Mediterranean Journal of Mathematics

$L^p\mbox{-}{\rm Boundedness}$ of the Littlewood–Paley $g\mbox{-}{\rm Function}$ Associated with the Spherical Mean Operator for 1

A. Hammami and S. Omri

Abstract. We prove the L^p -boundedness of the Littlewood–Paley gfunction associated with the spherical mean operator for $p \in]1, +\infty[$.

Mathematics Subject Classification. Primary : 43A32, Secondary : 42B10. Keywords. spherical mean operator, poisson semigroup, poisson inte-

Keywords. spherical mean operator, poisson semigroup, poisson integral, Littlewood–Paley g-function.

1. Introduction

According to Stein [10], the Littlewood–Paley g-function is defined in the Euclidean case by

$$\forall x \in \mathbb{R}^n, \ g(f)(x) = \left(\int_0^{+\infty} \left|\nabla\left(\mathscr{U}(f)\right)(x,t)\right|^2 t \mathrm{d}t\right)^{\frac{1}{2}},$$

where $\mathscr{U}(f)$ is the Poisson integral of f defined on $\mathbb{R}^n \times]0, +\infty[$, by

$$\mathscr{U}(f)(x,t) = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^n} \frac{tf(y)}{(t^2 + |x-y|^2)^{\frac{n+1}{2}}} \mathrm{d}y,$$

and ∇ is the standard gradient on \mathbb{R}^{n+1} . According to Stein [10], it is well known that the Littlewood–Paley g-function is bounded from the Lebesgue space L^p , $p \in]1, +\infty[$ into it self. The Littlewood–Paley theory constitutes one of the most important ways to study many function spaces as the Hardy spaces H^p , or the various forms of Lipshitz and BMO spaces, and remains closely related to the theory of Fourier multipliers in harmonic analysis. For more details, we refer the reader to Stein [10]. In the literature, many authors notably A. Achour, A.Fitouhi, and K. Stempak [1,2,11] generalized the Littlewood–Paley g-function to several other hypergroups and integral transforms, and showed similarly its L^p -boundedness. The spherical mean operator \mathscr{R} is defined by [7]

$$\mathscr{R}(f)(r,x) = \int_{S^n} f(r\eta, x + r\xi) d\sigma_n(\eta, \xi), \quad (r,x) \in \mathbb{R} \times \mathbb{R}^n,$$

where S^n is the unit sphere of \mathbb{R}^{n+1} and $d\sigma_n$ is the surface measure on S^n normalized to have total measure one. The Fourier transform associated with the spherical mean operator is defined by [7]

$$\mathscr{F}(f)(\mu,\lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} \mathscr{R}\left(\cos(\mu)e^{-i\langle\lambda|\cdot\rangle}\right)(r,x)d\nu_{n+1}(r,x),$$

where $d\nu_{n+1}$ is a measure that will be defined later. Many harmonic analysis results related to spherical mean operator and its the Fourier transform \mathscr{F} have already been proved by Rachdi and Trimèche [7,9] or also by Hleili and Omri [3,5,8]. Hleili and Omri [3] defined the Littlewood–Paley g-function associated with the spherical mean operator by

$$\in [0, +\infty[\times\mathbb{R}^n, g(f)(r, x) = \left(\int_0^{+\infty} |\nabla\left(\mathscr{U}(f)\right)(r, x, t)|^2 t \mathrm{d}t\right)^{1/2}$$

where $\mathscr{U}(f)$ is the Poisson integral associated with the spherical mean operator (see [3]). The authors showed that for every $p \in [1,2]$ and for every $f \in L^p(d\nu_{n+1})$ the function g(f) belongs to the space $L^p(d\nu_{n+1})$ and satisfies

$$||g(f)||_{p,\nu_{n+1}} \leq \frac{2^{\frac{2+p}{2p}}}{\sqrt{p}(p-1)^{\frac{1}{p}}} ||f||_{p,\nu_{n+1}}.$$

The aim of this work is to extend this result to every $p \in [1, +\infty)$.

2. The Spherical Mean Operator

2.1. Eigenfunction Associated with the Spherical Mean Operator

In [7], Nessibi, Rachdi and Trimèche showed that for every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, the function $\varphi_{(\mu,\lambda)}$ defined on $\mathbb{R} \times \mathbb{R}^n$ by

$$(r,x) = \mathscr{R}\left(\cos(\mu)e^{-i\langle\lambda|.\rangle}\right)(r,x), \tag{2.1}$$

is the unique infinitely differentiable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, satisfying the following system:

$$\begin{cases} \frac{\partial u}{\partial x_j}(r,x_1,...,x_n) = -i\lambda_j u(r,x_1,...,x_n), & 1 \leqslant j \leqslant n, \\ \ell \frac{n-1}{2} u(r,x_1,...,x_n) - \Delta u(r,x_1,...,x_n) = -\mu^2 u(r,x_1,...,x_n), \\ u(0,...,0) = 1, & \frac{\partial u}{\partial r}(0,x_1,...,x_n) = 0, & (x_1,...,x_n) \in \mathbb{R}^n. \end{cases}$$

where $\ell_{\frac{n-1}{2}}$ is the Bessel operator defined by $\ell_{\frac{n-1}{2}} = \frac{\partial^2}{\partial r^2} + \frac{n}{r}\frac{\partial}{\partial r}$, and $\Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$ denotes the Laplacian operator. Then, according to Nessibi,

Rachdi and Trimèche [7], it is known that for every $r, \mu \in \mathbb{R}_+$

$$\ell_{\frac{n-1}{2}}\left(j_{\frac{n-1}{2}}(r)\right)(\mu) = -r^2 j_{\frac{n-1}{2}}(r\mu)$$
(2.2)

where $j_{\frac{n-1}{2}}$ is the modified Bessel function [6]. In [7], the authors proved also that the eigenfunction $\varphi_{(\mu,\lambda)}$ defined by relation (2.1) is explicitly given by

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n, \quad \varphi_{(\mu,\lambda)}(r,x) = j_{\frac{n-1}{2}}(r\sqrt{\mu^2 + |\lambda|^2})e^{-i\langle\lambda|x\rangle}, \tag{2.3}$$

From the properties of the modified Bessel function $j_{\frac{n-1}{2}}$, we deduce that the eigenfunction $\varphi_{(\mu,\lambda)}$ is bounded on $\times \mathbb{R}^n$ if, and only if, $(\mu, \lambda) \in \Upsilon$, where

$$\Upsilon = \mathbb{R} \times \mathbb{R}^n \cup \left\{ (ir, x), \ (r, x) \in \mathbb{R} \times \mathbb{R}^n, \ |r| \le |x| \right\},$$
(2.4)

and in this case

$$\sup_{(r,x)\in\mathbb{R}\times\mathbb{R}^n} |\varphi_{(\mu,\lambda)}(r,x)| = 1.$$
(2.5)

In the following, we denote by

• $d\nu_{n+1}$ is the measure defined on $[0, +\infty[\times\mathbb{R}^n]$ by $d\nu_{n+1}(r, x) = \frac{r^n dr dx}{2^{n-\frac{1}{2}}\pi^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}$.

• $\mathscr{C}_e(\mathbb{R}\times\mathbb{R}^n)$ the space of continuous functions on $\mathbb{R}\times\mathbb{R}^n$, even with respect to the first variable.

• $\mathscr{C}_{0,e}(\mathbb{R}\times\mathbb{R}^n)$ the space of continuous functions on $\mathbb{R}\times\mathbb{R}^n$, even with respect to the first variable such that $\lim_{r^2+|x|^2\to+\infty} f(r,x) = 0$.

• $\mathscr{C}_e^k(\mathbb{R}\times\mathbb{R}^n)$ the space of functions of class C^k on $\mathbb{R}\times\mathbb{R}^n$, even with respect to the first variable.

• $\mathscr{C}_e^{\infty}(\mathbb{R} \times \mathbb{R}^n)$ the space of infinitely differentiable functions on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable.

S_e (ℝ × ℝⁿ) the space of infinitely differentiable functions, rapidly decreasing together with all their derivatives, even with respect to the first variable.
D_e (ℝ × ℝⁿ) the space of smooth functions on ℝ×ℝⁿ with compact support, even with respect to the first variable.

• $\Upsilon_{+} = [0, +\infty[\times\mathbb{R}^{n} \cup \{(is, y) ; (s, y) \in [0, +\infty[\times\mathbb{R}^{n}; s \leq |y|]\}.$

• \mathscr{B}_{Υ_+} the σ -algebra defined on Υ_+ by $\mathscr{B}_{\Upsilon_+} = \theta^{-1} (\mathscr{B}_{Bor}([0, +\infty[\times\mathbb{R}^n]))$ where θ is the bijective function defined on the set Υ_+ by $\theta(s, y) = (\sqrt{s^2 + |y|^2}, y)$.

• γ_{n+1} the measure defined on \mathscr{B}_{Υ_+} by $\gamma_{n+1}(B) = \nu_{n+1}(\theta(B))$.

2.2. Generalized Translation Operator and Convolution Product

According to Nessibi, Rachdi and Trimèche [7], for every $(r, x) \in [0, +\infty[\times\mathbb{R}^n, the generalized translation operator <math>\mathcal{T}_{(r,x)}$ associated with the spherical mean operator is defined by

$$\mathcal{T}_{(r,x)}(f)(s,y) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi}\Gamma(\frac{n}{2})} \int_0^\pi f(\sqrt{r^2 + s^2 + 2rs\cos\theta}, x+y)(\sin\theta)^{n-1} \mathrm{d}\theta,$$
(2.6)

MJOM

whenever the integral in the right hand side is well defined. The convolution product of two measurable functions f and g is defined on $[0, +\infty[\times\mathbb{R}^n]$ by

$$f * g(r, x) = \int_0^{+\infty} \int_{\mathbb{R}^n} \mathcal{T}_{(r, -x)}(\check{f})(s, y) g(s, y) d\nu_{n+1}(s, y),$$
(2.7)

whenever the integral of the right-hand side is well defined, where $\check{f}(s, y) = f(s, -y)$. Then, it is well know that for every $p \in [1, +\infty]$, $\mathcal{T}_{(r,x)}$ is bounded form $L^p(d\nu_{n+1})$ into itself and satisfies

$$|||\mathcal{T}_{(r,x)}||| \leqslant 1. \tag{2.8}$$

Moreover, for every $f \in L^p(d\nu_{n+1}), p \in [1, +\infty[$, we have

$$\lim_{(r,x)\to(0,0)} \|\mathcal{T}_{(r,x)}(f) - f\|_{p,\nu_{n+1}} = 0.$$
(2.9)

We have also the following Young inequality [7], that is for every $p, q, r \in [1, +\infty]$ such that $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ and for every $f \in L^p(d\nu_{n+1})$ and $g \in L^q(d\nu_{n+1})$, the function f * g belongs to the space $L^r(d\nu_{n+1})$, and we have

$$||f * g||_{r,\nu_{n+1}} \leqslant ||f||_{p,\nu_{n+1}} ||g||_{q,\nu_{n+1}}.$$
(2.10)

2.3. The Fourier Transform Associated with the Spherical Mean Operator The Fourier transform \mathscr{F} associated with the spherical mean operator is defined on $L^1(d\nu_{n+1})$ by [7]

$$\forall (\mu, \lambda) \in \Upsilon , \ \mathscr{F}(f)(\mu, \lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r, x) \varphi_{(\mu, \lambda)}(r, x) \, d\nu_{n+1}(r, x),$$

where $\varphi_{(\mu,\lambda)}$ is the eigenfunction given by relation (2.3), and Υ is the set defined by relation (2.4). Then, according to [7], it is known that for every $f \in L^1(d\nu_{n+1})$,

$$\mathscr{F}(f) = \mathscr{F}(f) \circ \theta, \tag{2.11}$$

where $\widetilde{\mathscr{F}}$ is the integral transform defined on $L^1(d\nu_{n+1})$, by

$$\forall (s,y) \in \mathbb{R} \times \mathbb{R}^n, \widetilde{\mathscr{F}}(f)(s,y) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r,x) j_{\frac{n-1}{2}}(rs) e^{-i\langle y|x \rangle} d\nu_{n+1}(r,x).$$
(2.12)

We know also that for every $f, g \in L^1(d\nu_{n+1})$, we have

$$\widetilde{\mathscr{F}}(f*g) = \widetilde{\mathscr{F}}(f)\widetilde{\mathscr{F}}(g).$$
(2.13)

Moreover, relation (2.5) implies that the Fourier transform \mathscr{F} is a bounded linear operator from $L^1(d\nu_{n+1})$ into $L^{\infty}(d\gamma_{n+1})$, and that for every $f \in L^1(d\nu_{n+1})$

$$\|\mathscr{F}(f)\|_{\infty,\gamma_{n+1}} \leq \|f\|_{1,\nu_{n+1}}.$$
 (2.14)

Theorem 2.1 [Inversion formula]. Let $f \in L^1(d\nu_{n+1})$ such that $\mathscr{F}(f) \in L^1(d\gamma_{n+1})$, then for almost every $(r, x) \in \mathbb{R} \times \mathbb{R}^n$, we have

$$f(r,x) = \iint_{\Upsilon_+} \mathscr{F}(f)(\mu,\lambda) \overline{\varphi_{(\mu,\lambda)}(r,x)} \, d\gamma_{n+1}(\mu,\lambda)$$

Theorem 2.2 (Plancherel theorem). The Fourier transform \mathscr{F} can be extended to an isometric isomorphism from $L^2(d\nu_{n+1})$ onto $L^2(d\gamma_{n+1})$. In particular, we have the following Parseval equality that is, for every $f, g \in$ $L^2(d\nu_{n+1})$

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r,x)\overline{g(r,x)} \, d\nu_{n+1}(r,x) = \iint_{\Upsilon_{+}} \mathscr{F}(f)(\mu,\lambda)\overline{\mathscr{F}(g)(\mu,\lambda)} d\gamma_{n+1}(\mu,\lambda).$$
(2.15)

3. The Generalized Poisson Integral Associated with the Spherical Mean Operator

3.1. The Generalized Poisson Integral Associated with the Spherical Mean Operator

In [3], Hleili and Omri introduced the Poisson kernel associated with the spherical mean operator, by

$$\forall (r, x) \in \mathbb{R} \times \mathbb{R}^{n}, \ p_{t}(r, x) = \iint_{\Upsilon_{+}} e^{-t|\theta(s, y)|} \overline{\varphi_{(s, y)}(r, x)} d\gamma_{n+1}(s, y), \ t > 0$$

$$= \frac{2^{n+\frac{1}{2}} n! t}{\sqrt{\pi} (t^{2} + r^{2} + |x|^{2})^{n+1}}.$$

$$(3.1)$$

According to [3], the generalized Poisson integral associated with the spherical mean operator is defined for every $f \in L^1(d\nu_{n+1})$ by

 $\forall (r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[, \mathscr{U}(f)(r, x, t) = \mathscr{P}^t(f)(r, x),$

where \mathscr{P}^t is the convolution operator defined on $L^1(d\nu_{n+1})$, by $\mathscr{P}^t(f) = p_t * f$. Then, by inversion formula, we deduce that for every $f \in L^1(d\nu_{n+1})$,

$$\mathscr{U}(f)(r,x,t) = \iint_{\Upsilon_{+}} e^{-t|\theta(\mu,\lambda)|} \mathscr{F}(f)(\mu,\lambda) \overline{\varphi_{(\mu,\lambda)}(r,x)} \, d\gamma_{n+1}(\mu,\lambda), \ a.e$$
$$= \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} e^{-t\sqrt{s^{2}+|y|^{2}}} \widetilde{\mathscr{F}}(f)(s,y) j_{\frac{n-1}{2}}(rs) e^{i\langle y|x\rangle} d\nu_{n+1}(s,y), \ a.e. \tag{3.2}$$

Lemma 3.1. Let $f \in L^1(d\nu_{n+1}) \cap \mathscr{C}_{0,e}(\mathbb{R} \times \mathbb{R}^n)$, then the function $\mathscr{U}(f)$ belongs to $\mathscr{C}(\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[), and satisfies$

$$\forall (r, x) \in \mathbb{R} \times \mathbb{R}^n, \ \mathscr{U}(f)(r, x, 0) = f(r, x).$$
(3.3)

In the following for every nonnegative real number η , we denote by $B_{\eta} = \{(r, x) \in \mathbb{R} \times \mathbb{R}^n \mid r^2 + |x|^2 \leq \eta^2\}$ and $B_{\eta}^+ = B_{\eta} \cap (\mathbb{R}_+ \times \mathbb{R}^n)$. For every measurable function f on $\mathbb{R} \times \mathbb{R}^n$, we denote by supp(f) the support of f.

Proposition 3.2. Let η be a positive real number, and $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$. If $supp(f) \subset B_{\eta}$, then

(i) For every $(r, x, t) \in B_{2n}^c \times]0, +\infty[$, we have

$$\left|\frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t)\right| \leqslant \frac{2^{4n+3}(2n+3) (n!)^2 \eta^{2n+1}}{\pi (2n+1)!} \frac{\|f\|_{\infty,\nu_{n+1}}}{(t^2+r^2+|x|^2)^{n+1}}.$$
 (3.4)

$$\left|\frac{\partial \mathscr{U}(f)}{\partial r}(r,x,t)\right| \leqslant \frac{\sqrt{\pi}(2n+1)!}{2^{n-\frac{3}{2}}\Gamma(\frac{n+1}{2})^2} \frac{\|f\|_{1,\nu_{n+1}}}{t^{2n+2}}.$$
(3.5)

(iii) For every $1 \leq j \leq n$ and for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$, we have

$$\left| \frac{\partial \mathscr{U}(f)}{\partial x_j}(r, x, t) \right| \leqslant \frac{\sqrt{\pi}(2n+1)!}{2^{n-\frac{3}{2}} \Gamma(\frac{n+1}{2})^2} \frac{\|f\|_{1,\nu_{n+1}}}{t^{2n+2}}.$$
(3.6)

Proof. (i) According to relations (2.6) and (3.1), we have

$$\left|\frac{\partial \mathcal{T}_{(r,-x)}p_t}{\partial t}(s,y)\right| \leqslant \frac{2^{n+\frac{1}{2}}n!}{\sqrt{\pi}} \frac{2n+3}{(t^2+(r-s)^2+|x-y|^2)^{n+1}} \tag{3.7}$$

Hence by relations (2.7) and (3.7), we have

$$\begin{split} \left| \frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t) \right| &\leqslant \frac{2^{n+\frac{1}{2}}n!(2n+3)\|f\|_{\infty,\nu_{n+1}}}{\sqrt{\pi}} \\ \int \int_{B_{\eta}^{+}} \frac{d\nu_{n+1}(s,y)}{(t^{2}+(r-s)^{2}+|x-y|^{2})^{n+1}}, \end{split}$$

therefore, for every $(r, x, t) \in B_{2\eta}^c \times]0, +\infty[$, we get

$$\left|\frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t)\right| \leqslant \frac{2^{3n+\frac{5}{2}}n!(2n+3)}{\sqrt{\pi}} \frac{\|f\|_{\infty,\nu_{n+1}}\nu_{n+1}(B_{\eta}^{+})}{(t^{2}+r^{2}+|x|^{2})^{n+1}},$$

however, a standard calculus leads to $\nu_{n+1}(B_{\eta}^+) = \frac{\eta^{2n+1}n!2^{n+\frac{1}{2}}}{\sqrt{\pi}(2n+1)!}$.

Lemma 3.3. Let W be the mapping defined on $\mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$\forall (r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[, W(f)(r, x, t) = |\nabla \mathscr{U}(f)(r, x, t)|^2, \qquad (3.8)$$

and let $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$. Then (i) $W(f) \in \mathscr{C}_e^{\infty}(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[)$. (ii) $\forall t > 0, W(f)(...,t) \in L^1(d\nu_{n+1}) \cap \mathscr{C}_{0,e}(\mathbb{R} \times \mathbb{R}^n)$. (iii) $\lim_{r^2+|x|^2+t^2 \to +\infty} W(f)(r,x,t) = 0$.

Proof. (*ii*) Let $\eta > 0$ such that $supp(f) \subset B_{\eta}$, then according to Hleili and Omri [3, Lemma 4.2, pp. 900], we know that for every $(r, x, t) \in B_{2\eta}^c \times]0, +\infty[$, the generalized Poisson integral $\mathscr{U}(f)$ satisfies the following relations:

$$\left|\frac{\partial(\mathscr{U}(f))}{\partial r}(r,x,t)\right| \leq \frac{C\eta^{2n+1} \|f\|_{\infty,\nu_{n+1}}}{(t^2+r^2+|x|^2)^{n+1}},\tag{3.9}$$

and for every $1 \leq j \leq n$

$$\left. \frac{\partial \left(\mathscr{U}(f) \right)}{\partial x_j}(r, x, t) \right| \leqslant \frac{C \eta^{2n+1} \|f\|_{\infty, \nu_{n+1}}}{(t^2 + r^2 + |x|^2)^{n+1}}.$$
(3.10)

Then, by relations (3.4), (3.9) and (3.10), we get that for every $(r, x, t) \in B_{2\eta}^c \times]0, +\infty[$,

$$W(f)(r,x,t) \leqslant \frac{C\eta^{4n+2} \|f\|_{\infty,\nu_{n+1}}^2}{(t^2 + r^2 + |x|^2)^{2n+2}},$$
(3.11)

in particular for every t > 0, W(f)(.,.,t) belongs to $L^1(d\nu_{n+1})$ and

$$\lim_{r^2+|x|^2\to+\infty} W(f)(r,x,t) \leqslant \lim_{r^2+|x|^2\to+\infty} \frac{C\eta^{4n+2} \|f\|_{\infty,\nu_{n+1}}^2}{(t^2+r^2+|x|^2)^{2n+2}} = 0.$$

 $(iii) \bullet \text{If } |(r, x)| \ge 2\eta$, then by relation (3.11), we have

$$\lim_{t^2+r^2+|x|^2\to+\infty} W(f)(r,x,t) \leq \lim_{t^2+r^2+|x|^2\to+\infty} \frac{C\eta^{4n+2} \|f\|_{\infty,\nu_{n+1}}^2}{(t^2+r^2+|x|^2)^{2n+2}} = 0.$$

• If $|(r, x)| \leq 2\eta$, then according to [3, Lemma 4.1 pp 899], we know that for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$, we have

$$\left| \frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t) \right| \leqslant \frac{n!(2n+1)!2^{n+\frac{1}{2}} \|f\|_{1,\nu_{n+1}}}{\sqrt{\pi}(2n)!} \frac{1}{t^{2n+2}}.$$
 (3.12)

The proof is complete by means of relations (3.5), (3.6) and (3.12).

Lemma 3.4. Let $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, then for every s > 0, we have (i) $\mathscr{U}(W(f)(.,.,s)) \in \mathscr{C}^{\infty}(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[).$ (ii) $\lim_{r^2+|x|^2+t^2\to+\infty} \mathscr{U}(W(f)(.,.,s))(r,x,t) = 0.$

Proof. According to Lemma 3.3, we know that for every s > 0 the function W(f)(.,.,s) belongs to $L^1(d\nu_{n+1})$ and, therefore, $\mathscr{U}(W(f)(.,.,s))$ is well defined; moreover, by relation (3.2), we have for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$,

$$\mathscr{U}(W(f)(.,.,s))(r,x,t) = \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} e^{-t\sqrt{\mu^{2}+|\lambda|^{2}}} \widetilde{\mathscr{F}}(W(f)(.,.,s))(\mu,\lambda) j_{\frac{n-1}{2}}(r\mu) e^{i\langle\lambda|x\rangle} d\nu_{n+1}(\mu,\lambda),$$

which implies that $\mathscr{U}(W(f)(.,.,s)) \in \mathscr{C}^{\infty}(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[).$ (*ii*) Let s be a positive real number, then by relation (2.2),we get

$$\begin{aligned} \left| r^{2} \mathscr{U}(W(f)(.,.,s))(r,x,t) \right| \\ \leqslant \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left| \ell_{\frac{n-1}{2}} (e^{-t\sqrt{.^{2}+|\lambda|^{2}}} \widetilde{\mathscr{F}}(W(f)(.,.,s))(.,\lambda))(\mu) \right| d\nu_{n+1}(\mu,\lambda) \\ \leqslant C \frac{1+t+t^{2}}{t^{2n+1}} \end{aligned}$$
(3.13)

and, by the same way, we may obtain that there is a nonnegative constant C (not necessarily the same) such that for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$,

$$\left|x_{k}^{2}\mathscr{U}(W(f)(.,.,s))(r,x,t)\right| \leq C \frac{1+t+t^{2}}{t^{2n+1}},$$
(3.14)

and

$$\left|t^{2}\mathscr{U}(W(f)(.,.,s))(r,x,t)\right| \leq C \frac{1+t+t^{2}}{t^{2n+1}},$$
(3.15)

Combining relations (3.13-3.15), we deduce that

$$|\mathscr{U}(W(f)(.,.,s))(r,x,t)| \leq \frac{C(1+t+t^2)}{t^{2n+1}(r^2+|x|^2+t^2)}.$$
(3.16)

On the other hand by Lemma 3.3, we know that for every s > 0, $W(f) \in \mathscr{C}_{0,e}(\mathbb{R} \times \mathbb{R}^n)$, since the family $(p_t)_{t>0}$ is an approximation of identity in $\mathscr{C}_{0,e}(\mathbb{R} \times \mathbb{R}^n)$, then $\lim_{t\to 0^+} \mathscr{U}(W(f)(.,.,s))(.,.,t) = W(f)(.,.,s)$ uniformly. Hence,

- If $t \longrightarrow 0$, then $\lim_{\substack{t \to 0^+ \\ r^2 + |x|^2 \to +\infty}} \mathscr{U}(W(f)(.,.,s))(r,x,t) = 0.$
- If $t \ge a$ for some positive constant a, then by relation (3.16) we get

$$\lim_{t^2+r^2+|x|^2\to+\infty} \mathscr{U}(W(f)(.,.,s))(r,x,t) = 0.$$

4. Litellewood–Paley g-Function Associated with the Spherical Mean Operator

The main idea of this section is to prove the L^p -boundedness for $4 \leq p < +\infty$ and to use nextly the Marcinkiewicz interpolation theorem. To prove the result for $4 \leq p < +\infty$, we are going to apply mainly the Hopf's maximum principle to the uniformly elliptic operator [4]

$$\Delta_{\frac{n-1}{2}} = \frac{\partial^2}{\partial r^2} + \frac{n}{r}\frac{\partial}{\partial r} + \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial t^2}.$$
(4.1)

Theorem 4.1 (Strong Hopf's maximum principle). Let

$$L = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{n} b_j(x) \frac{\partial}{\partial x_j}$$

be an uniformly elliptic operator on a bounded connected domain $\Omega \subset \mathbb{R}^n$, such that the functions a_{ij} and b_j are continuous on $\overline{\Omega}$. Let $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$ such that for every $x \in \Omega$, $Lu(x) \ge 0$. If there exists $x_0 \in \Omega$ such that $\sup_{x \in \overline{\Omega}} u(x) = u(x_0)$, then

$$\forall x \in \overline{\Omega}, \ u(x) = u(x_0).$$

Proposition 4.2. Let a_0, a_1, \ldots, a_n and T be positive real numbers and let

$$\Omega =] - a_0, a_0[\times \prod_{i=1}^n] - a_i, a_i[\times]0, T[.$$

Let $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$, be an even function with respect to the first variable, satisfying $\forall (r, x, t) \in \Omega$, $\Delta_{\frac{n-1}{2}} u(r, x, t) \ge 0$. If there is $(r_0, x_0, t_0) \in \Omega$, $r_0 \neq 0$ such that $\sup_{(r, x, t) \in \overline{\Omega}} u(r, x, t) = u(r_0, x_0, t_0)$, then

$$\forall (r, x, t) \in \overline{\Omega}, \, u(r, x, t) = u(r_0, x_0, t_0).$$

Proof. Assume that there is $(r_0, x_0, t_0) \in \Omega$, $r_0 \neq 0$ such that

$$\sup_{(r,x,t)\in\overline{\Omega}}u(r,x,t)=u(r_0,x_0,t_0),$$

since the function u is even with respect to the first variable then without loss of generality we can assume that $r_0 > 0$. Let ε be a real number satisfying $0 < \varepsilon < r_0$ and let $\Omega_{\varepsilon} = \varepsilon, a_0[\times \prod_{i=1}^n] - a_i, a_i[\times]0, T[$, then $(r_0, x_0, t_0) \in \Omega_{\varepsilon}$ and, therefore, $\sup_{(r,x,t)\in\overline{\Omega_{\varepsilon}}}u(r,x,t) = \sup_{(r,x,t)\in\overline{\Omega}}u(r,x,t) = u(r_0,x_0,t_0)$. On the other hand, the operator $\Delta_{\frac{n-1}{2}}$ defined by relation (4.1) is uniformly elliptic on the connected bounded domain Ω_{ε} and satisfies according to the hypothesis $\Delta_{\frac{n-1}{2}}u \ge 0$, hence by Theorem 4.1 we deduce that

$$\forall (r, x, t) \in \Omega_{\varepsilon}, \ u(r, x, t) = u(r_0, x_0, t_0),$$

consequently

$$\forall (r, x, t) \in]0, a_0[\times \left(\prod_{i=1}^n] - a_i, a_i[\right) \times]0, T[, u(r, x, t) = u(r_0, x_0, t_0),$$

since u is continuous on $\overline{\Omega}$, then

$$\forall (x,t) \in \prod_{i=1}^{n}] - a_i, a_i[\times]0, T[, \ u(0,x,t) = \lim_{r \to 0^+} u(r,x,t) = u(r_0,x_0,t_0),$$

since u is even with respect to the first variable, then

$$\forall (r, x, t) \in \Omega, \ u(r, x, t) = u(r_0, x_0, t_0).$$

However, u is continuous on $\overline{\Omega}$, hence

$$\forall (r, x, t) \in \overline{\Omega}, \, u(r, x, t) = u(r_0, x_0, t_0).$$

Proposition 4.3. Let a_0, a_1, \ldots, a_n and T be positive real numbers and let

$$\Omega =] - a_0, a_0[\times \prod_{i=1}^n] - a_i, a_i[\times]0, T[.$$

Let $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$, be a function even with respect to the first variable satisfying

 $\forall (r,x,t)\in\Omega,\quad \Delta_{\frac{n-1}{2}}u(r,x,t)\geqslant 0.$

If there is $(x_0, t_0) \in \left(\prod_{i=1}^n [-a_i, a_i]\right) \times [0, T[$ such that $\sup_{(r, x, t) \in \overline{\Omega}} u(r, x, t) = u(0, x_0, t_0)$, then

$$\forall (r, x, t) \in \overline{\Omega}, \ u(r, x, t) = u(0, x_0, t_0).$$

Proof. Let $M = u(0, x_0, t_0)$, then by Proposition 4.2, it is sufficient to prove that, there is $(r_1, x_1, t_1) \in \Omega$ such that $r_1 \neq 0$ and $M = u(r_1, x_1, t_1)$. Suppose towards a contradiction that this is not true, then

$$\forall (r, x, t) \in \Omega, \ r \neq 0, \ u(r, x, t) < M.$$

$$(4.2)$$

Let φ be the function defined on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$, by

$$\varphi(r, x, t) = e^{2r^2 - |x - x_0|^2 - (t - t_0)^2} - 1,$$

and H be the subset of $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$ defined by $H = \varphi^{-1} ([0, +\infty[) \cap \Omega$. Since Ω is open and $(0, x_0, t_0) \in \Omega$, then there exists a real $\varepsilon > 0$ such that

$$\overline{B_{(0,x_0,t_0),\varepsilon}} = \{(r,x,t) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}; r^2 + |x-x_0|^2 + (t-t_0)^2 \leqslant \varepsilon^2\} \subset \Omega,$$

and, therefore, $H \cap \partial \overline{B_{(0,x_0,t_0),\varepsilon}} = \varphi^{-1} \left([0, +\infty[) \cap \overline{B_{(0,x_0,t_0),\varepsilon}} \right)$, in particular the set $K = H \cap \partial \overline{B_{(0,x_0,t_0),\varepsilon}}$ is compact. However, since u is continuous on K, then u attains its maximum on K that is there exists $(r_2, x_2, t_2) \in K$ such that

$$M' = \sup_{(r,x,t)\in K} u(r,x,t) = u(r_2,x_2,t_2).$$

Now, since $(r_2, x_2, t_2) \in K$, then $\varphi(r_2, x_2, t_2) = e^{2r_2^2 - |x_2 - x_0|^2 - (t_2 - t_0)^2} - 1 \ge 0$, in particular $r_2 \neq 0$ and by assertion (4.2) we get M' < M. Now let

$$M'' = \sup_{(r,x,t)\in K} \varphi(r,x,t),$$

since $(\varepsilon, x_0, t_0) \in K$ then $M'' \ge \varphi(\varepsilon, x_0, t_0) = e^{2\varepsilon^2} - 1 > 0$. Let $\delta \in]0, \frac{M - M'}{M''}[$, and let ϕ be the function defined on Ω by

$$\phi(r, x, t) = u(r, x, t) + \delta\varphi(r, x, t).$$

For every $(r, x, t) \in \Omega$, we have

$$\Delta_{\frac{n-1}{2}}\varphi(r,x,t) = (16r^2 + 4|x - x_0|^2 + 4(t - t_0)^2 + 2n + 2) e^{2r^2 - |x - x_0|^2 - (t - t_0)^2} > 0$$

Since $\forall (r, x, t) \in \Omega, \ \Delta_{\frac{n-1}{2}}u(r, x, t) \ge 0$, then for every $(r, x, t) \in \Omega$

$$\Delta_{\frac{n-1}{2}}\phi(r,x,t) > 0. \tag{4.3}$$

Let $(r, x, t) \in \partial B_{(0,x_0,t_0),\varepsilon}$, - If $(r, x, t) \notin H$ then $\varphi(r, x, t) < 0$ and, therefore,

$$\phi(r, x, t) = u(r, x, t) + \delta \varphi(r, x, t) < u(r, x, t) < M.$$

- If $(r, x, t) \in H$ then $(r, x, t) \in K$, hence

$$\phi(r, x, t) = u(r, x, t) + \delta\varphi(r, x, t) \leqslant M' + \delta M'' < M.$$

Hence,

$$\forall (r, x, t) \in \partial B_{(0, x_0, t_0), \varepsilon}, \ \phi(r, x, t) < M.$$

$$(4.4)$$

Let $(r_3, x_3, t_3) \in \overline{B_{(0, x_0, t_0), \varepsilon}}$ such that $\sup_{(r, x, t) \in \overline{B_{(0, x_0, t_0), \varepsilon}}} \phi(r, x, t) = \phi(r_3, x_3, t_3),$ then

then

$$\phi(r_3, x_3, t_3) \ge \phi(0, x_0, t_0) = u(0, x_0, t_0) = M,$$

and by relation (4.4) we deduce that the function ϕ attains its maximum in $(r_3, x_3, t_3) \in B_{(0,x_0,t_0),\varepsilon}$.

• If $r_3 \neq 0$, then

$$\Delta_{\frac{n-1}{2}}\phi(r_3, x_3, t_3) = \frac{\partial^2 \phi}{\partial r^2}(r_3, x_3, t_3) + \Delta \phi(r_3, x_3, t_3) + \frac{\partial^2 \phi}{\partial t^2}(r_3, x_3, t_3) \leqslant 0.$$
(4.5)

• If $r_3 = 0$, since u is even with respect to the first variable, then for every $(x,t) \in \mathbb{R}^n \times \mathbb{R}, \ \frac{\partial u}{\partial r}(0,x,t) = 0$, and therefore $\frac{\partial^2 u}{\partial r^2}(0,x,t) = \lim_{r \to 0} \frac{1}{r} \frac{\partial u}{\partial r}(r,x,t)$, in particular $\ell_{\frac{n-1}{2}}u(0,x,t) = (n+1)\frac{\partial^2 u}{\partial r^2}(0,x,t)$, hence $\frac{\partial^2 \phi}{\partial r^2}$

$$\Delta_{\frac{n-1}{2}}\phi(0,x_3,t_3) = (n+1)\frac{\partial^2\phi}{\partial r^2}(0,x_3,t_3) + \Delta\phi(0,x_3,t_3) + \frac{\partial^2\phi}{\partial t^2}(0,x_3,t_3) \leqslant 0.$$
(4.6)

Relations (4.5) and (4.6) show that $\Delta_{\frac{n-1}{2}}\phi(r_3, x_3, t_3) \leq 0$ which contradicts relation (4.3) and prove that assertion (4.2) is not true.

Theorem 4.4. Let a_0, a_1, \ldots, a_n and T be positive real numbers and let

$$\Omega =] - a_0, a_0[\times] - a_i, a_i[\times]0, T[.$$

Let $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}(\overline{\Omega})$, be a function even with respect to the first variable satisfying

$$\forall (r, x, t) \in \Omega, \quad \Delta_{\frac{n-1}{2}} u(r, x, t) \ge 0.$$

If u attains its maximum in Ω , then u is constant.

Proof. The result follows immediately from Proposition 4.2 and Proposition 4.3. $\hfill \Box$

Theorem 4.5. Let $h \in \mathscr{C}^2(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[) \cap \mathscr{C}(\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[), be a function even with respect to the first variable. If$ $(i) <math>\forall (r, x) \in \mathbb{R} \times \mathbb{R}^n$; $h(r, x, 0) \ge 0$. (ii) $\lim_{r^2+|x|^2+t^2\to+\infty} h(r, x, t) = 0$. (iii) $\forall (r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times [0, +\infty[, \Delta_{\frac{n-1}{2}}h(r, x, t) \le 0.$ Then, h is nonnegative.

Proof. Suppose that there is $(r_1, x_1, t_1) \in \mathbb{R} \times \mathbb{R}^n \times [0, +\infty]$ such that

$$h(r_1, x_1, t_1) < 0. (4.7)$$

Since h is continuous on $\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[$, and according to ii), we deduce that h is bounded on $\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[$ and attains its minimum in $(r_0, x_0, t_0) \in \mathbb{R} \times \mathbb{R}^n \times [0, +\infty[$; furthermore, we have $h(r_0, x_0, t_0) \leq h(r_1, x_1, t_1) < 0$, hence according to i) we have $t_0 > 0$. Now, let $b_0, b_1, \ldots, b_n, \varepsilon$ be positive real numbers such that $\varepsilon > \sup(t_0, t_1)$ and such that the set $\Omega_1 = \prod_{j=0}^n [-b_j, b_j[\times]0, 2\varepsilon[$ contains (r_0, x_0, t_0) . Let g = -h, then g satisfies the hypothesis of Theorem 4.4 on Ω_1 , and attains its maximum in $(r_0, x_0, t_0) \in \Omega_1$. This implies that

$$\forall (r, x, t) \in \Omega_1, \ h(r, x, t) = h(r_0, x_0, t_0) < 0.$$

In particular

$$h(r_0, x_0, \varepsilon) = h(r_0, x_0, t_0) < 0.$$
(4.8)

Relation (4.8) holds for every $\varepsilon > \sup(t_0, t_1)$ and consequently

$$\lim_{\varepsilon \to +\infty} h(r_0, x_0, \varepsilon) = h(r_0, x_0, t_0) < 0,$$

which contradicts the hypothesis ii).

Theorem 4.6. Let $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, then for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$, we have

$$W(f)(r, x, 2t) \leqslant \mathscr{U}\left(W(f)(., ., t)\right)(r, x, t).$$

$$(4.9)$$

Proof. Let $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, s be a positive real number, and $\Theta_s(f)$ be the function defined on $\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[$, by $\Theta_s(f)(r, x, t) = \mathscr{U}(W(f)(.,.,s))(r, x, t) - W(f)(r, x, s+t)$. Our goal is to show that the function $\Theta_s(f)$ satisfies the assumptions of Theorem 4.5. According to Lemma 3.3, it is clear that for every s > 0, the function $(r, x, t) \longmapsto W(f)(r, x, s+t) \in \mathscr{C}_e^\infty(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[) \cap \mathscr{C}_e(\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[).$ On the other hand by Lemma 3.4, $\mathscr{U}(W(f)(.,.,s)) \in \mathscr{C}_e^\infty(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[)$; furthermore by Lemma 3.3, we deduce that for every s > 0, $W(f)(.,.,s) \in L^1(d\nu_{n+1}) \cap \mathscr{C}_{0,e}(\mathbb{R} \times \mathbb{R}^n)$ which implies by Lemma 3.1 that $\mathscr{U}(W(f)(.,.,s)) \in \mathscr{C}_e(\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[);$ this means that $\Theta_s(f) \in \mathscr{C}_e^2(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[) \cap \mathscr{C}_e(\mathbb{R} \times \mathbb{R}^n \times [0, +\infty[)]$ and by relation (3.3) we have $\Theta_s(f)(r, x, 0) = 0$. From Lemmas 3.3, 4, we have

$$\lim_{r^2+|x|^2+t^2\to+\infty}\Theta_s(f)(r,x,t)=0$$

Now, according to relations (3.3) and (3.2), we have

$$\Delta_{\frac{n-1}{2}}(\mathscr{U}(W(f)(.,.,s))(r,x,t) = 0.$$
(4.10)

We have, for every $g, h \in \mathscr{C}^2_e(\mathbb{R} \times \mathbb{R}^n \times]0, +\infty[)$,

$$\Delta_{\frac{n-1}{2}}(fg) = g\Delta_{\frac{n-1}{2}}(f) + f\Delta_{\frac{n-1}{2}}(g) + 2\left(\frac{\partial f}{\partial r}\frac{\partial g}{\partial r} + \sum_{j=1}^{n}\frac{\partial f}{\partial x_{j}}\frac{\partial g}{\partial x_{j}} + \frac{\partial f}{\partial t}\frac{\partial g}{\partial t}\right).$$
(4.11)

We know that $\Delta_{\frac{n-1}{2}}(\mathscr{U}(f)) = 0$, and by the same way for every $1 \leq j \leq n$,

$$\Delta_{\frac{n-1}{2}}\left(\frac{\partial \mathscr{U}(f)}{\partial x_j}\right) = \frac{\partial}{\partial x_j}\left(\Delta_{\frac{n-1}{2}}\mathscr{U}(f)\right) = 0.$$
(4.12)

and also

$$\Delta_{\frac{n-1}{2}}\left(\frac{\partial \mathscr{U}(f)}{\partial t}\right) = \frac{\partial}{\partial t}\left(\Delta_{\frac{n-1}{2}}\mathscr{U}(f)\right) = 0.$$
(4.13)

Then, by a standard calculus, we get

$$\Delta_{\frac{n-1}{2}}\left(\frac{\partial \mathscr{U}(f)}{\partial r}\right) = \frac{\partial}{\partial r}\left(\Delta_{\frac{n-1}{2}}\mathscr{U}(f)\right) + \frac{n}{r^2}\frac{\partial \mathscr{U}(f)}{\partial r} = \frac{n}{r^2}\frac{\partial \mathscr{U}(f)}{\partial r}.$$
 (4.14)

Combining relations (3.8),(4.11),(4.12), (4.13) and (4.14), we deduce that

$$\begin{split} &\Delta_{\frac{n-1}{2}}W(f) \\ &= \Delta_{\frac{n-1}{2}} \Big(\frac{\partial(\mathscr{U}(f))}{\partial r}\Big)^2 + \sum_{j=1}^n \Delta_{\frac{n-1}{2}} \Big(\frac{\partial(\mathscr{U}(f))}{\partial x_j}\Big)^2 + \Delta_{\frac{n-1}{2}} \Big(\frac{\partial(\mathscr{U}(f))}{\partial t}\Big)^2 \\ &= \frac{2n}{r^2} \left(\frac{\partial\mathscr{U}(f)}{\partial r}\Big)^2 + 2 \left|\nabla\left(\frac{\partial(\mathscr{U}(f))}{\partial r}\right)\right|^2 + 4\Big(\sum_{j=1}^n \left(\frac{\partial}{\partial x_j} \left(\frac{\partial\mathscr{U}(f)}{\partial r}\right)\Big)^2 \\ &+ \left(\frac{\partial}{\partial t} \left(\frac{\partial\mathscr{U}(f)}{\partial x_j}\right)\Big)^2 + \left(\frac{\partial}{\partial t} \left(\frac{\partial\mathscr{U}(f)}{\partial r}\right)\Big)^2\Big) \ge 0. \end{split}$$
(4.15)

Relations (4.10) and (4.15) imply that

 $\forall (r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times [0, +\infty[, \ \Delta_{\frac{n-1}{2}} \Theta_s(f)(r, x, t) \leqslant 0,$

and Corollary 4.5 achieves then the proof.

According to [3], the Littlewood–Paley g-function associated with the spherical mean operator is defined for $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$\forall (r,x) \in [0,+\infty[\times\mathbb{R}^n, g(f)(r,x) = \left(\int_0^{+\infty} \left|\nabla\left(\mathscr{U}(f)\right)(r,x,t)\right|^2 t dt\right)^{1/2}.$$

Lemma 4.7. For every nonnegative functions $f, h \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\int_0^{+\infty} \int_{\mathbb{R}^n} \left(g(f)(r,x) \right)^2 h(r,x) d\nu_{n+1}(r,x)$$

$$\leq 4 \int_0^{+\infty} \int_0^{+\infty} \int_{\mathbb{R}^n} |\nabla \mathscr{U}(f)(r,x,t)|^2 \, \mathscr{U}(h)(r,x,t) d\nu_{n+1}(r,x) t dt.$$

Proof. By relations (3.8) and (4.9) and using Fubini's Theorem we get

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(g(f)(r,x) \right)^{2} h(r,x) d\nu_{n+1}(r,x)$$

$$\leq \int_{0}^{+\infty} t \left(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} h(r,x) \mathscr{P}^{\frac{t}{2}} \left(\left| \nabla \mathscr{P}^{\frac{t}{2}}(f) \right|^{2} \right)(r,x) d\nu_{n+1}(r,x) \right) dt.$$

Since $\mathscr{P}^{\frac{t}{2}}$ is a self-adjoint operator in $L^2(d\nu_{n+1})$, then we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(g(f)(r,x) \right)^{2} h(r,x) d\nu_{n+1}(r,x)$$

$$\leq \int_{0}^{+\infty} t \left(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mathscr{P}^{\frac{t}{2}}(h)(r,x) \left| \nabla \mathscr{P}^{\frac{t}{2}}(f)(r,x) \right|^{2} d\nu_{n+1}(r,x) \right) dt.$$

The result follows by the change of variables $s = \frac{t}{2}$.

Lemma 4.8. For every positive functions $f, g \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ such that $Supp(f) \cup Supp(g) \subset B_\eta$, we have

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right) (r, x, t) t dt d\nu_{n+1}(r, x)$$

=
$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f^{2}(r, x) g(r, x) d\nu_{n+1}(r, x).$$
(4.16)

Proof. By the relation (4.11), we get

$$\Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^2 \mathscr{U}(g) \right) = \mathscr{U}(g) \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^2 \right) + \mathscr{U}(f)^2 \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(g) \right) + 2 \frac{\partial(\mathscr{U}(f)^2)}{\partial r} \frac{\partial(\mathscr{U}(g))}{\partial r} + 2 \sum_{j=1}^n \frac{\partial(\mathscr{U}(f)^2)}{\partial x_j} \frac{\partial(\mathscr{U}(g))}{\partial x_j} + 2 \frac{\partial(\mathscr{U}(f)^2)}{\partial t} \frac{\partial(\mathscr{U}(g))}{\partial t}.$$

$$(4.17)$$

Using the fact that $\Delta_{\frac{n-1}{2}}(\mathscr{U}(f)) = \Delta_{\frac{n-1}{2}}(\mathscr{U}(g)) = 0$, we obtain

$$\Delta_{\frac{n-1}{2}}\left(\mathscr{U}(f)^2\right) = 2\left|\nabla\left(\mathscr{U}(f)\right)\right|^2.$$
(4.18)

On the other hand,

$$\left| 2 \frac{\partial \left(\mathscr{U}(f)^2 \right)}{\partial r} \frac{\partial \left(\mathscr{U}(g) \right)}{\partial r} + 2 \sum_{j=1}^n \frac{\partial \left(\mathscr{U}(f)^2 \right)}{\partial x_j} \frac{\partial \left(\mathscr{U}(g) \right)}{\partial x_j} + 2 \frac{\partial \left(\mathscr{U}(f)^2 \right)}{\partial t} \frac{\partial \left(\mathscr{U}(g) \right)}{\partial t} \right| \\ \leqslant 2 \mathscr{U}(f) \left| \nabla \mathscr{U}(f) \right|^2 + 2 \mathscr{U}(f) \left| \nabla \mathscr{U}(g) \right|^2. \quad (4.19)$$

Since $\mathscr{U}(f)$ and $\mathscr{U}(g)$ are bounded, then using relations (4.11), (4.18) and (4.19) we deduce that there is a positive constant C such that

$$\begin{split} &\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left| \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right)(r,x,t) \right| t dt d\nu_{n+1}(r,x) \\ &\leqslant C \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left| \nabla \mathscr{U}(f)(r,x,t) \right|^{2} t dt d\nu_{n+1}(r,x) \\ &+ C \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left| \nabla \mathscr{U}(g)(r,x,t) \right|^{2} t dt d\nu_{n+1}(r,x). \end{split}$$

Using now the relation (4.18) and [11, proposition 4.3], we get

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left| \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right)(r, x, t) \right| t dt d\nu_{n+1}(r, x)$$

$$\leq \frac{C}{2} \left(\|f\|_{2,\nu_{n+1}}^{2} + \|g\|_{2,\nu_{n+1}}^{2} \right) < +\infty.$$

Then, we have

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right) (r, x, t) t dt d\nu_{n+1}(r, x)$$
$$= \lim_{\xi \to +\infty} \int_{0}^{\xi} \int_{0}^{\xi} \int_{[-\xi,\xi]^{n}} \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right) (r, x, t) t dt d\nu_{n+1}(r, x). \quad (4.20)$$

By Fubini's theorem, we obtain

$$\int_{0}^{\xi} \int_{0}^{\xi} \int_{[-\xi,\xi]^{n}} \Delta_{\frac{n-1}{2}} \left(\mathscr{U}(f)^{2} \mathscr{U}(g) \right)(r,x,t) t dt d\nu_{n+1}(r,x)$$

= $I(\xi) + \sum_{j=1}^{n} I_{j}(\xi) + K(\xi).$ (4.21)

where

•
$$I(\xi) = \int_0^{\xi} \int_0^{\xi} \int_{[-\xi,\xi]^n}^{\xi} \ell_{\frac{n-1}{2}} \left(\mathscr{U}(f)^2 \mathscr{U}(g) \right)(r,x,t) d\nu_{n+1}(r,x) t dt$$
$$= \frac{\xi^n}{(\pi)^{\frac{n}{2}} 2^{n-\frac{1}{2}} \Gamma(\frac{n+1}{2})} \int_0^{\xi} \int_{[-\xi,\xi]^n} \frac{\partial \left(\mathscr{U}(f)^2 \mathscr{U}(g) \right)}{\partial r} (\xi,x,t) t dt dx.$$

For $\xi \ge 2\eta$, and from [11, Lemma 4.2], we deduce that

$$\left|\frac{\partial \left(\mathscr{U}(f)^2 \mathscr{U}(g)\right)}{\partial r}(\xi, x, t)\right| \leqslant \frac{C}{\xi^{6n+4}}.$$

Hence,

$$|I(\xi)| \leqslant \frac{C_1}{\xi^{4n+2}} \longrightarrow_{\xi \to +\infty} 0.$$
(4.22)

•
$$I_j(\xi) = \int_0^{\xi} \int_0^{\xi} \int_{[-\xi,\xi]^n} \frac{\partial^2}{\partial x_j^2} \left(\mathscr{U}(f)^2 \mathscr{U}(g) \right)(r,x,t) t dt d\nu_{n+1}(r,x).$$

As the same way and using again [11, Lemma 4.2], we show that

$$|I_j(\xi)| \leqslant \frac{C_2}{\xi^{4n+2}} \longrightarrow_{\xi \to +\infty} 0.$$
(4.23)

And
$$K(\xi) = \int_0^{\xi} \int_{[-\xi,\xi]^n} \left(\int_0^{\xi} \frac{\partial^2 \left(\mathscr{U}(f)^2 \mathscr{U}(g) \right)}{\partial t^2} (r,x,t) t dt \right) d\nu_{n+1}(r,x).$$
 In-

tegrating by parts and using relation (3.3), we get

$$\begin{split} &\int_{0}^{\xi} \frac{\partial^{2} \Big(\mathscr{U}(f)^{2} \mathscr{U}(g) \Big)}{\partial t^{2}} (r, x, t) t dt \\ &= \xi \frac{\partial \Big(\mathscr{U}(f)^{2} \mathscr{U}(g) \Big)}{\partial t} (r, x, \xi) - \Big(\mathscr{U}(f)^{2} \mathscr{U}(g) \Big) (r, x, \xi) + \Big(f(r, x) \Big)^{2} g(r, x), \end{split}$$

by [11, lemma 4.1], for $\xi > 0$, and $(r, x) \in [0, +\infty[\times \mathbb{R}^n$

$$\left|\xi \frac{\partial \left(\mathscr{U}(f)^2 \mathscr{U}(g)\right)}{\partial t}(r, x, \xi) - \left(\mathscr{U}(f)^2 \mathscr{U}(g)\right)(r, x, \xi)\right| \leqslant \frac{C}{\xi^{6n+3}}$$

Consequently,

$$\lim_{\xi \to +\infty} K(\xi) = \int_0^{+\infty} \int_{\mathbb{R}^n} \left(f(r, x) \right)^2 g(r, x) d\nu_{n+1}(r, x).$$
(4.24)

Then, the result follows from relations (4.20), (4.21), (4.22), (4.23) and (4.24).

In [3], Hleili and Omri defined the maximal function f^* associated with the spherical mean operator by

$$f^{*}(r,x) = \sup_{t>0} \left| \mathscr{P}^{t}(f)(r,x) \right|, \qquad (4.25)$$

and they showed that for every $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, the maximal function f^* belongs to the space $L^p(d\nu_{n+1})$ and satisfies

$$\|f^*\|_{p,\nu_{n+1}} \leqslant 2\left(\frac{p}{p-1}\right)^{\frac{1}{p}} \|f\|_{p,\nu_{n+1}}.$$
(4.26)

Lemma 4.9. For every nonnegative functions $f, h \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} (g(f)(r,x))^{2} h(r,x) d\nu_{n+1}(r,x)$$

$$\leq 2 \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} |f(r,x)|^{2} h(r,x) d\nu_{n+1}(r,x) + 8$$

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f^{*}(r,x) g(f)(r,x) g(h)(r,x) d\nu_{n+1}(r,x).$$

Proof. Using relation (4.18) and Lemma 4.7, we get

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(g(f)(r,x) \right)^{2} h(r,x) d\nu_{n+1}(r,x)$$

$$\leq 2 \int_{0}^{+\infty} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Delta_{\frac{n-1}{2}} \left((\mathscr{P}^{t}(f))^{2} \right)(r,x) \mathscr{P}^{t}(h)(r,x) d\nu_{n+1}(r,x) t dt.$$

$$(4.27)$$

Now, by a standard calculus, we have

$$\Delta_{\frac{n-1}{2}} \left((\mathscr{P}^t(f))^2 \right) \mathscr{P}^t(h) = \Delta_{\frac{n-1}{2}} \left((\mathscr{P}^t(f))^2 \mathscr{P}^t(h) \right) - 4 \mathscr{P}^t(f) \langle \nabla(\mathscr{P}^t(f)) \mid \nabla(\mathscr{P}^t(h)) \rangle.$$
(4.28)

Combining relations (4.16), (4.25), (4.27) and (4.28), and using again Cauchy-Schwarz inequality, we get the desired result.

Proposition 4.10. For every $p \in [4, +\infty[$ and for every nonnegative function $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, the function g(f) belongs to the space $L^p(d\nu_{n+1})$ and we have

$$\|g(f)\|_{p,\nu_{n+1}} \leqslant A_p \|f\|_{p,\nu_{n+1}},$$

where $A_p = \sqrt{2} \left(8 \frac{p^{\frac{2-p}{2p}}(p-2)^{\frac{3p-4}{2p}}}{(p-1)^{\frac{1}{p}}} + \sqrt{1 + 64 \frac{p^{\frac{2-p}{p}}(p-2)^{\frac{3p-4}{p}}}{(p-1)^{\frac{2}{p}}}} \right).$

Proof. Let q be the conjugate exponent of $\frac{p}{2}$, that is $\frac{2}{p} + \frac{1}{q} = 1$, and let $f, h \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ be nonnegative functions, such that $\|h\|_{q,\nu_{n+1}} \leq 1$.

From Lemma 4.9 and the generalized Hölder's inequality, we get

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(g(f)(r,x) \right)^{2} h(r,x) d\nu_{n+1}(r,x)$$

$$\leq 2 \|f\|_{p,\nu_{n+1}}^{2} + 8 \|f^{*}\|_{p,\nu_{n+1}} \|g(f)\|_{p,\nu_{n+1}} \|g(h)\|_{q,\nu_{n+1}}$$

Therefore, using relation (4.26) and [3, Proposition 4.6], we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(g(f)(r,x) \right)^{2} h(r,x) d\nu_{n+1}(r,x) \\ \leqslant 2 \|f\|_{p,\nu_{n+1}}^{2} + 8 \frac{2^{\frac{3}{2}} p^{\frac{2-p}{2p}} (p-2)^{\frac{3p-4}{2p}}}{(p-1)^{\frac{1}{p}}} \|f\|_{p,\nu_{n+1}} \|g(f)\|_{p,\nu_{n+1}}.$$

Hence,

$$\begin{split} \|g(f)\|_{p,\nu_{n+1}}^2 &= \sup_{\|h\|_{q,\nu_{n+1}} \leqslant 1} \left(\int_0^{+\infty} \int_{\mathbb{R}^n} g^2(f)(r,x)h(r,x)d\nu_{n+1}(r,x) \right) \\ &\leqslant \left(\sqrt{2}\|f\|_{p,\nu_{n+1}} + \frac{8p^{\frac{2-p}{2p}}(p-2)^{\frac{3p-4}{2p}}}{(p-1)^{\frac{1}{p}}} \|g(f)\|_{p,\nu_{n+1}} \right)^2 \\ &- \frac{64p^{\frac{2-p}{p}}(p-2)^{\frac{3p-4}{p}}}{(p-1)^{\frac{2}{p}}} \|g(f)\|_{p,\nu_{n+1}}^2. \end{split}$$

Proposition 4.11. For every $p \in [4, +\infty[$ and for every $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, the function g(f) belongs to the space $L^p(d\nu_{n+1})$ and we have

 $||g(f)||_{p,\nu_{n+1}} \leq B_p ||f||_{p,\nu_{n+1}}.$

Proof. Let $p \in [4, +\infty[$ and $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ such that $Supp(f) \subset B_a$, without loss of generality, we can assume that f is real valued and we consider $f^+ = \frac{f+|f|}{2}$, $f^- = \frac{-f+|f|}{2}$. Then, f^+ is nonnegative, belongs to $\mathscr{C}_{e,c}(\mathbb{R} \times \mathbb{R}^n)$ and satisfies $Supp(f^+) \subset B_a$. From [11, Lemma 4.5], we know that for every real number $0 < \varepsilon < 1$, there is a nonnegative function $h_1 \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ such that $Supp(h_1) \subset B_{a+2}$ and

$$\forall (r,x) \in [0, +\infty[\times \mathbb{R}^n, \quad 0 \leqslant h_1(r,x) - f^+(r,x) \leqslant \varepsilon.$$
(4.29)

On the other hand, the function $h_2 = h_1 - f = h_1 - f^+ + f^-$ is nonnegative, belongs to the space $\mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, and satisfies $Supp(h_2) \subset B_{a+2}$. Moreover,

$$\forall (r,x) \in [0, +\infty[\times \mathbb{R}^n, \quad 0 \leqslant h_2(r,x) - f^-(r,x) = h_1(r,x) - f^+(r,x) \leqslant \varepsilon,$$

and $f = h_1 - h_2$. Since, the mapping $f \mapsto g(f)$ is sub-linear in the sense $g(f_1 + f_2) \leq g(f_1) + g(f_2)$, we deduce that $g(f) \leq g(h_1) + g(h_2)$. Using Proposition 4.10, it follows that for every $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$

$$\begin{aligned} \|g(f)\|_{p,\nu_{n+1}} &\leqslant \|g(h_1)\|_{p,\nu_{n+1}} + \|g(h_2)\|_{p,\nu_{n+1}} \\ &\leqslant A_p \left(\|h_1\|_{p,\nu_{n+1}} + \|h_2\|_{p,\nu_{n+1}}\right). \end{aligned}$$

Now, from relation (4.29) and Minkowski's inequality, we get

$$\|h_1\|_{p,\nu_{n+1}} = \left(\int \int_{B_{a+2}^+} (h_1(r,x))^p d\nu_{n+1}(r,x)\right)^{\frac{1}{p}}$$

$$\leqslant \|f\|_{p,\nu_{n+1}} + \varepsilon \left(\nu_{n+1}(B_{a+2}^+)\right)^{\frac{1}{p}},$$

and by the same way $\|h_2\|_{p,\nu_{n+1}} \leq \|f\|_{p,\nu_{n+1}} + \varepsilon \left(\nu_{n+1}(B_{a+2}^+)\right)^{\frac{1}{p}}$. This means that for every $\varepsilon \in \mathbb{R}, \ 0 < \varepsilon < 1$,

$$\|g(f)\|_{p,\nu_{n+1}} \leqslant 2A_p \left(\|f\|_{p,\nu_{n+1}} + \varepsilon \left(\nu_{n+1}(B_{a+2}^+)\right)^{\frac{1}{p}} \right),$$

and, consequently, $||g(f)||_{p,\nu_{n+1}} \leq 2A_p ||f||_{p,\nu_{n+1}} = B_p ||f||_{p,\nu_{n+1}}.$

Theorem 4.12. For every $p \in [4, +\infty[$ and for every $f \in L^p(d\nu_{n+1})$, the function g(f) belongs to the space $L^p(d\nu_{n+1})$ and we have

$$||g(f)||_{p,\nu_{n+1}} \leq B_p ||f||_{p,\nu_{n+1}}.$$

Proof. Let $p \in [4, +\infty[$ and let $f \in L^p(d\nu_{n+1})$, then there is a sequence $(f_k)_{k\in\mathbb{N}} \subset \mathscr{D}_e(\mathbb{R}\times\mathbb{R}^n)$ such that $\lim_{k\to+\infty} ||f - f_k||_{p,\nu_{n+1}} = 0$. Since the mapping $g \longmapsto g(f)$ is sub-linear, then for every $k, k' \in \mathbb{N}$, we have

$$\left|g(f_k) - g(f_{k'})\right| \leqslant g(f_k - f_{k'})$$

hence, by Proposition 4.11, we get

$$\|g(f_k) - g(f_{k'})\|_{p,\nu_{n+1}} \leqslant \|g(f_k - f_{k'})\|_{p,\nu_{n+1}} \leqslant B_p \|f_k - f_{k'}\|_{p,\nu_{n+1}} \underset{k,k' \to +\infty}{\longrightarrow} 0.$$

This means that $((g(f_k))_{k\in\mathbb{N}})$ is a Cauchy sequence which converges in L^p $(d\nu_{n+1})$. We put $g(f) = \lim_{k\to+\infty} g(f_k)$.

It is clear that g(f) is independent of the choice of $(f_k)_{k\in\mathbb{N}}$, and we have $\|g(f)\|_{p,\nu_{n+1}} \leq \lim_{k\to+\infty} B_p \|f_k\|_{p,\nu_{n+1}} = B_p \|f\|_{p,\nu_{n+1}}$.

Theorem 4.13. For every $p \in]1, +\infty[$ and for every function $f \in L^p(d\nu_{n+1})$, the function g(f) belongs to the space $L^p(d\nu_{n+1})$, and we have

$$||g(f)||_{p,\nu_{n+1}} \leqslant D_p ||f||_{p,\nu_{n+1}}, \tag{4.30}$$

where

$$D_{p} = \begin{cases} C_{p}, & \text{if } p \in]1, 2] \\ B_{p}, & \text{if } p \in [4, +\infty[\\ 2^{\frac{4-p}{2p}} B_{4}^{\frac{2(p-2)}{p}}, \text{if } p \in [2, 4] \end{cases}$$

Proof. The result is a consequence of Theorem [3, Theorem 4.7], Theorem 4.12 and Marcinkiewicz interpolation theorem. \Box

Theorem 4.14. For every $p \in]1, +\infty[$ and for every $f \in L^p(d\nu_{n+1})$, the function g(f) belongs to the space $L^p(d\nu_{n+1})$ and we have

$$||f||_{p,\nu_{n+1}} \leq 4D_q ||g(f)||_{p,\nu_{n+1}},$$

where D_q is the constant given by relation (4.30) and $q = \frac{p}{p-1}$.

Vol. 13 (2016)

Proof. Let $f \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$ and $g_1(f)$ be the function defined on $[0, +\infty[\times \mathbb{R}^n]$ by

$$g_1(f)(r,x) = \left(\int_0^{+\infty} \left|\frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t)\right|^2 t dt\right)^{\frac{1}{2}}.$$

From relation (3.2), we know that

$$\mathscr{U}(f)(r,x,t) = \int_0^{+\infty} \int_{\mathbb{R}^n} e^{-t\sqrt{s^2 + |y|^2}} \widetilde{\mathscr{F}}(f)(s,y) j_{\frac{n-1}{2}}(rs) e^{i\langle y|x\rangle} d\nu_{n+1}(s,y).$$

Hence, for every $(r, x, t) \in \mathbb{R} \times \mathbb{R}^n \times]0, +\infty[$, we have

$$\frac{\partial \mathscr{U}(f)}{\partial t}(r,x,t) = \widetilde{\mathscr{F}}^{-1}\left(-\sqrt{s^2 + |y|^2}e^{-t\sqrt{s^2 + |y|^2}}\widetilde{\mathscr{F}}(f)\right)(r,x),$$

and, therefore, using Plancherel's theorem, we get

$$\begin{split} \|g_1(f)\|_{2,\nu_{n+1}}^2 &= \int_0^{+\infty} \left(\int_0^{+\infty} \int_{\mathbb{R}^n} (r^2 + |x|^2) e^{-2t\sqrt{r^2 + |x|^2}} \left| \widetilde{\mathscr{F}}(f)(r,x) \right|^2 d\nu_{n+1}(r,x) \right) t dt. \\ \|g_1(f)\|_{2,\nu_{n+1}}^2 &= \frac{1}{4} \| \widetilde{\mathscr{F}}(f) \|_{2,\nu_{n+1}}^2 = \frac{1}{4} \| f \|_{2,\nu_{n+1}}^2. \end{split}$$

Let $h \in \mathscr{D}_e(\mathbb{R} \times \mathbb{R}^n)$, then by Schwarz's inequality, we have

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r, x)h(r, x)d\nu_{n+1}(r, x)$$

= $\|g_{1}(f+h)\|_{2,\nu_{n+1}}^{2} - \|g_{1}(f-h)\|_{2,\nu_{n+1}}^{2}$
 $\leq 4 \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} g_{1}(f)(r, x)g_{1}(h)(r, x)d\nu_{n+1}(r, x),$

and, therefore, for every $p, q \in]1, +\infty[$ such that $\frac{1}{p} + \frac{1}{q} = 1$, we get

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r, x) h(r, x) d\nu_{n+1}(r, x) \leq 4 \|g_{1}(f)\|_{p, \nu_{n+1}} \|g_{1}(h)\|_{q, \nu_{n+1}}.$$

In particular if $\|h\|_{q,\nu_{n+1}} \leq 1$ then by relation (4.30), we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r, x) h(r, x) d\nu_{n+1}(r, x) \leqslant 4D_{q} \|g(f)\|_{p, \nu_{n+1}}$$

Since,

$$\|f\|_{p,\nu_{n+1}} = \sup_{\|h\|_{q,\nu_{n+1}} \leqslant 1} \left\{ \int_0^{+\infty} \int_{\mathbb{R}^n} f(r,x) h(r,x) d\nu_{n+1}(r,x) \right\},$$

then, $||f||_{p,\nu_{n+1}} \leq 4D_q ||g(f)||_{p,\nu_{n+1}}.$

References

- [1] Achour, A., Trimèche, K.: La g-fonction de Littlewood–Paley associée à un opérateur différentiel singulier sur]0, +∞[. Ann. Inst. Fourier, Grenoble, 33, 203–226 (1983)
- [2] Annabi, H., Fitouhi, A.: La g-fonction de, Littlewood–Paley associée à une classe d'opérateurs différentiels sur]0, +∞[contenant l'opérateur de Bessel. C. R. Acad. Sci. Paris 303, 411–413 (1986)
- [3] Hleili, K., Omri, S.: The Littlwood–Paley g-function associated with the spherical mean operator. Mediterr. J. Math. 10(2), 887–907 (2013)
- [4] Hopf, E.: A remark on linear elliptic differential equations of the second order. Proc. Am. Math. Soc. 3, 791–793 (1952)
- [5] Lamouchi, H., Majjaouli, B., Omri, S.: Localization of orthonormal sequences in the spherical mean setting, Mediterr. J. Math. (2015). doi:10.1007/ s00009-015-0572-9
- [6] Lebedev, N.N.: Special Functions and their Applications. Dover publications, New York (1972)
- [7] Nessibi, M.M., Rachdi, L.T., Trimèche, K.: Ranges and inversion formulas for spherical mean operator and its dual. J. Math. Anal. Appl. 196(3), 861– 884 (1995)
- [8] Omri, S.: Uncertainty principle in terms of entropy for the spherical mean operator. J. Math. Inequal 5(4), 473–490 (2011)
- [9] Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the spherical mean operator. Anal. Appl. 1(N2), 141–164 (2003)
- [10] Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematical Studies. Vol. 63, Princeton Univ. Press, Princeton (1970)
- [11] Stempak, K.: La thorie de Littlewood–Paley pour la transformation de Fourier-Bessel. C.R.A.S. Paris, Srie I, Math. 303(3), 15–18 (1986)

A. Hammami

Departement de mathmatiques Facult des sciences de Tunis Campus universitaire El Manar 2092, Tunis, Tunisia e-mail: hammami2016@gmail.com

S. Omri Departement de mathmatiques Institut prparatoire aux études d'ingnieurs El Manar Campus universitaire El Manar 2092, Tunis, Tunisia e-mail: slim.omri@ipein.rnu.tn

Received: February 2, 2016. Revised: May 18, 2016. Accepted: May 23, 2016.