X2. Write

K1 := {T1 ∈ L(X1) : T1 ⊕ I ∈ K},
and analogously,

K2 := {T2 ∈ L(X2) : I ⊕ T2 ∈ K}.
Then K1 and K2 are regularities in L(X1) and L(X2), respectively. Further,
assume that K satisfies the following condition: (I) σK1(T1) 
= ∅ for all
T1 ∈ L(X1) and K1 
= L(X1). If K satisfies the condition (I) we have σK(T ) =
σK1(T1) ∪ σK2(T2), see [17, p. 53].

Theorem 2.7. Let K be a regularity in L(X) which satisfies the condition (I).
Let R ∈ L(X) be a Drazin invertible operator with Drazin inverse S; then

σK(S)\0 = {1/λ : λ ∈ σK(R)\{0}}. (8)

Proof. Observe first that if R is either invertible or nilpotent, then the equal-
ity (8) holds for every regularity. Indeed, if R is invertible then S = R−1, so
(8) follows from Corollary 2.6. If R is nilpotent then S = 0 and σK(R), as
well as σK(S), are subsets of {0}, so the right-hand side and the left-hand
side in (8) are both empty.

Suppose that 0 ∈ σ(R) (and hence 0 ∈ σ(S)) and that R is not nilpotent.
Then in the decomposition X = Y ⊕ Z, R1 = R|Y , R2 = R|Z, with R1

nilpotent and R2 invertible, we have Y 
= {0} and Z 
= {0}. If K is a regularity
in L(X), let K1 and K2 be as above. Since R1 is nilpotent and, by assumption,
σK1(R1) 
= ∅, σK1(R1) = {0}, while 0 /∈ σK2(R2), since 0 /∈ σ(R2). Therefore,

σK(R) = σK1(R1) ∪ σK2(R2) = {0} ∪ σK2(R2),

and hence σK(R)\{0} = σK2(R2). Analogously, σK(S)\{0} = σK2(S2). In
view of the equality (7), we then have

σK(S)\{0} = σK2(S2) =
{

1
λ

: λ ∈ σK2(R2)
}

=
{

1
λ

: λ ∈ σK(R)\{0}
}

,

as desired. �
The following theorem shows that the nonzero poles of the resolvent of

a Drazin invertible S operator are the reciprocals of the nonzero poles of its
Drazin inverse. Note that the equality (iii) in [18] has been observed only for
the closure of the ranges.

Theorem 2.8. Let λ 
= 0.
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(i) If T ∈ L(X) is invertible, then

(λI − T )k(X) =
(

1
λ

I − T−1

)k

(X) for all k ∈ N.

(ii) If R is Drazin invertible with Drazin inverse S, then

ker (λI − S)k = ker
(

1
λ

I − R

)k

for all k ∈ N.

(iii) If R is Drazin invertible with Drazin inverse S, then

(λI − S)k(X) =
(

1
λ

I − R

)k

(X) for all k ∈ N.

(iv) If R is Drazin invertible with Drazin inverse S, then λ is a pole of the
resolvent of R if and only if 1

λ is a pole of the resolvent of S.

Proof.
(i) Let y = (λI − T )kx. Then(

1
λ

I − T−1

)k

T kx =
(

1
λ

T k − I

)k

x =
(

− 1
λ

)k

y,

so (λI − T )k(X) ⊆ ( 1
λI − T−1)k(X). The reverse inclusion follows by

symmetry.
(ii) See [8].
(iii) Let X = Y ⊕ Z, R = R1 ⊕ R2 and S = 0 ⊕ S2 with S2 = R−1

2 . Since R1

is nilpotent then 1
λI − R1 is invertible, and hence ( 1

λI − R1)k(Y ) = Y .
Hence (

1
λ

I − R

)k

(X) =
(

1
λ

I − R1

)k

(Y ) ⊕
(

1
λ

I − R2

)k

(Z) = Y ⊕
(

1
λ

I − R2

)k

(Z),

and analogously

(λI − S)k(X) = Y ⊕ (λI − S2)k(Z).

From part (i) we have (λI − S2)k(Z) = ( 1
λI − R2)k(Z), so(

1
λ

I − R

)k

(X) = Y ⊕ (λI − S2)k(Z) = (λI − S)k(X).

(iv) From part (ii) and part (iii) we have p(λI −R) = p( 1
λI −S) and q(λI −

R) = q( 1
λI − S).

�
Recall that an operator T is algebraic if and only if the spectrum of T

is a finite set of poles of the resolvent [1, Theorem 3.83]. Obviously, every
algebraic operator T is Drazin invertible.

Corollary 2.9. If T ∈ L(X) is algebraic, then its Drazin inverse is also alge-
braic.
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Proof. Let S be the Drazin inverse of T . Since σ(T ) is a finite set, from (4) it
then follows that also σ(S) is a finite set. We show that every point of σ(S)
is a pole of the resolvent. If 0 ∈ σ(S) then, since S is Drazin invertible, 0
is a pole (of the first order) of the resolvent of S. Let 0 
= λ ∈ σ(S). Then
1
λ ∈ σ(T ) and hence 1

λ is a pole of the resolvent of T . From part (iv) of
Theorem 2.8 it then follows that λ is a pole of the resolvent of S. �

3. Weyl and Browder Spectra

Let T ∈ L(X) be a bounded linear operator defined on an infinite-dimensional
complex Banach space X. Let

Φ+(X) := {T ∈ L(X) : α(T ) < ∞ and T (X) is closed}
denote the class of all upper semi-Fredholm operators, and let

Φ−(X) := {T ∈ L(X) : β(T ) < ∞}
denote the class of all lower semi-Fredholm operators. If T ∈ Φ±(X) :=
Φ+(X) ∪ Φ−(X), the index of T is defined by ind (T ) := α(T ) − β(T ). If
Φ(X) := Φ+(X) ∩ Φ−(X) denotes the set of all Fredholm operators, the set
of Weyl operators is defined by

W (X) := {T ∈ Φ(X) : indT = 0},

the class of upper semi-Weyl operators is defined by

W (X) := {T ∈ Φ(X) : indT = 0},

W+(X) := {T ∈ Φ+(X) : indT ≤ 0},

and class of lower semi-Weyl operators is defined by

W−(X) := {T ∈ Φ−(X) : indT ≥ 0}.

Clearly, W (X) = W+(X) ∩ W−(X). The classes of operators above defined
generate the following spectra: the Weyl spectrum, defined by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)};

and the upper semi-Weyl spectrum, defined by

σuw(T ) := {λ ∈ C : λI − T /∈ W+(X)}.

The class of all Browder operators is defined

B(X) := {T ∈ Φ(X) : p(T ), q(T ) < ∞};

while the class of all upper semi-Browder operators is defined

B+(X) := {T ∈ Φ+(X) : p(T ) < ∞}.

The Browder spectrum is denoted by σb(T ), while the upper semi-Browder
spectrum is denoted by σub(T ). Obviously, B(X) ⊆ W (X) and B+(X) ⊆
W+(X), see [1, Theorem 3.4], so σw(T ) ⊆ σb(T ) and σuw(T ) ⊆ σub(T ).
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In the sequel we denote by σa(T ) the approximate point spectrum, de-
fined by

σa(T ) := {λ ∈ C : λI − T is not bounded below},

where T ∈ L(X) is said to be bounded below if it is injective and has closed
range.

Remark 3.1. It should be noted that, by Theorem 3.4 of [1], if R is Drazin
invertible then

R is upper semi-Weyl ⇔ R is Weyl ⇔ R is Browder.

Theorem 3.2. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then we have

(i) R is Browder if and only if S is Browder.
(ii) σb(S)\{0} = { 1

λ : λ ∈ σb(R)\{0}}.
(iii) σub(S)\{0} = { 1

λ : λ ∈ σub(R)\{0}}.
Proof.

(i) If 0 /∈ σ(R), then R is invertible and the Drazin inverse is S = R−1 so
the assertion is trivial in this case. Suppose that 0 ∈ σ(R) and that R is
Browder. Then 0 is a pole of the resolvent of R and is also a pole (of the
first order) of the resolvent of S. Let X = Y ⊕Z such that R = R1⊕R2,
R1 = R|Y nilpotent and R2 = R|Z invertible. Observe that

ker R = ker R1 ⊕ ker R2 = ker R1 ⊕ {0}, (9)

and, analogously, since S = 0 ⊕ S2 with S2 = R2
−1, we have

ker S = ker 0 ⊕ ker S2 = Y ⊕ {0}. (10)

Since R is Browder we have α(R) = dim ker R < ∞, and from the
inclusion ker R1 ⊆ ker R it then follows that α(R1) < ∞. Consequently,
α(Rn

1 ) < ∞ for all n ∈ N. Let Rν
1 = 0. Since Y = ker Rν

1 we then
conclude that the subspace Y is finite-dimensional and hence ker S =
Y ⊕{0} is finite-dimensional, i.e. α(S) < ∞. Now, S is Drazin invertible,
so p(S) = q(S) < ∞ and hence, by [1, Theorem 3.4], α(S) = β(S) < ∞.
Hence S is Browder.

Conversely, suppose that S is Browder. Then α(S) < ∞ and hence
by (10) the subspace Y is finite-dimensional, from which it follows that
also ker R1 = ker R|Y is finite-dimensional. From (9) we then have
that α(R) < ∞ and since p(R) = q(R) < ∞ we then conclude that
α(R) = β(R), again by [1, Theorem 3.4]. Therefore, R is a Browder
operator.

(ii) The class of Browder operators is a regularity and the spectrum σb(T )
is non-empty for all T ∈ L(X). Hence, from Theorem 2.7, the equality
(ii) holds.

(iii) Also the class of upper semi-Browder operators is a regularity and the
spectrum σub(T ) is non-empty for all T ∈ L(X). Again, from Theorem
2.7, the equality (iii) holds. �
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Recall that T ∈ L(X) is said to be a Riesz operator if λI − T ∈ Φ(X)
for all λ 
= 0, or equivalently if λI − T is Browder for all λ 
= 0, see [1, The-
orem 3.111]. A Drazin invertible operator R which is also Riesz is evidently
algebraic, (since 0 is a pole, and hence an isolated point of the spectrum, so
σ(R) is a finite set of poles), but the converse is not true.

Corollary 3.3. If a Drazin invertible operator R ∈ L(X) is a Riesz operator,
then its Drazin inverse is also Riesz.

Proof. Since X is infinite dimensional and R is Riesz, then σb(R) = {0}.
Suppose that the Drazin inverse S is not Riesz. Then there exists 0 
= λ
such that λ ∈ σb(S). From part (ii) of Theorem 3.2 then 0 
= 1

λ ∈ σb(R), a
contradiction. �

The spectral theorem may fail for the Weyl spectrum σw(T ), see [1,
Example 3.64]. However we have, by [1, Theorem 3.63],

σw(f(T )) ⊆ f(σw(T )) for all T ∈ L(X). (11)

Note that if T ∈ L(X) is invertible, then 0 /∈ σw(T ) and 0 /∈ σw(T−1).
Although the spectral mapping theorem does not hold for σw(T ) we show that
for a Drazin invertible operator R, the relationship of reciprocity between the
nonzero parts of the σw(R) and the Weyl spectrum of its Drazin inverse σw(S)
is still true. We need first the following Lemma:

Lemma 3.4. Suppose that T ∈ L(X) is invertible. Then

σw(T−1) =
{

1
λ

: λ ∈ σw(T )
}

.

Proof. Consider the analytic function f(λ) := 1
λ defined on a open neighbor-

hood U containing the spectrum of T and such that 0 /∈ U . Then T−1 = f(T ),
so, from the inclusion (11) we have

σw(T−1) = σw(f(T )) ⊆ f(σw(T )) =
{

1
λ

: λ ∈ σw(T )
}

.

To show the opposite inclusion { 1
λ : λ ∈ σw(T )} ⊆ σw(T−1), consider again

the function f(λ) := 1
λ . Then f(T−1) = T , so, always from (11), we have

σw(T ) = σw(f(T−1)) ⊆ f(σw(T−1)) =
{

1
λ

: λ ∈ σw(T−1)
}

. (12)

Let λ0 := 1
μ0

with μ0 ∈ σw(T ). From the inclusion (12) we have μ0 = 1
λ0

∈
{ 1

λ : λ ∈ σw(T−1)}, so λ0 ∈ σw(T−1).
Therefore, the points of σw(T−1) are the reciprocals of the spectrum

σw(T ). �

Theorem 3.5. Let R ∈ L(X) be Drazin invertible with Drazin inverse S. Then
we have

σw(S)\{0} =
{

1
λ

: λ ∈ σw(R)\{0}
}

,
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and

σuw(S)\{0} = { 1
λ

: λ ∈ σuw(R)\{0}}.
Proof. With respect to the decomposition R = R1 ⊕ R2 and S = 0 ⊕ S2,
with S2 = R2

−1, we have

σw(R) = σw(R1) ∪ σw(R2) = {0} ∪ σw(R2)

and

σw(S) = σw(0) ∪ σw(R2) = {0} ∪ σw(S2).

Observe that R2 and S2 are invertible, so 0 /∈ σw(R2) and 0 /∈ σw(S2). Hence,
σw(R)\{0} = σw(R2) and σw(S)\{0} = σw(S2). By the previous lemma, the
points of σw(R2) and σw(S2) are reciprocal; hence

σw(S)\{0} = σw(S2) =
{

1
λ

: λ ∈ σw(R2)
}

=
{

1
λ

: λ ∈ σw(R)\{0}
}

,

so the first equality is proved.
Let 0 
= λ and suppose that 1

λ /∈ σuw(R), i.e., 1
λI − R is upper semi-

Weyl. Then 1
λI −R ∈ Φ+(X) and ind ( 1

λI −R) ≤ 0. By Theorem 2.8 we have
ker ( 1

λI − R) = ker (λI − S), so α(λI − S) < ∞. Moreover,

(λI − S)(X) = (λI − 0)(Y ) ⊕ (λI − S2)(Z) = Y ⊕ (λI − S2)(Z).

Now, R1 is nilpotent so 1
λI − R1 is invertible, and hence ( 1

λI − R1)(Y ) = Y ,
while ( 1

λI − R2)(Z) = (λI − S2)(Z), by part (i) of Theorem 2.8. Therefore,(
1
λ

I − R

)
(X) =

(
1
λ

I − R1

)
(Y ) ⊕

(
1
λ

I − R2

)
(Z) = Y ⊕ (λI − S2)(Z)

= (λI − S)((X),

so (λI −S)((X) is closed, because ( 1
λI −R)(X) is closed by assumption, and

this shows that λI −S ∈ Φ+(X). It remains only to prove that ind (λI −S) ≤
0. Clearly, β( 1

λI − R) = β(λI − S) and α( 1
λI − R) = α(λI − S), by Theorem

2.8, so ind (λI −S) = ind ( 1
λI −R) ≤ 0. Therefore, λI −S is upper semi-Weyl

and hence λ /∈ σuw(S).
Conversely, suppose that λ /∈ σuw(S), i.e. λI − S is upper semi-Weyl.

From the equalities ker ( 1
λI−R) = ker (λI−S) and ( 1

λ−R)(X) = (λI−S)((X)
we then obtain that 1

λI−R ∈ Φ+(X). As above, ind ( 1
λI−R) = ind (λI−S) ≤

0, so 1
λI − R is upper semi-Weyl, and hence 1

λ /∈ σuw(R). �

4. Browder and Weyl Type Theorems

Browder type theorems and Weyl type theorems concern the structure of
the spectrum of some classes of operators see [2,5]. In this section, by using
the results of the previous sections, we show that Browder and Weyl type
theorems are transferred from a Drazin invertible operator R to its Drazin
inverse S.

An operator T ∈ L(X) is said to satisfy Browder’s theorem if σw(T ) =
σb(T ), or, equivalently, T has SVEP at every λ /∈ σw(T ) see [3]. An operator
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T ∈ L(X) is said to satisfy a-Browder’s theorem if σuw(T ) = σub(T ), or
equivalently T has SVEP at every λ /∈ σuw(T ), see [4].

Theorem 4.1. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

(i) R satisfies Browder’s theorem if and only if S satisfies Browder’s theo-
rem.

(ii) R satisfies a-Browder’s theorem if and only if S satisfies a-Browder’s
theorem.

Proof.
(i) Suppose that R satisfies Browder’s theorem and let X = Y ⊕ Z, R =

R1 ⊕ R2 and S = 0 ⊕ S2, where S2 = R2
−1. Let λ /∈ σw(S) be arbitrary

given. To prove that Browder’s theorem holds for S it suffices to show
that S has SVEP at λ. If λ = 0, then S has SVEP at 0, since p(S) < ∞
(recall that the Drazin inverse S is itself Drazin invertible). If λ 
= 0,
then 1

λ /∈ σw(R), and since R satisfies Browder’s theorem then R has
SVEP at 1/λ. By Theorem 2.3 it then follows that S has SVEP at λ.
Hence S satisfies Browder’s theorem. The converse may be proved by
using similar arguments.

(ii) Suppose that R satisfies a-Browder’s theorem and let λ /∈ σuw(S). If
λ = 0, since S is Drazin invertible we have p(S) < ∞, hence S has
SVEP at 0. If λ 
= 0 then 1

λ /∈ σuw(R), and since R satisfies a-Browder’s
theorem then R has SVEP at 1/λ. By Theorem 2.3 then S has SVEP
at λ, and hence S satisfies a-Browder’s theorem.

�
For every operator T ∈ L(X) let p00(T ) := σ(T )\σb(T ), and set

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) < ∞.}
Clearly, p00(T ) ⊆ π00(T ) for every T ∈ L(X). Define pa

00(T ) := σa(T )\σub(T )
and

πa
00(T ) := {λ ∈ iso σa(T ) : 0 < α(λI − T ) < ∞.}

We also have pa
00(T ) ⊆ πa

00(T ) for every T ∈ L(X).
Set

Δ(T ) := σ(T )\σw(T ) and Δa(T ) := σa(T )\σuw(T ).
It should be noted that the class of all bounded below operators is a

regularity and σa(T ) is nonempty for all T ∈ L(X); thus, by Theorem 2.7,

σa(S)\{0} =
{

1
λ

: λ ∈ σa(R)\{0}
}

. (13)

The following properties have been introduced in [11] and [12], see also
[6].

Definition 4.2. Let T ∈ L(X).
(i) T is said to satisfy property (b) if Δa(T ) = p00(T ).
(ii) T is said to satisfy property (ab) if Δ(T ) = pa

00(T ).
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Property (b) for T entails a-Browder’s theorem for T , while property (ab)
for T entails Browder’s theorem for T . Moreover, property (b) for T implies
property (ab) for T . Browder type theorems recently have been investigated
in [19]. Set Σa(T ) := Δ(T ) ∪ pa

00(T ). The following results have been proved
in [9, Theorem 3.3] and [6, Theorem 2.4].

Theorem 4.3. Let T ∈ L(X). Then we have the following:
(i) T satisfies property (ab) if and only if Σa(T ) ⊆ isoσ(T ).
(ii) T satisfies property (b) if and only if Δa(T ) ⊆ isoσ(T ).

Both properties (b) and (ab) are transmitted from a Drazin invertible
operator to its Drazin inverse. To show this we need a preliminary result.

Lemma 4.4. Let R ∈ L(X) be Drazin invertible with Drazin inverse S. We
have:

(i) 0 ∈ p00(R) ⇔ 0 ∈ p00(S). If λ 
= 0, then λ ∈ p00(R) ⇔ 1
λ ∈ p00(S).

(ii) 0 ∈ pa
00(R) ⇔ 0 ∈ pa

00(S). If λ 
= 0, then λ ∈ pa
00(R) ⇔ 1

λ ∈ pa
00(S).

Proof.
(i) Since 0 ∈ σ(R) if and only if 0 ∈ σ(S), then the first assertion follows

from part (i) of Theorem 3.2. The second assertion is clear from part
(ii) of Theorem 3.2.

(ii) The proof is similar to part (i).
�

Theorem 4.5. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

(i) R satisfies property (ab) and only if S satisfies property (ab).
(ii) R satisfies property (b) and only if S satisfies property (ab).

Proof.
(i) Suppose that R satisfies property (ab). Then R satisfies Browder’s the-

orem and hence also S satisfies Browder’s theorem, by Theorem 4.1.
Therefore, σb(S) = σw(S). Let λ ∈ Σa(S). By Theorem 4.3 it suffices to
show that λ ∈ iso σ(S). We distinguish the two cases λ = 0 and λ 
= 0.

If λ = 0 then 0 ∈ iso σ(S), since S is Drazin invertible. Suppose
that λ 
= 0. Then either λ ∈ Δ(S) or λ ∈ p00(S). If λ ∈ Δ(S) =
σ(S)\σw(S) = σ(S)\σb(S) = p00(S), then λI − S is Browder, so λ ∈
iso σ(S). If λ ∈ pa

00(S) then, by Lemma 4.4, 1
λ ∈ pa

00(R). Property (ab)
for R entails, by Theorem 4.3, 1

λ ∈ iso σ(R). Consequently, λ ∈ iso σ(S).
Therefore, S has property (ab). The converse may be proved by

using similar arguments.
(ii) Suppose that R satisfies property (b), or equivalently Δa(R) ⊆ iso σ(R).

Then R satisfies a-Browder’s theorem and hence also S satisfies a-
Browder’s theorem, by Theorem 4.1, so that σub(R) = σuw(SR) and
σub(S) = σuw(S). Consequently,

Δa(R) = pa
00(R) and Δa(S) = pa

00(S).
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To show property (b) for T it suffices to prove, by Theorem 4.3, the
inclusion Δa(S) ⊆ iso σ(S). Let λ ∈ Δa(S). If λ = 0 then 0 is an
isolated point of σ(S), since S is Drazin invertible. Suppose that λ 
= 0.
Since λ ∈ Δa(S) = pa

00(S) then, by Lemma 4.4 and Theorem 4.3, 1
λ ∈

pa
00(R) = Δa(R) ⊆ iso σ(R). Consequently, λ ∈ iso σ(S). Thus, S has

property (b). The converse may be proved in a similar way. �

Lemma 4.6. Let R ∈ L(X) be Drazin invertible with Drazin inverse S. Then
we have

(i) 0 ∈ π00(R) ⇔ 0 ∈ π00(S). If λ 
= 0, then λ ∈ π00(R) ⇔ 1
λ ∈ π00(S).

(ii) 0 ∈ πa
00(R) ⇔ 0 ∈ πa

00(S). If λ 
= 0, then λ ∈ πa
00(R) ⇔ 1

λ ∈ πa
00(S).

Proof.

(i) Suppose first that 0 ∈ π00(R). Then 0 ∈ iso σ(R) and 0 < α(R) < ∞.
Obviously, 0 ∈ iso σ(S) and arguing as in the proof of part (i) of The-
orem 3.2 we have α(S) < ∞. With respect to the usual decomposition
X = Y ⊕Z , R = R1⊕R2, we have 0 < α(R) = α(R1)+α(R2) = α(R1),
and hence α(Rn

1 ) > 0 for all n ∈ N. If Rν
1 = 0, then Y = ker Rν

1

has dimension greater than 0, and from ker S = Y ⊕ {0} we conclude
that α(S) > 0. Hence 0 ∈ π00(S). Analogous arguments show the re-
verse implication. The second assertion easily follows from the equality
ker (λI − R) = ker ( 1

λI − S) for all λ 
= 0.
(ii) If 0 ∈ πa

00(R), then 0 ∈ iso σa(R) and 0 < α(R) < ∞. Obviously, from
0 ∈ iso σa(S). To show that 0 < α(S) < ∞, proceed as in part (i). An
analogous reasoning shows that if 0 ∈ πa

00(S), then 0 ∈ πa
00(R). The

second assertion follows from the equality ker (λI − R) = ker ( 1
λI − S)

for all λ 
= 0. �

An operator T ∈ L(X) satisfies Weyl’s theorem if Δ(T ) = π00(T ).
Weyl’s theorem for T is equivalent to saying that T satisfies Browder’s theo-
rem and p00(T ) = π00(T ), see [3, Theorem 3.3]. An operator T ∈ L(X) sat-
isfies a-Weyl’s theorem if Δa(T ) = πa

00(T ). a-Weyl’s theorem for T is equiv-
alent to saying that T satisfies a-Browder’s theorem and pa

00(T ) = πa
00(T ),

see [4, Theorem 2.14]. An operator T ∈ L(X) is said to verify property (w) if
Δa(T ) = π00(T ). Property (w) for T is equivalent to saying that T satisfies
a-Browder’s theorem and πa

00(T ) = π00(T ), see [7]. Property (w) or a-Weyl’s
theorem for T entails Weyl’s theorem for T , but in general property (w) and
a-Weyl’s theorem are independent.

Theorem 4.7. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

(i) R satisfies Weyl’s theorem if and only if S satisfies Weyl’s theorem.
(ii) R satisfies a-Weyl’s theorem if and only if S satisfies aWeyl’s theorem.
(iii) R satisfies property (w) if and only if S satisfies property (w).
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Proof.

(i) Suppose that R satisfies Weyl’s theorem. Then R satisfies Browder’s
theorem and π00(R) = p00(R); hence, from part (i) of Theorem 4.1,
Browder’s theorem holds for S.

Let λ ∈ π00(S). If λ = 0, then, by Lemma 4.6, 0 ∈ π00(R) = p00(R)
and hence, by Lemma 4.4, 0 ∈ p00(S). If λ 
= 0, then 1

λ ∈ π00(R) =
p00(R), so λ ∈ p00(S), again by Lemma 4.4. Therefore, π00(S) ⊆ p00(S),
and since the opposite inclusion holds for every operator, we then con-
clude that π00(S) = p00(S); thus S satisfies Weyl’s theorem. In a similar
way Weyl’s theorem for S implies Weyl’s theorem for R.

(ii) If R satisfies a-Weyl’s theorem, then R satisfies a-Browder’s theorem
and pa

00(R) = πa
00(R). By part (ii) of Theorem 4.1, a-Browder’s theorem

holds for S. To show that S satisfies aWeyl’s, it suffices to prove that
πa
00(S) = pa

00(S).
Let λ ∈ πa

00(S). If λ = 0, then, by Lemma 4.6, 0 ∈ πa
00(R) =

pa
00(R). Hence, by Lemma 4.4, 0 ∈ pa

00(S). If λ 
= 0, then, by Lemma 4.6,
1
λ ∈ πa

00(R) = pa
00(R), and hence λ ∈ pa

00(S), by Lemma 4.4. Therefore,
πa
00(S) ⊆ pa

00(S). The opposite inclusion holds for every operator; hence
πa
00(S) = pa

00(S); thus S satisfies a-Weyl’s theorem. In a similar way,
property a-Weyl’s theorem for S implies property a-Weyl’s theorem for
R.

(iii) If R satisfies property (w), then R satisfies a-Browder’s theorem and
pa
00(R) = π00(R). From part (ii) of Theorem 4.1, a- Browder’s theorem

holds for S, so it suffices to prove that π00(S) = pa
00(S).

Let λ ∈ π00(S). If λ = 0, then, by Lemma 4.4, 0 ∈ π00(R) =
pa
00(R). Hence, always by Lemma 4.4, 0 ∈ pa

00(S). Suppose λ 
= 0, then
1
λ ∈ π00(R) = pa

00(R), and hence λ ∈ pa
00(S), by Lemma 4.4. Therefore,

π00(S) ⊆ pa
00(S).

It remains to prove that pa
00(S) ⊆ π00(S). Let λ ∈ pa

00(S). If λ = 0,
then S is upper semi-Browder and hence is Browder, see Remark 3.1,
so 0 is an isolated point of σ(S). Clearly, 0 < α(S), since 0 ∈ σa(S)
and S(X) is closed. Moreover, α(S) < ∞, so 0 ∈ π00(S). If λ 
= 0,
then always by Lemma 4.4, 1

λ ∈ pa
00(R) = π00(R), since R has property

(w). By Lemma 4.6, then λ ∈ π00(S). Therefore, π00(S) = pa
00(S); thus

S satisfies property (w). In a similar way property (w) for S implies
property (w) for R.

�

Let U := R2S = RSR. It is easily seen from the equalities (1) that U
commutes with S and S2U = S, while USU = U , so U is the Drazin inverse
of S with index i(S) = 1, or equivalently 0 is a simple pole of the resolvent.

Theorem 4.8. Suppose that R ∈ L(X) is Drazin invertible with Drazin inverse
S. Then

σb(R2S)\{0} = σb(R)\{0},
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and a similar relationship holds for the Weyl spectrum, the semi-Browder
spectra and the semi-Weyl spectra. Moreover, if R satisfies Browder’s theo-
rem, (respectively, a-Browder’s theorem, property (b), property (ab), Weyl’s
theorem, a-Weyl’s theorem, property (w)), then R2S satisfies Browder’s the-
orem, (respectively, a-Browder’s theorem, property (b), property (ab), Weyl’s
theorem, a-Weyl’s theorem, property (w)).

Proof. R2S is the Drazin inverse of S, so

σb(R2S)\{0} =
{

1
λ

: λ ∈ σb(S)\{0}
}

= σb(R)\{0}.

The same argument shows the assertion for the other spectra. The last
assertion follows from Theorems 4.1 and 4.7: S2R satisfies Browder’s theo-
rem since S satisfies Browder’s theorem. The assertions concerning the other
properties follow similarly from Theorems 4.5 and 4.7. �
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