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Abstract. We prove the Lp-boundedness of the Littlewood–Paley g-
function associated with the spherical mean operator for p ∈]1, +∞[.
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1. Introduction

According to Stein [10], the Littlewood–Paley g-function is defined in the
Euclidean case by

∀x ∈ R
n, g(f)(x) =

(∫ +∞

0

|∇ (U (f)) (x, t)|2 tdt

) 1
2

,

where U (f) is the Poisson integral of f defined on R
n×]0,+∞[, by

U (f)(x, t) =
Γ(n+1

2 )

π
n+1
2

∫
Rn

tf(y)

(t2 + |x − y|2)n+1
2

dy,

and ∇ is the standard gradient on R
n+1. According to Stein [10], it is well

known that the Littlewood–Paley g-function is bounded from the Lebesgue
space Lp, p ∈]1,+∞[ into it self. The Littlewood–Paley theory constitutes
one of the most important ways to study many function spaces as the Hardy
spaces Hp, or the various forms of Lipshitz and BMO spaces, and remains
closely related to the theory of Fourier multipliers in harmonic analysis. For
more details, we refer the reader to Stein [10]. In the literature, many au-
thors notably A. Achour, A.Fitouhi, and K. Stempak [1,2,11] generalized
the Littlewood–Paley g-function to several other hypergroups and integral
transforms, and showed similarly its Lp-boundedness.
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The spherical mean operator R is defined by [7]

R(f)(r, x) =
∫

Sn

f(rη, x + rξ)dσn(η, ξ), (r, x) ∈ R × R
n,

where Sn is the unit sphere of Rn+1 and dσn is the surface measure on Sn

normalized to have total measure one. The Fourier transform associated with
the spherical mean operator is defined by [7]

F (f)(μ, λ) =
∫ +∞

0

∫
Rn

R
(
cos(μ.)e−i〈λ|.〉

)
(r, x)dνn+1(r, x),

where dνn+1 is a measure that will be defined later. Many harmonic analysis
results related to spherical mean operator and its the Fourier transform F
have already been proved by Rachdi and Trimèche [7,9] or also by Hleili and
Omri [3,5,8]. Hleili and Omri [3] defined the Littlewood–Paley g-function
associated with the spherical mean operator by

∈ [0,+∞[×R
n, g(f)(r, x) =

(∫ +∞

0

|∇ (U (f)) (r, x, t)|2 tdt

)1/2

,

where U (f) is the Poisson integral associated with the spherical mean op-
erator (see [3]). The authors showed that for every p ∈]1, 2] and for every
f ∈ Lp(dνn+1) the function g(f) belongs to the space Lp(dνn+1) and satisfies

‖g(f)‖p,νn+1 � 2
2+p
2p

√
p(p − 1)

1
p

‖f‖p,νn+1 .

The aim of this work is to extend this result to every p ∈]1,+∞[.

2. The Spherical Mean Operator

2.1. Eigenfunction Associated with the Spherical Mean Operator

In [7], Nessibi, Rachdi and Trimèche showed that for every (μ, λ) ∈ C × C
n,

the function ϕ(μ,λ) defined on R × R
n by

(r, x) = R
(
cos(μ.)e−i〈λ|.〉

)
(r, x), (2.1)

is the unique infinitely differentiable function on R × R
n, even with respect

to the first variable, satisfying the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂xj
(r, x1, ..., xn) = −iλju(r, x1, ..., xn), 1 � j � n,


n−1
2

u(r, x1, ..., xn) − Δu(r, x1, ..., xn) = −μ2u(r, x1, ..., xn),

u(0, ..., 0) = 1,
∂u

∂r
(0, x1, ..., xn) = 0, (x1, . . . , xn) ∈ R

n.

where 
n−1
2

is the Bessel operator defined by 
n−1
2

=
∂2

∂r2
+

n

r

∂

∂r
, and

Δ =
∑n

j=1

∂2

∂x2
j

denotes the Laplacian operator. Then, according to Nessibi,



Vol. 13 (2016) Littlewood–Paley g-function 4335

Rachdi and Trimèche [7], it is known that for every r, μ ∈ R+


n−1
2

(
jn−1

2
(r.)

)
(μ) = −r2jn−1

2
(rμ) (2.2)

where jn−1
2

is the modified Bessel function [6]. In [7], the authors proved also
that the eigenfunction ϕ(μ,λ) defined by relation (2.1) is explicitly given by

∀(r, x) ∈ R × R
n, ϕ(μ,λ)(r, x) = jn−1

2
(r

√
μ2 + |λ|2)e−i〈λ|x〉, (2.3)

From the properties of the modified Bessel function jn−1
2

, we deduce that the
eigenfunction ϕ(μ,λ) is bounded on ×R

n if, and only if, (μ, λ) ∈ Υ, where

Υ = R × R
n ∪

{
(ir, x), (r, x) ∈ R × R

n, |r| � |x|
}
, (2.4)

and in this case

sup
(r,x)∈R×Rn

∣∣ϕ(μ,λ)(r, x)
∣∣ = 1. (2.5)

In the following, we denote by
• dνn+1 is the measure defined on [0,+∞[×R

n by

dνn+1(r, x) =
rndr dx

2n− 1
2 π

n
2 Γ(n+1

2 )
.

• Ce (R × R
n) the space of continuous functions on R×R

n, even with respect
to the first variable.
• C0,e (R × R

n) the space of continuous functions on R×R
n, even with respect

to the first variable such that limr2+|x|2→+∞ f(r, x) = 0.
• C k

e (R × R
n) the space of functions of class Ck on R×R

n, even with respect
to the first variable.
• C∞

e (R × R
n) the space of infinitely differentiable functions on R×R

n, even
with respect to the first variable.
• Se (R × R

n) the space of infinitely differentiable functions, rapidly decreas-
ing together with all their derivatives, even with respect to the first variable.
• De (R × R

n) the space of smooth functions on R×R
n with compact support,

even with respect to the first variable.
• Υ+ = [0,+∞[×R

n ∪
{
(is, y) ; (s, y) ∈ [0,+∞[×R

n; s � |y|
}
.

• BΥ+ the σ-algebra defined on Υ+ by BΥ+ = θ−1 (BBor([0,+∞[×R
n))

where θ is the bijective function defined on the set Υ+ by θ(s, y) =
(
√

s2 + |y|2, y).
• γn+1 the measure defined on BΥ+ by γn+1(B) = νn+1(θ(B)).

2.2. Generalized Translation Operator and Convolution Product

According to Nessibi, Rachdi and Trimèche [7], for every (r, x) ∈ [0,+∞[×R
n,

the generalized translation operator T(r,x) associated with the spherical mean
operator is defined by

T(r,x)(f)(s, y) =
Γ(n+1

2 )√
πΓ(n

2 )

∫ π

0

f(
√

r2 + s2 + 2rs cos θ, x + y)(sin θ)n−1dθ,

(2.6)
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whenever the integral in the right hand side is well defined. The convolution
product of two measurable functions f and g is defined on [0,+∞[×R

n by

f ∗ g(r, x) =
∫ +∞

0

∫
Rn

T(r,−x)(f̌)(s, y)g(s, y)dνn+1(s, y), (2.7)

whenever the integral of the right-hand side is well defined, where f̌(s, y) =
f(s,−y). Then, it is well know that for every p ∈ [1,+∞], T(r,x) is bounded
form Lp(dνn+1) into itself and satisfies

|||T(r,x)||| � 1. (2.8)

Moreover, for every f ∈ Lp(dνn+1), p ∈ [1,+∞[, we have

lim
(r,x)−→(0,0)

‖T(r,x)(f) − f‖p,νn+1 = 0. (2.9)

We have also the following Young inequality [7], that is for every p, q, r ∈
[1,+∞] such that

1
p

+
1
q

= 1 +
1
r

and for every f ∈ Lp(dνn+1) and g ∈
Lq(dνn+1), the function f ∗ g belongs to the space Lr(dνn+1), and we have

||f ∗ g||r,νn+1 � ||f ||p,νn+1 ||g||q,νn+1 . (2.10)

2.3. The Fourier Transform Associated with the Spherical Mean Operator

The Fourier transform F associated with the spherical mean operator is
defined on L1(dνn+1) by [7]

∀(μ, λ) ∈ Υ , F (f)(μ, λ) =
∫ +∞

0

∫
Rn

f(r, x)ϕ(μ,λ)(r, x) dνn+1(r, x),

where ϕ(μ,λ) is the eigenfunction given by relation (2.3), and Υ is the set
defined by relation (2.4). Then, according to [7], it is known that for every
f ∈ L1(dνn+1),

F (f) = F̃ (f) ◦ θ, (2.11)

where F̃ is the integral transform defined on L1(dνn+1), by

∀(s, y) ∈ R × R
n, F̃ (f)(s, y) =

∫ +∞

0

∫
Rn

f(r, x)jn−1
2

(rs)e−i〈y|x〉dνn+1(r, x).

(2.12)
We know also that for every f, g ∈ L1(dνn+1), we have

F̃ (f ∗ g) = F̃ (f)F̃ (g). (2.13)

Moreover, relation (2.5) implies that the Fourier transform F is a bounded
linear operator from L1(dνn+1) into L∞(dγn+1), and that for every
f ∈ L1(dνn+1)

‖F (f)‖∞,γn+1 � ‖f‖1,νn+1 . (2.14)

Theorem 2.1 [Inversion formula]. Let f ∈ L1(dνn+1) such that
F (f) ∈ L1(dγn+1), then for almost every (r, x) ∈ R × R

n, we have

f(r, x) =
∫ ∫

Υ+

F (f)(μ, λ)ϕ(μ,λ)(r, x) dγn+1(μ, λ)
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Theorem 2.2 (Plancherel theorem). The Fourier transform F can be ex-
tended to an isometric isomorphism from L2(dνn+1) onto L2(dγn+1). In
particular, we have the following Parseval equality that is, for every f, g ∈
L2(dνn+1)∫ +∞

0

∫
Rn

f(r, x)g(r, x) dνn+1(r, x) =
∫∫

Υ+
F (f)(μ, λ)F (g)(μ, λ)dγn+1(μ, λ).

(2.15)

3. The Generalized Poisson Integral Associated with the
Spherical Mean Operator

3.1. The Generalized Poisson Integral Associated with the Spherical Mean
Operator

In [3], Hleili and Omri introduced the Poisson kernel associated with the
spherical mean operator, by

∀(r, x) ∈ R × R
n, pt(r, x) =

∫ ∫
Υ+

e−t|θ(s,y)| ϕ(s,y)(r, x)dγn+1(s, y), t > 0

=
2n+ 1

2 n!t√
π(t2 + r2 + |x|2)n+1

. (3.1)

According to [3], the generalized Poisson integral associated with the spherical
mean operator is defined for every f ∈ L1(dνn+1) by

∀(r, x, t) ∈ R × R
n×]0,+∞[,U (f)(r, x, t) = Pt(f)(r, x),

where Pt is the convolution operator defined on L1(dνn+1), by Pt(f) =
pt ∗ f . Then, by inversion formula, we deduce that for every f ∈ L1(dνn+1),

U (f)(r, x, t) =
∫ ∫

Υ+

e−t|θ(μ,λ)|F (f)(μ, λ)ϕ(μ,λ)(r, x) dγn+1(μ, λ), a.e

=
∫ +∞

0

∫
Rn

e−t
√

s2+|y|2F̃ (f)(s, y)jn−1
2

(rs)ei〈y|x〉dνn+1(s, y), a.e. (3.2)

Lemma 3.1. Let f ∈ L1(dνn+1)∩C0,e(R×R
n), then the function U (f) belongs

to C (R × R
n × [0,+∞[), and satisfies

∀(r, x) ∈ R × R
n, U (f)(r, x, 0) = f(r, x). (3.3)

In the following for every nonnegative real number η, we denote by
Bη = {(r, x) ∈ R × R

n | r2 + |x|2 � η2} and B+
η = Bη ∩ (R+ × R

n). For
every measurable function f on R × R

n, we denote by supp(f) the support
of f .

Proposition 3.2. Let η be a positive real number, and f ∈ De(R × R
n). If

supp(f) ⊂ Bη, then
(i) For every (r, x, t) ∈ Bc

2η × ]0,+∞[, we have∣∣∣∣∂U (f)
∂t

(r, x, t)
∣∣∣∣ � 24n+3(2n + 3) (n!)2 η2n+1

π (2n + 1)!
‖f‖∞,νn+1

(t2 + r2 + |x|2)n+1
. (3.4)
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(ii) For every (r, x, t) ∈ R × R
n×]0,+∞[, we have∣∣∣∣∂U (f)

∂r
(r, x, t)

∣∣∣∣ �
√

π(2n + 1)!
2n− 3

2 Γ(n+1
2 )2

‖f‖1,νn+1

t2n+2
. (3.5)

(iii) For every 1 � j � n and for every (r, x, t) ∈ R × R
n×]0,+∞[, we have∣∣∣∣∂U (f)

∂xj
(r, x, t)

∣∣∣∣ �
√

π(2n + 1)!
2n− 3

2 Γ(n+1
2 )2

‖f‖1,νn+1

t2n+2
. (3.6)

Proof. (i) According to relations (2.6) and (3.1), we have

|
∂T(r,−x)pt

∂t
(s, y)| � 2n+ 1

2 n!√
π

2n + 3
(t2 + (r − s)2 + |x − y|2)n+1

(3.7)

Hence by relations (2.7) and (3.7), we have∣∣∣∣∂U (f)
∂t

(r, x, t)
∣∣∣∣ � 2n+ 1

2 n!(2n + 3)‖f‖∞,νn+1√
π∫ ∫

B+
η

dνn+1(s, y)
(t2 + (r − s)2 + |x − y|2)n+1

,

therefore, for every (r, x, t) ∈ Bc
2η × ]0,+∞[, we get∣∣∣∣∂U (f)

∂t
(r, x, t)

∣∣∣∣ � 23n+ 5
2 n!(2n + 3)√

π

‖f‖∞,νn+1νn+1(B+
η )

(t2 + r2 + |x|2)n+1
,

however, a standard calculus leads to νn+1(B+
η ) =

η2n+1n!2n+ 1
2

√
π(2n + 1)!

. �

Lemma 3.3. Let W be the mapping defined on De(R × R
n) by

∀(r, x, t) ∈ R × R
n×]0,+∞[, W (f)(r, x, t) = |∇U (f)(r, x, t)|2 , (3.8)

and let f ∈ De(R × R
n). Then

(i) W (f) ∈ C∞
e (R × R

n×]0,+∞[).
(ii) ∀t > 0, W (f)(., ., t) ∈ L1(dνn+1) ∩ C0,e(R × R

n).
(iii) lim

r2+|x|2+t2→+∞
W (f)(r, x, t) = 0.

Proof. (ii) Let η > 0 such that supp(f) ⊂ Bη, then according to Hleili and
Omri [3, Lemma 4.2, pp. 900], we know that for every (r, x, t) ∈ Bc

2η×]0,+∞[,
the generalized Poisson integral U (f) satisfies the following relations:∣∣∣∣∣

∂
(
U (f)

)
∂r

(r, x, t)

∣∣∣∣∣ � Cη2n+1‖f‖∞,νn+1

(t2 + r2 + |x|2)n+1
, (3.9)

and for every 1 � j � n∣∣∣∣∣
∂
(
U (f)

)
∂xj

(r, x, t)

∣∣∣∣∣ � Cη2n+1‖f‖∞,νn+1

(t2 + r2 + |x|2)n+1
. (3.10)

Then, by relations (3.4), (3.9) and (3.10), we get that for every (r, x, t) ∈
Bc

2η× ]0,+∞[,

W (f)(r, x, t) �
Cη4n+2‖f‖2

∞,νn+1

(t2 + r2 + |x|2)2n+2
, (3.11)
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in particular for every t > 0, W (f)(., ., t) belongs to L1(dνn+1) and

lim
r2+|x|2→+∞

W (f)(r, x, t) � lim
r2+|x|2→+∞

Cη4n+2‖f‖2
∞,νn+1

(t2 + r2 + |x|2)2n+2
= 0.

(iii) • If |(r, x)| � 2η, then by relation (3.11), we have

lim
t2+r2+|x|2→+∞

W (f)(r, x, t) � lim
t2+r2+|x|2→+∞

Cη4n+2‖f‖2
∞,νn+1

(t2 + r2 + |x|2)2n+2
= 0.

• If |(r, x)| � 2η, then according to [3, Lemma 4.1 pp 899], we know that for
every (r, x, t) ∈ R × R

n×]0,+∞[, we have∣∣∣∣∂U (f)
∂t

(r, x, t)
∣∣∣∣ � n!(2n + 1)!2n+ 1

2 ‖f‖1,νn+1√
π(2n)!

1
t2n+2

. (3.12)

The proof is complete by means of relations (3.5), (3.6) and (3.12). �

Lemma 3.4. Let f ∈ De(R × R
n), then for every s > 0, we have

(i) U (W (f)(., ., s)) ∈ C∞ (R × R
n×]0,+∞[).

(ii) limr2+|x|2+t2→+∞ U (W (f)(., ., s))(r, x, t) = 0.

Proof. According to Lemma 3.3, we know that for every s > 0 the func-
tion W (f)(., ., s) belongs to L1(dνn+1) and, therefore, U (W (f)(., ., s)) is
well defined; moreover, by relation (3.2), we have for every (r, x, t) ∈ R ×
R

n×]0,+∞[,

U (W (f)(., ., s))(r, x, t)

=
∫ +∞

0

∫
Rn

e−t
√

μ2+|λ|2F̃ (W (f)(., ., s))(μ, λ)jn−1
2

(rμ)ei〈λ|x〉dνn+1(μ, λ),

which implies that U (W (f)(., ., s)) ∈ C∞ (R × R
n×]0,+∞[).

(ii) Let s be a positive real number, then by relation (2.2),we get∣∣r2U (W (f)(., ., s))(r, x, t)
∣∣

�
∫ +∞

0

∫
Rn

∣∣∣
n−1
2

(e−t
√

.2+|λ|2F̃ (W (f)(., ., s))(., λ))(μ)
∣∣∣ dνn+1(μ, λ)

� C
1 + t + t2

t2n+1
(3.13)

and, by the same way, we may obtain that there is a nonnegative constant C
(not necessarily the same) such that for every (r, x, t) ∈ R × R

n×]0,+∞[,
∣∣x2

kU (W (f)(., ., s))(r, x, t)
∣∣ � C

1 + t + t2

t2n+1
, (3.14)

and ∣∣t2U (W (f)(., ., s))(r, x, t)
∣∣ � C

1 + t + t2

t2n+1
, (3.15)

�

Combining relations (3.13–3.15), we deduce that

|U (W (f)(., ., s))(r, x, t)| � C(1 + t + t2)
t2n+1(r2 + |x|2 + t2)

. (3.16)
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On the other hand by Lemma 3.3, we know that for every s > 0, W (f) ∈
C0,e(R × R

n), since the family (pt)t>0 is an approximation of identity in
C0,e(R × R

n), then limt→0+ U (W (f)(., ., s))(., ., t) = W (f)(., ., s) uniformly.
Hence,
• If t −→ 0, then lim t→0+

r2+|x|2→+∞
U (W (f)(., ., s))(r, x, t) = 0.

• If t � a for some positive constant a, then by relation (3.16) we get

lim t�a

t2+r2+|x|2→+∞
U (W (f)(., ., s))(r, x, t) = 0.

4. Litellewood–Paley g-Function Associated with the Spherical
Mean Operator

The main idea of this section is to prove the Lp-boundedness for 4 � p < +∞
and to use nextly the Marcinkiewicz interpolation theorem. To prove the
result for 4 � p < +∞, we are going to apply mainly the Hopf’s maximum
principle to the uniformly elliptic operator [4]

Δn−1
2

=
∂2

∂r2
+

n

r

∂

∂r
+

n∑
i=1

∂2

∂x2
i

+
∂2

∂t2
. (4.1)

Theorem 4.1 (Strong Hopf’s maximum principle). Let

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

bj(x)
∂

∂xj
,

be an uniformly elliptic operator on a bounded connected domain Ω ⊂ R
n,

such that the functions aij and bj are continuous on Ω. Let u ∈ C 2(Ω)∩C (Ω)
such that for every x ∈ Ω, Lu(x) � 0. If there exists x0 ∈ Ω such that
supx∈Ω u(x) = u(x0), then

∀x ∈ Ω, u(x) = u(x0).

Proposition 4.2. Let a0, a1, . . . , an and T be positive real numbers and let

Ω =] − a0, a0[×
n∏

i=1

] − ai, ai[×]0, T [.

Let u ∈ C 2(Ω) ∩ C (Ω), be an even function with respect to the first variable,
satisfying ∀(r, x, t) ∈ Ω, Δn−1

2
u(r, x, t) � 0. If there is (r0, x0, t0) ∈ Ω, r0 �=

0 such that sup
(r,x,t)∈Ω

u(r, x, t) = u(r0, x0, t0), then

∀(r, x, t) ∈ Ω, u(r, x, t) = u(r0, x0, t0).

Proof. Assume that there is (r0, x0, t0) ∈ Ω, r0 �= 0 such that

sup
(r,x,t)∈Ω

u(r, x, t) = u(r0, x0, t0),

since the function u is even with respect to the first variable then without loss
of generality we can assume that r0 > 0. Let ε be a real number satisfying
0 < ε < r0 and let Ωε =]ε, a0[×

∏n

i=1
] − ai, ai[×]0, T [, then (r0, x0, t0) ∈ Ωε
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and, therefore, sup(r,x,t)∈Ωε
u(r, x, t) = sup(r,x,t)∈Ω u(r, x, t) = u(r0, x0, t0).

On the other hand, the operator Δn−1
2

defined by relation (4.1) is uniformly
elliptic on the connected bounded domain Ωε and satisfies according to the
hypothesis Δn−1

2
u � 0, hence by Theorem 4.1 we deduce that

∀(r, x, t) ∈ Ωε, u(r, x, t) = u(r0, x0, t0),

consequently

∀(r, x, t) ∈]0, a0[×
(

n∏
i=1

] − ai, ai[

)
×]0, T [, u(r, x, t) = u(r0, x0, t0),

since u is continuous on Ω, then

∀(x, t) ∈
n∏

i=1

] − ai, ai[×]0, T [, u(0, x, t) = lim
r→0+

u(r, x, t) = u(r0, x0, t0),

since u is even with respect to the first variable, then

∀(r, x, t) ∈ Ω, u(r, x, t) = u(r0, x0, t0).

However, u is continuous on Ω, hence

∀(r, x, t) ∈ Ω, u(r, x, t) = u(r0, x0, t0).

�

Proposition 4.3. Let a0, a1, . . . , an and T be positive real numbers and let

Ω =] − a0, a0[×
n∏

i=1

] − ai, ai[×]0, T [.

Let u ∈ C 2(Ω) ∩ C (Ω), be a function even with respect to the first variable
satisfying

∀(r, x, t) ∈ Ω, Δn−1
2

u(r, x, t) � 0.

If there is (x0, t0) ∈
(∏n

i=1
] − ai, ai[

)
×]0, T [ such that sup

(r,x,t)∈Ω

u(r, x, t) =

u(0, x0, t0), then

∀(r, x, t) ∈ Ω, u(r, x, t) = u(0, x0, t0).

Proof. Let M = u(0, x0, t0), then by Proposition 4.2, it is sufficient to prove
that, there is (r1, x1, t1) ∈ Ω such that r1 �= 0 and M = u(r1, x1, t1). Suppose
towards a contradiction that this is not true, then

∀(r, x, t) ∈ Ω, r �= 0, u(r, x, t) < M. (4.2)

Let ϕ be the function defined on R × R
n × R, by

ϕ(r, x, t) = e2r2−|x−x0|2−(t−t0)
2 − 1,

and H be the subset of R×R
n ×R defined by H = ϕ−1 ([0,+∞[) ∩ Ω. Since

Ω is open and (0, x0, t0) ∈ Ω, then there exists a real ε > 0 such that

B(0,x0,t0),ε = {(r, x, t) ∈ R × R
n × R; r2 + |x − x0|2 + (t − t0)2 � ε2} ⊂ Ω,



4342 A. Hammami and S. Omri MJOM

and, therefore, H ∩ ∂B(0,x0,t0),ε = ϕ−1 ([0,+∞[) ∩ B(0,x0,t0),ε, in particular
the set K = H ∩ ∂B(0,x0,t0),ε is compact. However, since u is continuous on
K, then u attains its maximum on K that is there exists (r2, x2, t2) ∈ K such
that

M ′ = sup
(r,x,t)∈K

u(r, x, t) = u(r2, x2, t2).

Now, since (r2, x2, t2) ∈ K, then ϕ(r2, x2, t2) = e2r2
2−|x2−x0|2−(t2−t0)

2 −1 � 0,
in particular r2 �= 0 and by assertion (4.2) we get M ′ < M . Now let

M ′′ = sup
(r,x,t)∈K

ϕ(r, x, t),

since (ε, x0, t0) ∈ K then M ′′ � ϕ(ε, x0, t0) = e2ε2 − 1 > 0. Let δ ∈
]0,

M − M ′

M ′′ [, and let φ be the function defined on Ω by

φ(r, x, t) = u(r, x, t) + δϕ(r, x, t).

For every (r, x, t) ∈ Ω, we have

Δn−1
2

ϕ(r, x, t)

=
(
16r2 + 4|x − x0|2 + 4(t − t0)2 + 2n + 2

)
e2r2−|x−x0|2−(t−t0)

2
> 0

Since ∀(r, x, t) ∈ Ω, Δn−1
2

u(r, x, t) � 0, then for every (r, x, t) ∈ Ω

Δn−1
2

φ(r, x, t) > 0. (4.3)

Let (r, x, t) ∈ ∂B(0,x0,t0),ε,
− If (r, x, t) �∈ H then ϕ(r, x, t) < 0 and, therefore,

φ(r, x, t) = u(r, x, t) + δϕ(r, x, t) < u(r, x, t) < M.

− If (r, x, t) ∈ H then (r, x, t) ∈ K, hence

φ(r, x, t) = u(r, x, t) + δϕ(r, x, t) � M ′ + δM ′′ < M.

Hence,
∀(r, x, t) ∈ ∂B(0,x0,t0),ε, φ(r, x, t) < M. (4.4)

Let (r3, x3, t3) ∈ B(0,x0,t0),ε such that sup
(r,x,t)∈B(0,x0,t0),ε

φ(r, x, t) = φ(r3, x3, t3),

then

φ(r3, x3, t3) � φ(0, x0, t0) = u(0, x0, t0) = M,

and by relation (4.4) we deduce that the function φ attains its maximum in
(r3, x3, t3) ∈ B(0,x0,t0),ε.
• If r3 �= 0, then

Δn−1
2

φ(r3, x3, t3) =
∂2φ

∂r2
(r3, x3, t3) + Δφ(r3, x3, t3) +

∂2φ

∂t2
(r3, x3, t3) � 0.

(4.5)
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• If r3 = 0, since u is even with respect to the first variable, then for every

(x, t) ∈ R
n×R,

∂u

∂r
(0, x, t) = 0, and therefore

∂2u

∂r2
(0, x, t) = lim

r→0

1
r

∂u

∂r
(r, x, t),

in particular 
n−1
2

u(0, x, t) = (n + 1)
∂2u

∂r2
(0, x, t), hence

Δn−1
2

φ(0, x3, t3) = (n + 1)
∂2φ

∂r2
(0, x3, t3) + Δφ(0, x3, t3) +

∂2φ

∂t2
(0, x3, t3) � 0.

(4.6)
Relations (4.5) and (4.6) show that Δn−1

2
φ(r3, x3, t3) � 0 which contradicts

relation (4.3) and prove that assertion (4.2) is not true. �
Theorem 4.4. Let a0, a1, . . . , an and T be positive real numbers and let

Ω =] − a0, a0[×] − ai, ai[×]0, T [.

Let u ∈ C 2(Ω) ∩ C (Ω), be a function even with respect to the first variable
satisfying

∀(r, x, t) ∈ Ω, Δn−1
2

u(r, x, t) � 0.

If u attains its maximum in Ω, then u is constant.

Proof. The result follows immediately from Proposition 4.2 and Proposi-
tion 4.3. �
Theorem 4.5. Let h ∈ C 2 (R × R

n×]0,+∞[) ∩ C (R × R
n × [0,+∞[), be a

function even with respect to the first variable. If
(i) ∀(r, x) ∈ R × R

n; h(r, x, 0) � 0.
(ii) limr2+|x|2+t2→+∞ h(r, x, t) = 0.
(iii) ∀(r, x, t) ∈ R × R

n × [0,+∞[, Δn−1
2

h(r, x, t) � 0. Then, h is nonneg-
ative.

Proof. Suppose that there is (r1, x1, t1) ∈ R × R
n × [0,+∞[ such that

h(r1, x1, t1) < 0. (4.7)

Since h is continuous on R×R
n×[0,+∞[, and according to ii), we deduce that

h is bounded on R × R
n × [0,+∞[ and attains its minimum in (r0, x0, t0) ∈

R × R
n × [0,+∞[; furthermore, we have h(r0, x0, t0) � h(r1, x1, t1) < 0,

hence according to i) we have t0 > 0. Now, let b0, b1, . . . , bn, ε be positive
real numbers such that ε > sup(t0, t1) and such that the set Ω1 =

∏n

j=0
] −

bj , bj [×]0, 2ε[ contains (r0, x0, t0). Let g = −h, then g satisfies the hypothesis
of Theorem 4.4 on Ω1, and attains its maximum in (r0, x0, t0) ∈ Ω1. This
implies that

∀(r, x, t) ∈ Ω1, h(r, x, t) = h(r0, x0, t0) < 0.

In particular
h(r0, x0, ε) = h(r0, x0, t0) < 0. (4.8)

Relation (4.8) holds for every ε > sup(t0, t1) and consequently

lim
ε→+∞ h(r0, x0, ε) = h(r0, x0, t0) < 0,

which contradicts the hypothesis ii). �
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Theorem 4.6. Let f ∈ De(R×R
n), then for every (r, x, t) ∈ R×R

n×]0,+∞[,
we have

W (f)(r, x, 2t) � U (W (f)(., ., t)) (r, x, t). (4.9)

Proof. Let f ∈ De(R × R
n), s be a positive real number, and Θs(f) be the

function defined on R×R
n × [0,+∞[, by Θs(f)(r, x, t) = U (W (f)(., ., s))(r,

x, t) − W (f)(r, x, s + t). Our goal is to show that the function Θs(f) satisfies
the assumptions of Theorem 4.5. According to Lemma 3.3, it is clear that
for every s > 0, the function (r, x, t) �−→ W (f)(r, x, s + t) ∈ C∞

e (R×R
n×]0,

+∞[) ∩ Ce (R × R
n × [0,+∞[). On the other hand by Lemma 3.4, U (W (f)

(., ., s)) ∈ C∞
e (R × R

n×]0,+∞[); furthermore by Lemma 3.3, we deduce that
for every s > 0, W (f)(., ., s) ∈ L1(dνn+1) ∩ C0,e (R × R

n) which implies by
Lemma 3.1 that U (W (f)(., ., s)) ∈ Ce (R × R

n × [0,+∞[); this means that
Θs(f) ∈ C 2

e (R × R
n×]0,+∞[)∩Ce (R × R

n × [0,+∞[) and by relation (3.3)
we have Θs(f)(r, x, 0) = 0. From Lemmas 3.3 3.4, we have

lim
r2+|x|2+t2→+∞

Θs(f)(r, x, t) = 0

Now, according to relations (3.3) and (3.2), we have

Δn−1
2

(U (W (f)(., ., s))(r, x, t) = 0. (4.10)

We have, for every g, h ∈ C 2
e (R × R

n×]0,+∞[),

Δn−1
2

(fg) = gΔn−1
2

(f) + fΔn−1
2

(g) + 2

⎛
⎝∂f

∂r

∂g

∂r
+

n∑
j=1

∂f

∂xj

∂g

∂xj
+

∂f

∂t

∂g

∂t

⎞
⎠ .

(4.11)
We know that Δn−1

2
(U (f)) = 0, and by the same way for every 1 � j � n,

Δn−1
2

(∂U (f)
∂xj

)
=

∂

∂xj

(
Δn−1

2
U (f)

)
= 0. (4.12)

and also

Δn−1
2

(∂U (f)
∂t

)
=

∂

∂t

(
Δn−1

2
U (f)

)
= 0. (4.13)

Then, by a standard calculus, we get

Δn−1
2

(∂U (f)
∂r

)
=

∂

∂r

(
Δn−1

2
U (f)

)
+

n

r2

∂U (f)
∂r

=
n

r2

∂U (f)
∂r

. (4.14)
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Combining relations (3.8),(4.11),(4.12), (4.13) and (4.14), we deduce
that

Δn−1
2

W (f)

= Δn−1
2

(∂(U (f))
∂r

)2 +
n∑

j=1

Δn−1
2

(∂(U (f))
∂xj

)2 + Δn−1
2

(∂(U (f))
∂t

)2

=
2n

r2

(
∂U (f)

∂r

)2

+ 2
∣∣∣∣∇

(
∂(U (f))

∂r

)∣∣∣∣
2

+ 4
( n∑

j=1

(
∂

∂xj

(
∂U (f)

∂r

))2

+
(

∂

∂t

(
∂U (f)

∂xj

))2

+
(

∂

∂t

(
∂U (f)

∂r

))2 )
� 0. (4.15)

Relations (4.10) and (4.15) imply that

∀(r, x, t) ∈ R × R
n × [0,+∞[, Δn−1

2
Θs(f)(r, x, t) � 0,

and Corollary 4.5 achieves then the proof. �

According to [3], the Littlewood–Paley g-function associated with the
spherical mean operator is defined for f ∈ De(R × R

n) by

∀(r, x) ∈ [0,+∞[×R
n, g(f)(r, x) =

(∫ +∞

0

|∇ (U (f)) (r, x, t)|2 tdt

)1/2

.

Lemma 4.7. For every nonnegative functions f, h ∈ De(R × R
n), we have

∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

� 4
∫ +∞

0

∫ +∞

0

∫
Rn

|∇U (f)(r, x, t)|2 U (h)(r, x, t)dνn+1(r, x)tdt.

Proof. By relations (3.8) and (4.9) and using Fubini’s Theorem we get
∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

�
∫ +∞

0

t

(∫ +∞

0

∫
Rn

h(r, x)P
t
2
( ∣∣∣∇P

t
2 (f)

∣∣∣2 )
(r, x)dνn+1(r, x)

)
dt.

Since P
t
2 is a self-adjoint operator in L2(dνn+1), then we deduce that

∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

�
∫ +∞

0

t

(∫ +∞

0

∫
Rn

P
t
2 (h)(r, x)

∣∣∣∇P
t
2 (f)(r, x)

∣∣∣2 dνn+1(r, x)
)

dt.

The result follows by the change of variables s = t
2 . �
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Lemma 4.8. For every positive functions f, g ∈ De(R×R
n) such that Supp(f)∪

Supp(g) ⊂ Bη, we have∫ +∞

0

∫ +∞

0

∫
Rn

Δn−1
2

(
U (f)2U (g)

)
(r, x, t)tdtdνn+1(r, x)

=
∫ +∞

0

∫
Rn

f2(r, x)g(r, x)dνn+1(r, x). (4.16)

Proof. By the relation (4.11), we get

Δn−1
2

(
U (f)2U (g)

)
= U (g)Δn−1

2
(U (f)2) + U (f)2Δn−1

2
(U (g))

+ 2
∂(U (f)2)

∂r

∂(U (g))
∂r

+ 2
n∑

j=1

∂(U (f)2)
∂xj

∂(U (g))
∂xj

+ 2
∂(U (f)2)

∂t

∂(U (g))
∂t

. (4.17)

Using the fact that Δn−1
2

(
U (f)

)
= Δn−1

2

(
U (g)

)
= 0, we obtain

Δn−1
2

(
U (f)2

)
= 2

∣∣∇(
U (f)

)∣∣2 . (4.18)

On the other hand,
∣∣∣2∂

(
U (f)2

)
∂r

∂(U (g))
∂r

+2
∑n

j=1

∂
(
U (f)2

)
∂xj

∂(U (g))
∂xj

+ 2
∂
(
U (f)2

)
∂t

∂(U (g))
∂t

∣∣∣
� 2U (f) |∇U (f)|2 + 2U (f) |∇U (g)|2 . (4.19)

Since U (f) and U (g) are bounded, then using relations (4.11), (4.18) and
(4.19) we deduce that there is a positive constant C such that∫ +∞

0

∫ +∞

0

∫
Rn

∣∣∣Δn−1
2

(
U (f)2U (g)

)
(r, x, t)

∣∣∣ tdtdνn+1(r, x)

� C

∫ +∞

0

∫ +∞

0

∫
Rn

|∇U (f)(r, x, t)|2 tdtdνn+1(r, x)

+C

∫ +∞

0

∫ +∞

0

∫
Rn

|∇U (g)(r, x, t)|2 tdtdνn+1(r, x).

Using now the relation (4.18) and [11, proposition 4.3], we get∫ +∞

0

∫ +∞

0

∫
Rn

∣∣∣Δn−1
2

(
U (f)2U (g)

)
(r, x, t)

∣∣∣ tdtdνn+1(r, x)

� C

2

(
‖f‖2

2,νn+1
+ ‖g‖2

2,νn+1

)
< +∞.

Then, we have∫ +∞

0

∫ +∞

0

∫
Rn

Δn−1
2

(
U (f)2U (g)

)
(r, x, t)tdtdνn+1(r, x)

= lim
ξ→+∞

∫ ξ

0

∫ ξ

0

∫
[−ξ,ξ]n

Δn−1
2

(
U (f)2U (g)

)
(r, x, t)tdtdνn+1(r, x). (4.20)
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By Fubini’s theorem, we obtain
∫ ξ

0

∫ ξ

0

∫
[−ξ,ξ]n

Δn−1
2

(
U (f)2U (g)

)
(r, x, t)tdtdνn+1(r, x)

= I(ξ) +
n∑

j=1

Ij(ξ) + K(ξ). (4.21)

where

• I(ξ) =
∫ ξ

0

∫ ξ

0

∫
[−ξ,ξ]n


n−1
2

(
U (f)2U (g)

)
(r, x, t)dνn+1(r, x)tdt

= ξn

(π)
n
2 2n− 1

2 Γ( n+1
2 )

∫ ξ

0

∫
[−ξ,ξ]n

∂
(
U (f)2U (g)

)
∂r (ξ, x, t)tdtdx.

For ξ � 2η, and from [11, Lemma 4.2], we deduce that

|
∂
(
U (f)2U (g)

)
∂r

(ξ, x, t)| � C
ξ6n+4 .

Hence,

|I(ξ)| � C1
ξ4n+2 −→ξ→+∞ 0. (4.22)

• Ij(ξ) =
∫ ξ

0

∫ ξ

0

∫
[−ξ,ξ]n

∂2

∂x2
j

(
U (f)2U (g)

)
(r, x, t)tdtdνn+1(r, x).

As the same way and using again [11, Lemma 4.2], we show that

|Ij(ξ)| � C2
ξ4n+2 −→ξ→+∞ 0. (4.23)

And K(ξ) =
∫ ξ

0

∫
[−ξ,ξ]n

⎛
⎝∫ ξ

0

∂2
(
U (f)2U (g)

)
∂t2

(r, x, t)tdt

⎞
⎠ dνn+1(r, x). In-

tegrating by parts and using relation (3.3), we get

∫ ξ

0

∂2
(
U (f)2U (g)

)
∂t2

(r, x, t)tdt

= ξ
∂
(
U (f)2U (g)

)
∂t

(r, x, ξ) −
(
U (f)2U (g)

)
(r, x, ξ) +

(
f(r, x)

)2
g(r, x),

by [11, lemma 4.1], for ξ > 0, and (r, x) ∈ [0,+∞[×R
n

∣∣ξ ∂
(
U (f)2U (g)

)
∂t

(r, x, ξ) −
(
U (f)2U (g)

)
(r, x, ξ)

∣∣ � C
ξ6n+3 .

Consequently,

lim
ξ→+∞

K(ξ) =
∫ +∞

0

∫
Rn

(
f(r, x)

)2
g(r, x)dνn+1(r, x). (4.24)

Then, the result follows from relations (4.20), (4.21), (4.22), (4.23) and (4.24).
�
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In [3], Hleili and Omri defined the maximal function f∗ associated with
the spherical mean operator by

f∗(r, x) = sup
t>0

∣∣Pt(f)(r, x)
∣∣ , (4.25)

and they showed that for every f ∈ De(R × R
n), the maximal function f∗

belongs to the space Lp(dνn+1) and satisfies

‖f∗‖p,νn+1 � 2
(

p

p − 1

) 1
p

‖f‖p,νn+1 . (4.26)

Lemma 4.9. For every nonnegative functions f, h ∈ De(R × R
n), we have

∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

� 2
∫ +∞

0

∫
Rn

∣∣f(r, x)
∣∣2h(r, x)dνn+1(r, x) + 8

∫ +∞

0

∫
Rn

f∗(r, x)g(f)(r, x)g(h)(r, x)dνn+1(r, x).

Proof. Using relation (4.18) and Lemma 4.7, we get
∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

� 2
∫ +∞

0

∫ +∞

0

∫
Rn

Δn−1
2

(
(Pt(f))2

)
(r, x)Pt(h)(r, x)dνn+1(r, x)tdt.

(4.27)

Now, by a standard calculus, we have

Δn−1
2

(
(Pt(f))2

)
Pt(h)

= Δn−1
2

(
(Pt(f))2Pt(h)

)
− 4Pt(f)〈∇(Pt(f)) | ∇(Pt(h))〉. (4.28)

Combining relations (4.16), (4.25), (4.27) and (4.28), and using again Cauchy-
Schwarz inequality, we get the desired result. �

Proposition 4.10. For every p ∈ [4,+∞[ and for every nonnegative function
f ∈ De (R × R

n), the function g(f) belongs to the space Lp(dνn+1) and we
have

‖g(f)‖p,νn+1 � Ap‖f‖p,νn+1 ,

where Ap =
√

2

(
8p

2−p
2p (p−2)

3p−4
2p

(p−1)
1
p

+

√
1 + 64p

2−p
p (p−2)

3p−4
p

(p−1)
2
p

)
.

Proof. Let q be the conjugate exponent of
p

2
, that is

2
p

+
1
q

= 1, and let

f, h ∈ De (R × R
n) be nonnegative functions, such that ‖h‖q,νn+1 � 1.
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From Lemma 4.9 and the generalized Hölder’s inequality, we get∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

� 2‖f‖2
p,νn+1

+ 8‖f∗‖p,νn+1‖g(f)‖p,νn+1‖g(h)‖q,νn+1 .

Therefore, using relation (4.26) and [3, Proposition4.6], we deduce that∫ +∞

0

∫
Rn

(
g(f)(r, x)

)2
h(r, x)dνn+1(r, x)

� 2‖f‖2
p,νn+1

+ 8
2

3
2 p

2−p
2p (p − 2)

3p−4
2p

(p − 1)
1
p

‖f‖p,νn+1 ‖g(f)‖p,νn+1 .

Hence,

‖g(f)‖2
p,νn+1

= sup
‖h‖q,νn+1�1

( ∫ +∞

0

∫
Rn

g2(f)(r, x)h(r, x)dνn+1(r, x)
)

�
(√

2‖f‖p,νn+1 +
8p

2−p
2p (p − 2)

3p−4
2p

(p − 1)
1
p

‖g(f)‖p,νn+1

)2

−64p
2−p

p (p − 2)
3p−4

p

(p − 1)
2
p

‖g(f)‖2
p,νn+1

.

�

Proposition 4.11. For every p ∈ [4,+∞[ and for every f ∈ De (R × R
n), the

function g(f) belongs to the space Lp(dνn+1) and we have

‖g(f)‖p,νn+1 � Bp‖f‖p,νn+1 .

Proof. Let p ∈ [4,+∞[ and f ∈ De (R × R
n) such that Supp(f) ⊂ Ba,

without loss of generality, we can assume that f is real valued and we

consider f+ =
f + |f |

2
, f− =

−f + |f |
2

. Then, f+ is nonnegative, belongs

to Ce,c (R × R
n) and satisfies Supp(f+) ⊂ Ba. From [11, Lemma 4.5], we

know that for every real number 0 < ε < 1, there is a nonnegative function
h1 ∈ De (R × R

n) such that Supp(h1) ⊂ Ba+2 and

∀(r, x) ∈ [0,+∞[×R
n, 0 � h1(r, x) − f+(r, x) � ε. (4.29)

On the other hand, the function h2 = h1 − f = h1 − f+ + f− is nonnegative,
belongs to the space De (R × R

n), and satisfies Supp(h2) ⊂ Ba+2. Moreover,

∀(r, x) ∈ [0,+∞[×R
n, 0 � h2(r, x) − f−(r, x) = h1(r, x) − f+(r, x) � ε,

and f = h1 − h2. Since, the mapping f �→ g(f) is sub-linear in the sense
g(f1 + f2) � g(f1) + g(f2), we deduce that g(f) � g(h1) + g(h2). Using
Proposition 4.10, it follows that for every f ∈ De(R × R

n)

‖g(f)‖p,νn+1 � ‖g(h1)‖p,νn+1 + ‖g(h2)‖p,νn+1

� Ap

(
‖h1‖p,νn+1 + ‖h2‖p,νn+1

)
.
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Now, from relation (4.29) and Minkowski’s inequality, we get

‖h1‖p,νn+1 =

(∫ ∫
B+

a+2

(h1(r, x))pdνn+1(r, x)

) 1
p

� ‖f‖p,νn+1 + ε
(
νn+1(B+

a+2)
) 1

p ,

and by the same way ‖h2‖p,νn+1 � ‖f‖p,νn+1 + ε
(
νn+1(B+

a+2)
) 1

p . This means
that for every ε ∈ R, 0 < ε < 1,

‖g(f)‖p,νn+1 � 2Ap

(
‖f‖p,νn+1 + ε

(
νn+1(B+

a+2)
) 1

p

)
,

and, consequently, ‖g(f)‖p,νn+1 � 2Ap‖f‖p,νn+1 = Bp‖f‖p,νn+1 . �

Theorem 4.12. For every p ∈ [4,+∞[ and for every f ∈ Lp(dνn+1), the
function g(f) belongs to the space Lp(dνn+1) and we have

‖g(f)‖p,νn+1 � Bp‖f‖p,νn+1 .

Proof. Let p ∈ [4,+∞[ and let f ∈ Lp(dνn+1), then there is a sequence
(fk)k∈N ⊂ De (R × R

n) such that limk→+∞ ‖f − fk‖p,νn+1 = 0. Since the
mapping g �−→ g(f) is sub-linear, then for every k, k′ ∈ N, we have∣∣g(fk) − g(fk′)

∣∣ � g(fk − fk′),

hence, by Proposition 4.11, we get

‖g(fk) − g(fk′)‖p,νn+1 � ‖g(fk − fk′)‖p,νn+1 � Bp‖fk − fk′‖p,νn+1 −→
k,k′→+∞

0.

This means that ((g(fk))k∈N
is a Cauchy sequence which converges in Lp

(dνn+1). We put g(f) = limk→+∞ g(fk).
It is clear that g(f) is independent of the choice of (fk)k∈N, and we have

‖g(f)‖p,νn+1 � limk→+∞ Bp‖fk‖p,νn+1 = Bp‖f‖p,νn+1 . �

Theorem 4.13. For every p ∈]1,+∞[ and for every function f ∈ Lp(dνn+1),
the function g(f) belongs to the space Lp(dνn+1), and we have

‖g(f)‖p,νn+1 � Dp‖f‖p,νn+1 , (4.30)

where

Dp =

⎧⎪⎨
⎪⎩

Cp, if p ∈]1, 2]
Bp, if p ∈ [4,+∞[

2
4−p
2p B

2(p−2)
p

4 , if p ∈ [2, 4]

Proof. The result is a consequence of Theorem [3, Theorem4.7], Theorem
4.12 and Marcinkiewicz interpolation theorem. �

Theorem 4.14. For every p ∈]1,+∞[ and for every f ∈ Lp(dνn+1), the func-
tion g(f) belongs to the space Lp(dνn+1) and we have

‖f‖p,νn+1 � 4Dq‖g(f)‖p,νn+1 ,

where Dq is the constant given by relation (4.30) and q =
p

p − 1
.
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Proof. Let f ∈ De (R × R
n) and g1(f) be the function defined on [0,+∞[×R

n

by

g1(f)(r, x) =

(∫ +∞

0

∣∣∣∣∂U (f)
∂t

(r, x, t)
∣∣∣∣
2

tdt

) 1
2

.

From relation (3.2), we know that

U (f)(r, x, t) =
∫ +∞

0

∫
Rn

e−t
√

s2+|y|2F̃ (f)(s, y)jn−1
2

(rs)ei〈y|x〉dνn+1(s, y).

Hence, for every (r, x, t) ∈ R × R
n×]0,+∞[, we have

∂U (f)
∂t

(r, x, t) = F̃−1
(
−

√
s2 + |y|2e−t

√
s2+|y|2F̃ (f)

)
(r, x),

and, therefore, using Plancherel’s theorem, we get

‖g1(f)‖2
2,νn+1

=
∫ +∞

0

(∫ +∞

0

∫
Rn

(r2 + |x|2)e−2t
√

r2+|x|2
∣∣∣F̃ (f)(r, x)

∣∣∣2 dνn+1(r, x)
)

tdt.

‖g1(f)‖2
2,νn+1

=
1
4
‖F̃ (f)‖2

2,νn+1
=

1
4
‖f‖2

2,νn+1
.

Let h ∈ De (R × R
n), then by Schwarz’s inequality, we have∫ +∞

0

∫
Rn

f(r, x)h(r, x)dνn+1(r, x)

= ‖g1(f + h)‖2
2,νn+1

− ‖g1(f − h)‖2
2,νn+1

� 4
∫ +∞

0

∫
Rn

g1(f)(r, x)g1(h)(r, x)dνn+1(r, x),

and, therefore, for every p, q ∈]1,+∞[ such that
1
p

+
1
q

= 1, we get

∫ +∞

0

∫
Rn

f(r, x)h(r, x)dνn+1(r, x) � 4‖g1(f)‖p,νn+1‖g1(h)‖q,νn+1 .

In particular if ‖h‖q,νn+1 � 1 then by relation (4.30), we deduce that
∫ +∞

0

∫
Rn

f(r, x)h(r, x)dνn+1(r, x) � 4Dq‖g(f)‖p,νn+1 .

Since,

‖f‖p,νn+1 = sup
‖h‖q,νn+1�1

{∫ +∞

0

∫
Rn

f(r, x)h(r, x)dνn+1(r, x)
}

,

then, ‖f‖p,νn+1 � 4Dq‖g(f)‖p,νn+1 . �



4352 A. Hammami and S. Omri MJOM

References
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