Mediterr. J. Math. 13 (2016), 4211–4217 DOI 10.1007/s00009-016-0740-6 1660-5446/16/064211-7 *published online* June 1, 2016 -c Springer International Publishing 2016

Mediterranean Journal of Mathematics

CrossMark

On a Result of Turpin

A. El Kinani, R. Choukri and A. Oudades

Abstract. We consider several formulations of the equicontinuity of the sequence of power maps $(x \rightarrow x^n)_n$ in the non-commutative case. We give some analog of a result of Turpin for a locally convex algebra not necessarily commutative. The link with the operation of entire functions is also examined.

Mathematics Subject Classification. Primary 46H05; Secondary 46H20.

Keywords. Locally convex algebras, Continuous multiplication, *Q*-algebra, *M*-completeness, Baire space, *m*-Convexity, Power maps, Entire functions.

1. Preliminaries and Introduction

A locally convex algebra (l.c.a. for short) is a Hausdorff locally convex space which is an algebra over a field $\mathbb{K} (\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) with separately continuous multiplication. If the multiplication is continuous in both variables, it is said to be with jointly continuous multiplication. Let (A, τ) be a locally convex algebra, the topology of which is given by a family of $(p_i)_{i\in I}$ of seminorms. It is said to be multiplicatively m -convex $(m$ -convex for short) if

$$
p_i(xy) \leq p_i(x) p_i(y)
$$
, for all $x, y \in A$, $i \in I$.

A B_0 -algebra is an *l.c.a.* whose underlying locally convex space is a completely metrisable space. An entire function $f(z) = \sum_{n=0}^{+\infty} a_n z^n$, $a_n \in \mathbb{K}$, operates in an *l.c.a.* (A, τ) if, for every x in A, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, converges in (A, τ) . A unital topological algebra is said to be Q-algebra if and only if the set of all invertible elements of A is open. Let E be a locally convex space. The space E is said to be Mackey-complete (M -complete for short) if and only if every bounded and closed disk B is completant, i.e., the space $(E_B, \|\cdot\|_B)$ is Banach, where $E_B = \bigcup_{\lambda>0} \lambda B$ is the span of B and $\|.\|_B$ is the gauge of B . For a detailed account of basis properties of general locally m-convex algebras and B_0 -algebras, we refer the reader to [\[7](#page-5-0),[11\]](#page-5-1).

In [\[9\]](#page-5-2), Turpin showed that a commutative *l.c.a.* (A, τ) , in which the sequence $(x \mapsto x^n)_n$ of power maps is equicontinuous at zero is necessarily m -convex. In the non-commutative case, Zelazko gives in $[13]$ $[13]$ $[13]$ an example

of a complete non-m-convex locally convex algebra, in which the sequence $(x \mapsto x^n)$ _n of power maps is equicontinuous at zero. Analysis of the situation in the non-commutative case leads us to consider the following properties in a locally convex algebra (A, τ) :

 $(\mathcal{P}_1) \ \forall V \in V(0), \exists U \in V(0) : U^{(n)} \subset V, \text{ for every } n \in \mathbb{N}^*,$ where $U^{(n)} = \{x_1 \cdots x_n : x_1, \ldots, x_n \in U\}$, and $V(0)$ be a fundamental system of neighborhood of zero.

$$
(\mathcal{P}_2) \ \forall V \in V(0), \ \exists U \in V(0): \frac{1}{n!} \sum x_{j_1} \cdots x_{j_n} \in V,
$$

for every $x_1, \ldots, x_n \in U, n \in \mathbb{N}^*$, and where the sum is taken over all
permutations (j_1, \ldots, j_n) of the sequence $(1, \ldots, n)$.

(P₃) The topology τ can be given by a family of seminorms $(p_i)_{i\in I}$, such that, for every $i \in I$, there exists $j \in I$, such that:

$$
p_i(x^n) \le (p_j(x))^n
$$
, for all $x \in A$, $n \in \mathbb{N}^*$.

- (\mathcal{P}_4) The sequence $(x \mapsto x^n)_n$ of power maps is equicontinuous at zero.
- (\mathcal{P}_5) Entire functions operate in (A, τ) .

In [\[4\]](#page-5-4), using a Baire argument and the Mazur Orlicz formula, the first author obtained that, $(\mathcal{P}_5) \implies (\mathcal{P}_4)$, in any unital Baire locally convex algebra with continuous multiplication. Whence, the m-convexity in the commutative case $[6]$, and hence the result of Mitiagin, Rolewics and Zelazko for commutative B_0 -algebra [\[8\]](#page-5-6). He also showed in [\[5\]](#page-5-7) that $(\mathcal{P}_4) \implies (\mathcal{P}_5)$, in any unital and M-complete l.c.a. In particular, entire functions operate in any unital and M-complete $l.m.c.a$. In this note, we show that, in a locally convex algebra, the properties (\mathcal{P}_2) , (\mathcal{P}_3) and (\mathcal{P}_4) are all equivalent (Proposition [2.1\)](#page-2-0). As a consequence, the properties (\mathcal{P}_3) , (\mathcal{P}_4) , and (\mathcal{P}_5) are equivalent in any unital (commutative or not) B_0 -algebra (Corollary [2.3\)](#page-3-0). In the case, where the topology is given by a family of seminorms $(p_i)_{i\in I}$, such that $p_i(x^2) \leq (p_i(x))^2$, for every $x \in A$, $i \in I$, the inverse map $x \mapsto x^{-1}$ is continuous. If moreover, (A, τ) is a Q-algebra, then the properties (\mathcal{P}_4) and (\mathcal{P}_5) are equivalent (Proposition [2.5\)](#page-3-1). In the general case of a topological algebra, we show that the property (\mathcal{P}_1) is equivalent to the fact that the algebra is locally idempotent (namely, it has a base of idempotent neighborhoods of zero [\[10](#page-5-8)]). Whence, the property (\mathcal{P}_1) is equivalent to the *m*-convexity in the locally convex case.

2. Properties (\mathcal{P}_i) , $i = 1, \ldots, 5$, in Locally Convex Algebras

In the commutative case, properties (\mathcal{P}_1) , (\mathcal{P}_2) , and (\mathcal{P}_4) are equivalent. In fact, the implication $(\mathcal{P}_1) \Longrightarrow (\mathcal{P}_2)$ is due to the fact that:

$$
x_1 \cdots x_n = \frac{1}{n!} \sum x_{j_1} \cdots x_{j_n}
$$
, for every $(x_1, \ldots, x_n) \in A^n$, $n \in \mathbb{N}^*$.

To see that $(\mathcal{P}_2) \implies (\mathcal{P}_4)$, just take $x_1 = x_2 = \cdots = x_n = x$ in (\mathcal{P}_2) . The implication $(\mathcal{P}_4) \Longrightarrow (\mathcal{P}_1)$ is due to Turpin [\[9\]](#page-5-2). In the non-commutative case, the example of a non-m-convex non-commutative B_0 -algebra, on which all

entire functions operate, constructed in [\[12\]](#page-5-9), by Zelazko, verifies (\mathcal{P}_4) but not (\mathcal{P}_1) . In the general case, (\mathcal{P}_2) , (\mathcal{P}_3) , and (\mathcal{P}_4) are equivalent as the following result shows.

Proposition 2.1. Let (A, τ) be a locally convex algebra. Then, the following *assertions are equivalent*.

- 1. (A, τ) *satisfies* (\mathcal{P}_2) .
- 2. (A, τ) *satisfies* (\mathcal{P}_3) .
- 3. (A, τ) *satisfies* (\mathcal{P}_4) .

Proof. $(1) \implies (3)$ It is obvious.

(3) \implies (1) Let V be an absolutely convex and closed neighborhood of zero. Since (A, τ) verifies (\mathcal{P}_4) , there is an absolutely convex neighborhood U of zero, such that

$$
x^n \in V, \quad x \in U, \quad n \in \mathbb{N}^*.
$$

By Mazur–Orlics theorem (see [\[3\]](#page-5-10)), we have:

$$
\frac{1}{n!}\sum x_{j_1}\cdots x_{j_n}=\frac{1}{n!}\sum_{\varepsilon_1,\ldots,\varepsilon_n=0}^1(-1)^{n-(\varepsilon_1+\cdots+\varepsilon_n)}(x_0+\varepsilon_1x_1+\cdots+\varepsilon_nx_n)^n,
$$

where $x_1, \ldots, x_n \in A$, $n \in \mathbb{N}^*$, the sum is taken over all permutations (j_1,\ldots,j_n) of the sequence $(1,\ldots,n)$, and x_0 is an arbitrary point of A. Let us take $x_0 = 0$. Since U is convex, we have $\varepsilon_1 x_1 + \cdots + \varepsilon_n x_n \in nU$, for every $x_1, \ldots, x_n \in U$, and thus $(\varepsilon_1 x_1 + \cdots + \varepsilon_n x_n)^n \in n^n V$. Whence

$$
\frac{1}{n!} \sum_{\varepsilon_1, \dots, \varepsilon_n = 0}^1 (-1)^{n - (\varepsilon_1 + \dots + \varepsilon_n)} (\varepsilon_1 x_1 + \dots + \varepsilon_n x_n)^n \in \frac{2^n n^n}{n!} V.
$$

But, there exists $C > 0$, such that $\frac{(2n)^n}{n!} \leq C^n$, for every $n \in \mathbb{N}^*$. Then

$$
\frac{1}{n!} \sum x_{j_1} \cdots x_{j_n} \in V, \quad \text{for every } x_1, \ldots, x_n \in \frac{1}{C}U.
$$

Thus (A, τ) verifies (\mathcal{P}_2) .

(3) \implies (2) Let V be an absolutely convex and closed neighborhood of zero. Since (A, τ) verifies (\mathcal{P}_4) , there is an absolutely convex and closed neighborhood U of zero, such that

$$
x^n \in V, \quad x \in U, \quad n \in \mathbb{N}^*.
$$

Let p be the gauge associated to V and q that associated to U . We have

$$
p(x^n) = \inf \{ \lambda > 0 : x^n \in \lambda V \} \text{ and } q(x) = \inf \{ \lambda > 0 : x \in \lambda U \}.
$$

Let $\alpha > 0$ be such that $x \in \alpha U$. Then $x^n \in \alpha^n V$. So, $\alpha^n \in {\lambda > 0 : x^n \in \lambda V}$. Whence

$$
p(x^n) \le (q(x))^n.
$$

Thus, considering the family of gauges associated to all absolutely convex and closed neighborhood of zero, we obtain the result.

(2) \implies (3) We know that the family $(K_i(0, \frac{1}{k}))_{k \in \mathbb{N}^*, i \in I}$ constitutes a fundamental system of neighborhood of zero, where

$$
K_i\left(0, \frac{1}{k}\right) = \left\{x \in A : p_i(x) < \frac{1}{k}\right\}, \quad k = 1, 2, \dots
$$

It follows that $p_j(x) < \frac{1}{k}$ $\frac{1}{k}$, for every $x \in K_j(0, \frac{1}{k})$. Whence

$$
p_i(x^n) \le (p_j(x))^n < \frac{1}{k^n} \le \frac{1}{k}, \quad \text{for every } n \in \mathbb{N}^*.
$$

Consequently, $x^n \in K_i(0, \frac{1}{k})$, for every $n \in \mathbb{N}^*$. Hence (A, τ) verifies (\mathcal{P}_4) . \Box

Remark 2.2. The algebra L^{ω} of Arens [\[2](#page-5-11)] is a commutative non-m-convex B_0 -algebra on which only polynomial functions operate. Consequently, this algebra does not satisfy the properties (\mathcal{P}_2) , (\mathcal{P}_3) , and (\mathcal{P}_4) .

Using $[4,5]$ $[4,5]$ $[4,5]$, we obtain the following result:

Corollary 2.3. *Let* (A, τ) *be a unital* (*commutative or not*) B_0 -*algebra. Then the following assertions are equivalent*.

- 1. (A, τ) *satisfies* (\mathcal{P}_3) .
- 2. (A, τ) *satisfies* (\mathcal{P}_4) .
- 3. (A, τ) *satisfies* (\mathcal{P}_5) .
- *Remark* 2.4*.* 1. Completeness is not superfluous in the previous result. Indeed, take the algebra $A = (C([0,1]), (\|.\|_p)_{p \in \mathbb{N}^*})$, where

$$
\|f\|_{p} = \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}}, \text{ for every } f \in A.
$$

It is a non-complete unital and metrizable locally convex algebra. Since

$$
\|f\|_{p} = \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}} \le \|f\|_{\infty}, \text{ for every } p \in \mathbb{N}^* \text{ and } f \in A.
$$

This algebra satisfies (P_5). On the other hand, by the fact that $\overline{A} = L^{\omega}$ and by a result of Turpin $[9]$, the algebra A is not m-convex. Then, it does not satisfy (\mathcal{P}_4) and thus neither (\mathcal{P}_3) by Proposition [2.1.](#page-2-0)

2. In the unital M-complete locally m-convex case, the properties of Corollary [2.3.](#page-3-0) are satisfied. Pseudo-completeness (i.e.; if every bounded and closed idempotent disk is Banach) with the m-convexity is not sufficient in the previous corollary. Indeed, let A be the algebra of all complex polynomials P endowed with the topology of uniform on the compact subsets of the positive real line \mathbb{R}_+ . It is an *l.m.c.a.* It is pseudocomplete, non- M -complete, and the exponential function does not op-erate in it [\[1\]](#page-5-12). Whence, A verifies (\mathcal{P}_3) and (\mathcal{P}_4) but not (\mathcal{P}_5) .

In the particular case when $i = j$ and $n = 2$ in (\mathcal{P}_3) i.e.: (\mathcal{P}_6) $p_i(x^2) \le (p_i(x))^2$, for every $i \in I$ and $x \in A$, we have the following result.

Proposition 2.5. *Let* (A, τ) *be a unital locally convex algebra satisfying* (\mathcal{P}_6) *. Then*

- 1. The inverse map $x \mapsto x^{-1}$ is continuous.
- 2. *If moreover* (A, τ) *is a Q-algebra, then properties* (\mathcal{P}_4) *and* (\mathcal{P}_5) *are satisfied.*

Proof. 1. Let x_1, y_1 be elements in A and $i \in I$, such that

$$
x_1y_1 = y_1x_1
$$
, $p_i(x_1) \le 1$ and $p_i(y_1) \le 1$.

One has

$$
2p_i(x_1y_1) \le [p_i(x_1) + p_i(y_1)]^2 + [p_i(x_1)]^2 + [p_i(y_1)]^2 \le 6.
$$

Whence, $p_i(x_1y_1) \leq 3$. Applying the previous inequality for $x_1 = \frac{x}{p_i(x) + \varepsilon}$ and $y_1 = \frac{y}{p_i(y) + \varepsilon}$, where $x, y \in A$, such that $xy = yx$ and $\varepsilon > 0$, one has

$$
p_i(xy) \leq 3 (p_i(x) + \varepsilon) (p_i(y) + \varepsilon).
$$

This implies that

$$
p_i(xy) \le 3p_i(x)p_i(y).
$$

Now, let $(x_{\alpha})_{\alpha}$ be a net of invertible elements, such that $\lim x_{\alpha} = e$ (the unit of A). Since $x_\alpha^{-1}(x_\alpha - e) = (x_\alpha - e)x_\alpha^{-1}$, we have

$$
|p_i(x_{\alpha}^{-1}) - p_i(e)| \le p_i(x_{\alpha}^{-1} - e) \le p_i \left[x_{\alpha}^{-1}(x_{\alpha} - e) \right] \le 3p_i(x_{\alpha}^{-1})p_i(x_{\alpha} - e).
$$

Take $\varepsilon > 0$. Since $\lim_{\alpha} x_{\alpha} = e$, there exists α_0 , such that

 $p_i(x_\alpha - e) < \varepsilon', \text{ for every } \alpha \ge \alpha_0,$

where $\varepsilon' < \frac{\varepsilon}{3(1+\varepsilon)}$. Whence

$$
p_i(x_\alpha^{-1}) \le \frac{1}{1-3\varepsilon'}
$$
 for every $\alpha \ge \alpha_0$.

It follows that

$$
p_i(x_\alpha^{-1} - e) \le \frac{3\varepsilon'}{1 - 3\varepsilon'} \le \varepsilon
$$
, for every $\alpha \ge \alpha_0$.

This implies that $\lim_{\alpha} x_{\alpha}^{-1} = e$. Finally, for $x \in G(A)$ and $(x_{\alpha})_{\alpha} \in G(A)$, such that $\lim_{\alpha} x_{\alpha} = x$. We have $x_{\alpha}^{-1} = (x^{-1}x_{\alpha})^{-1}x^{-1}$ and $x^{-1}x_{\alpha} \longrightarrow e$. Whence, $x_\alpha^{-1} \longrightarrow x^{-1}$, from which the claim **(1)** follows.

2. It follows from Proposition 2 in [\[9\]](#page-5-2).

Proposition 2.6. Let (A, τ) be a topological algebra. Then, the following as*sertions are equivalent*.

- 1. (A, τ) *satisfies* (\mathcal{P}_1) .
- 2. (A, τ) *is locally idempotent.*

Proof. **(1)** \implies (2) Let V a neighborhood of zero. Since (A, τ) satisfies (\mathcal{P}_1) , there exists a neighborhood U of zero, such that

 $U^{(n)} \subset V$, for every $n \in \mathbb{N}^*$.

Put $\Omega = \bigcup_{n=1}^{\infty} U^{(n)}$. Then, Ω is an idempotent neighborhood of zero and $\Omega \subset V$. Whence, (A, τ) is locally idempotent.

(2) \implies (1) Let V be a neighborhood of zero. Since (A, τ) is locally idempotent, there exists an idempotent neighborhood U of zero, such that $U \subset V$. Whence, $U^{(n)} \subset V$, for every $n \in \mathbb{N}^*$.

Corollary 2.7. Let (A, τ) be a locally convex algebra. Then, the following *assertions are equivalent.*

1. (A, τ) *satisfies* (\mathcal{P}_1) .

2. (A, τ) *is m-convex.*

Acknowledgments

The authors thank the referee for a very careful checking of the first version.

References

- [1] Allan, G.A.: A spectral theory for locally convex algebras. Proc. Lond. Math. Soc. **15**, 399–421 (1965)
- [2] Arens, R.: The space L^{ω} and convex topological rings. Bull. Am. Math. Soc. **52**, 931–935 (1946)
- [3] Bochnak, J., Siciak, J.: Polynomials and multilinear mappings in topological vector space. Studia. Math. **39**, 59–76 (1971)
- [4] El Kinani, A.: Entire functions and equicontinuity of power maps in Baire algebras. Revista Matematica Complutense **13**(2), 337–340 (2000)
- [5] El Kinani, A.: Equicontinuity of power maps in locally pseudo-convex algebras. Comment. Math. Univ. Carol. **44**(1), 91–98 (2003)
- [6] El Kinani, A., Oudadess, M.: Entire functions and *m*-convex structure in commutative Baire algebra. Bull. Belg. Math. Soc. **4**, 685–687 (1997)
- [7] Michael, E.A.: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc. **11**, p. 79 (1952)
- [8] Mitiagin, B.S., Rolewics, S., Zelazko, W.: Entire functions in B_0 -algebras. Stud. Math. **21**, 291–306 (1962)
- [9] Turpin, P.: Une remarque sur les algèbres à inverse continu. C. R. Acad. Sci. Paris A **270**(Série A), 1686–1689 (1970)
- [10] Zelazko, W.: Metric generalization of Banach algebras. Rozprway Mat. (Dissertationes Math.) **47** (1965)
- [11] Zelazko, W.: Selected Topics in Topological Algebras. Lecture Notes Series, vol. 31. Aarhus University, Aarhus (1971)
- $[12]$ Zelazko, W.: A non-m-convex algebra on which operate all entire functions. Ann. Polon. Math. **46**, 389–394 (1985)
- [13] Zelazko, W.: Concerning entire functions in B0-algebras. Stud. Math. ˙ **110**(3), 283–290 (1994)

A. El Kinani, R. Choukri and A. Oudades Université Mohammed V Ecole Normale Supérieure de Rabat B.P. 5118 10105 Rabat Morocco e-mail: abdellah elkinani@yahoo.fr

Received: November 16, 2015. Revised: May 17, 2016. Accepted: May 23, 2016.