Mediterr. J. Math. 13 (2016), 4211–4217 DOI 10.1007/s00009-016-0740-6 1660-5446/16/064211-7 *published online* June 1, 2016 © Springer International Publishing 2016

Mediterranean Journal of Mathematics

CrossMark

On a Result of Turpin

A. El Kinani, R. Choukri and A. Oudades

Abstract. We consider several formulations of the equicontinuity of the sequence of power maps $(x \mapsto x^n)_n$ in the non-commutative case. We give some analog of a result of Turpin for a locally convex algebra not necessarily commutative. The link with the operation of entire functions is also examined.

Mathematics Subject Classification. Primary 46H05; Secondary 46H20.

Keywords. Locally convex algebras, Continuous multiplication, Q-algebra, M-completeness, Baire space, m-Convexity, Power maps, Entire functions.

1. Preliminaries and Introduction

A locally convex algebra (l.c.a. for short) is a Hausdorff locally convex space which is an algebra over a field \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) with separately continuous multiplication. If the multiplication is continuous in both variables, it is said to be with jointly continuous multiplication. Let (A, τ) be a locally convex algebra, the topology of which is given by a family of $(p_i)_{i \in I}$ of seminorms. It is said to be multiplicatively *m*-convex (*m*-convex for short) if

$$p_i(xy) \le p_i(x) p_i(y)$$
, for all $x, y \in A$, $i \in I$.

A B_0 -algebra is an l.c.a, whose underlying locally convex space is a completely metrisable space. An entire function $f(z) = \sum_{n=0}^{+\infty} a_n z^n$, $a_n \in \mathbb{K}$, operates in an l.c.a. (A, τ) if, for every x in A, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, converges in (A, τ) . A unital topological algebra is said to be Q-algebra if and only if the set of all invertible elements of A is open. Let E be a locally convex space. The space E is said to be Mackey-complete (M-complete for short) if and only if every bounded and closed disk B is completant, i.e., the space $(E_B, \|.\|_B)$ is Banach, where $E_B = \bigcup_{\lambda>0} \lambda B$ is the span of B and $\|.\|_B$ is the gauge of B. For a detailed account of basis properties of general locally m-convex algebras and B_0 -algebras, we refer the reader to [7, 11].

In [9], Turpin showed that a commutative *l.c.a.* (A, τ) , in which the sequence $(x \mapsto x^n)_n$ of power maps is equicontinuous at zero is necessarily *m*-convex. In the non-commutative case, Żelazko gives in [13] an example

of a complete non-*m*-convex locally convex algebra, in which the sequence $(x \mapsto x^n)_n$ of power maps is equicontinuous at zero. Analysis of the situation in the non-commutative case leads us to consider the following properties in a locally convex algebra (A, τ) :

 $(\mathcal{P}_1) \ \forall V \in V(0), \ \exists U \in V(0) : U^{(n)} \subset V, \text{ for every } n \in \mathbb{N}^*,$ where $U^{(n)} = \{x_1 \cdots x_n : x_1, \dots, x_n \in U\}$, and V(0) be a fundamental system of neighborhood of zero.

$$(\mathcal{P}_2) \ \forall V \in V(0), \ \exists U \in V(0): \ \frac{1}{n!} \sum x_{j_1} \cdots x_{j_n} \in V,$$

for every $x_1, \dots, x_n \in U, \ n \in \mathbb{N}^*$, and where the sum is taken over all
permutations (j_1, \dots, j_n) of the sequence $(1, \dots, n)$.

 (\mathcal{P}_3) The topology τ can be given by a family of seminorms $(p_i)_{i \in I}$, such that, for every $i \in I$, there exists $j \in I$, such that:

$$p_i(x^n) \le (p_j(x))^n$$
, for all $x \in A$, $n \in \mathbb{N}^*$.

- (\mathcal{P}_4) The sequence $(x \longmapsto x^n)_n$ of power maps is equicontinuous at zero.
- (\mathcal{P}_5) Entire functions operate in (A, τ) .

In [4], using a Baire argument and the Mazur Orlicz formula, the first author obtained that, $(\mathcal{P}_5) \Longrightarrow (\mathcal{P}_4)$, in any unital Baire locally convex algebra with continuous multiplication. Whence, the m-convexity in the commutative case [6], and hence the result of Mitiagin, Rolewics and Żelazko for commutative B_0 -algebra [8]. He also showed in [5] that $(\mathcal{P}_4) \Longrightarrow (\mathcal{P}_5)$, in any unital and M-complete *l.c.a.* In particular, entire functions operate in any unital and M-complete l.m.c.a. In this note, we show that, in a locally convex algebra, the properties (\mathcal{P}_2) , (\mathcal{P}_3) and (\mathcal{P}_4) are all equivalent (Proposition 2.1). As a consequence, the properties (\mathcal{P}_3) , (\mathcal{P}_4) , and (\mathcal{P}_5) are equivalent in any unital (commutative or not) B_0 -algebra (Corollary 2.3). In the case, where the topology is given by a family of seminorms $(p_i)_{i \in I}$, such that $p_i(x^2) \leq (p_i(x))^2$, for every $x \in A$, $i \in I$, the inverse map $x \mapsto x^{-1}$ is continuous. If moreover, (A, τ) is a Q-algebra, then the properties (\mathcal{P}_4) and (\mathcal{P}_5) are equivalent (Proposition 2.5). In the general case of a topological algebra, we show that the property (\mathcal{P}_1) is equivalent to the fact that the algebra is locally idempotent (namely, it has a base of idempotent neighborhoods of zero [10]). Whence, the property (\mathcal{P}_1) is equivalent to the *m*-convexity in the locally convex case.

2. Properties (\mathcal{P}_i) , $i = 1, \ldots, 5$, in Locally Convex Algebras

In the commutative case, properties (\mathcal{P}_1) , (\mathcal{P}_2) , and (\mathcal{P}_4) are equivalent. In fact, the implication $(\mathcal{P}_1) \Longrightarrow (\mathcal{P}_2)$ is due to the fact that:

$$x_1 \cdots x_n = \frac{1}{n!} \sum x_{j_1} \cdots x_{j_n}, \quad \text{for every } (x_1, \dots, x_n) \in A^n, \ n \in \mathbb{N}^*.$$

To see that $(\mathcal{P}_2) \Longrightarrow (\mathcal{P}_4)$, just take $x_1 = x_2 = \cdots = x_n = x$ in (\mathcal{P}_2) . The implication $(\mathcal{P}_4) \Longrightarrow (\mathcal{P}_1)$ is due to Turpin [9]. In the non-commutative case, the example of a non-*m*-convex non-commutative B_0 -algebra, on which all

entire functions operate, constructed in [12], by Żelazko, verifies (\mathcal{P}_4) but not (\mathcal{P}_1). In the general case, (\mathcal{P}_2), (\mathcal{P}_3), and (\mathcal{P}_4) are equivalent as the following result shows.

Proposition 2.1. Let (A, τ) be a locally convex algebra. Then, the following assertions are equivalent.

- 1. (A, τ) satisfies (\mathcal{P}_2) .
- 2. (A, τ) satisfies (\mathcal{P}_3) .
- 3. (A, τ) satisfies (\mathcal{P}_4) .

Proof. $(1) \implies (3)$ It is obvious.

(3) \implies (1) Let V be an absolutely convex and closed neighborhood of zero. Since (A, τ) verifies (\mathcal{P}_4) , there is an absolutely convex neighborhood U of zero, such that

$$x^n \in V, \quad x \in U, \quad n \in \mathbb{N}^*.$$

By Mazur–Orlics theorem (see [3]), we have:

$$\frac{1}{n!}\sum x_{j_1}\cdots x_{j_n} = \frac{1}{n!}\sum_{\varepsilon_1,\dots,\varepsilon_n=0}^{1} (-1)^{n-(\varepsilon_1+\dots+\varepsilon_n)} \left(x_0+\varepsilon_1x_1+\dots+\varepsilon_nx_n\right)^n,$$

where $x_1, \ldots, x_n \in A$, $n \in \mathbb{N}^*$, the sum is taken over all permutations (j_1, \ldots, j_n) of the sequence $(1, \ldots, n)$, and x_0 is an arbitrary point of A. Let us take $x_0 = 0$. Since U is convex, we have $\varepsilon_1 x_1 + \cdots + \varepsilon_n x_n \in nU$, for every $x_1, \ldots, x_n \in U$, and thus $(\varepsilon_1 x_1 + \cdots + \varepsilon_n x_n)^n \in n^n V$. Whence

$$\frac{1}{n!}\sum_{\varepsilon_1,\ldots,\varepsilon_n=0}^{1}(-1)^{n-(\varepsilon_1+\cdots+\varepsilon_n)}\left(\varepsilon_1x_1+\cdots+\varepsilon_nx_n\right)^n\in\frac{2^nn^n}{n!}V.$$

But, there exists C > 0, such that $\frac{(2n)^n}{n!} \leq C^n$, for every $n \in \mathbb{N}^*$. Then

$$\frac{1}{n!}\sum x_{j_1}\cdots x_{j_n}\in V, \quad \text{for every } x_1,\ldots,x_n\in \frac{1}{C}U.$$

Thus (A, τ) verifies (\mathcal{P}_2) .

(3) \implies (2) Let V be an absolutely convex and closed neighborhood of zero. Since (A, τ) verifies (\mathcal{P}_4) , there is an absolutely convex and closed neighborhood U of zero, such that

$$x^n \in V, \quad x \in U, \quad n \in \mathbb{N}^*.$$

Let p be the gauge associated to V and q that associated to U. We have

$$p(x^n) = \inf \left\{ \lambda > 0 : x^n \in \lambda V \right\} \quad \text{and} \quad q(x) = \inf \left\{ \lambda > 0 : x \in \lambda U \right\}.$$

Let $\alpha > 0$ be such that $x \in \alpha U$. Then $x^n \in \alpha^n V$. So, $\alpha^n \in \{\lambda > 0 : x^n \in \lambda V\}$. Whence

$$p(x^n) \le \left(q(x)\right)^n.$$

Thus, considering the family of gauges associated to all absolutely convex and closed neighborhood of zero, we obtain the result. (2) \implies (3) We know that the family $(K_i(0, \frac{1}{k}))_{k \in \mathbb{N}^*, i \in I}$ constitutes a fundamental system of neighborhood of zero, where

$$K_i\left(0,\frac{1}{k}\right) = \left\{x \in A : p_i(x) < \frac{1}{k}\right\}, \quad k = 1, 2, \dots$$

It follows that $p_j(x) < \frac{1}{k}$, for every $x \in K_j(0, \frac{1}{k})$. Whence

$$p_i(x^n) \le (p_j(x))^n < \frac{1}{k^n} \le \frac{1}{k}, \text{ for every } n \in \mathbb{N}^*.$$

Consequently, $x^n \in K_i(0, \frac{1}{k})$, for every $n \in \mathbb{N}^*$. Hence (A, τ) verifies (\mathcal{P}_4) . \Box

Remark 2.2. The algebra L^{ω} of Arens [2] is a commutative non-*m*-convex B_0 -algebra on which only polynomial functions operate. Consequently, this algebra does not satisfy the properties (\mathcal{P}_2) , (\mathcal{P}_3) , and (\mathcal{P}_4) .

Using [4,5], we obtain the following result:

Corollary 2.3. Let (A, τ) be a unital (commutative or not) B_0 -algebra. Then the following assertions are equivalent.

- 1. (A, τ) satisfies (\mathcal{P}_3) .
- 2. (A, τ) satisfies (\mathcal{P}_4) .
- 3. (A, τ) satisfies (\mathcal{P}_5) .
- *Remark* 2.4. 1. Completeness is not superfluous in the previous result. Indeed, take the algebra $A = (C([0,1]), (\|.\|_p)_{p \in \mathbb{N}^*})$, where

$$\|f\|_{p} = \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}}, \text{ for every } f \in A.$$

It is a non-complete unital and metrizable locally convex algebra. Since

$$\|f\|_{p} = \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}} \le \|f\|_{\infty}, \text{ for every } p \in \mathbb{N}^{*} \text{ and } f \in A.$$

This algebra satisfies (\mathcal{P}_5) . On the other hand, by the fact that $\overline{A} = L^{\omega}$ and by a result of Turpin [9], the algebra A is not *m*-convex. Then, it does not satisfy (\mathcal{P}_4) and thus neither (\mathcal{P}_3) by Proposition 2.1.

2. In the unital *M*-complete locally *m*-convex case, the properties of Corollary 2.3. are satisfied. Pseudo-completeness (i.e.; if every bounded and closed idempotent disk is Banach) with the *m*-convexity is not sufficient in the previous corollary. Indeed, let *A* be the algebra of all complex polynomials *P* endowed with the topology of uniform on the compact subsets of the positive real line \mathbb{R}_+ . It is an *l.m.c.a.* It is pseudocomplete, non-*M*-complete, and the exponential function does not operate in it [1]. Whence, *A* verifies (\mathcal{P}_3) and (\mathcal{P}_4) but not (\mathcal{P}_5).

In the particular case when i = j and n = 2 in (\mathcal{P}_3) i.e.: $(\mathcal{P}_6) \ p_i(x^2) \leq (p_i(x))^2$, for every $i \in I$ and $x \in A$, we have the following result. **Proposition 2.5.** Let (A, τ) be a unital locally convex algebra satisfying (\mathcal{P}_6) . Then

- 1. The inverse map $x \mapsto x^{-1}$ is continuous.
- 2. If moreover (A, τ) is a Q-algebra, then properties (\mathcal{P}_4) and (\mathcal{P}_5) are satisfied.

Proof. 1. Let x_1, y_1 be elements in A and $i \in I$, such that

$$x_1y_1 = y_1x_1, \quad p_i(x_1) \le 1 \quad \text{and} \quad p_i(y_1) \le 1.$$

One has

$$2p_i(x_1y_1) \le [p_i(x_1) + p_i(y_1)]^2 + [p_i(x_1)]^2 + [p_i(y_1)]^2 \le 6.$$

Whence, $p_i(x_1y_1) \leq 3$. Applying the previous inequality for $x_1 = \frac{x}{p_i(x)+\varepsilon}$ and $y_1 = \frac{y}{p_i(y)+\varepsilon}$, where $x, y \in A$, such that xy = yx and $\varepsilon > 0$, one has

$$p_i(xy) \le 3 (p_i(x) + \varepsilon) (p_i(y) + \varepsilon).$$

This implies that

$$p_i(xy) \le 3p_i(x)p_i(y).$$

Now, let $(x_{\alpha})_{\alpha}$ be a net of invertible elements, such that $\lim_{\alpha} x_{\alpha} = e$ (the unit of A). Since $x_{\alpha}^{-1}(x_{\alpha} - e) = (x_{\alpha} - e) x_{\alpha}^{-1}$, we have

$$|p_i(x_{\alpha}^{-1}) - p_i(e)| \le p_i(x_{\alpha}^{-1} - e) \le p_i \left[x_{\alpha}^{-1}(x_{\alpha} - e) \right] \le 3p_i(x_{\alpha}^{-1})p_i(x_{\alpha} - e).$$

Take $\varepsilon > 0$. Since $\lim_{\alpha} x_{\alpha} = e$, there exists α_0 , such that

 $p_i(x_\alpha - e) < \varepsilon'$, for every $\alpha \ge \alpha_0$,

where $\varepsilon' < \frac{\varepsilon}{3(1+\varepsilon)}$. Whence

$$p_i(x_{\alpha}^{-1}) \le \frac{1}{1 - 3\varepsilon'}$$
 for every $\alpha \ge \alpha_0$.

It follows that

$$p_i(x_{\alpha}^{-1} - e) \le \frac{3\varepsilon'}{1 - 3\varepsilon'} \le \varepsilon$$
, for every $\alpha \ge \alpha_0$.

This implies that $\lim_{\alpha} x_{\alpha}^{-1} = e$. Finally, for $x \in G(A)$ and $(x_{\alpha})_{\alpha} \in G(A)$, such that $\lim_{\alpha} x_{\alpha} = x$. We have $x_{\alpha}^{-1} = (x^{-1}x_{\alpha})^{-1}x^{-1}$ and $x^{-1}x_{\alpha} \longrightarrow e$. Whence, $x_{\alpha}^{-1} \longrightarrow x^{-1}$, from which the claim (1) follows.

2. It follows from Proposition 2 in [9].

Proposition 2.6. Let (A, τ) be a topological algebra. Then, the following assertions are equivalent.

- 1. (A, τ) satisfies (\mathcal{P}_1) .
- 2. (A, τ) is locally idempotent.

Proof. (1) \Longrightarrow (2) Let V a neighborhood of zero. Since (A, τ) satisfies (\mathcal{P}_1) , there exists a neighborhood U of zero, such that

 $U^{(n)} \subset V$, for every $n \in \mathbb{N}^*$.

Put $\Omega = \bigcup_{n=1}^{\infty} U^{(n)}$. Then, Ω is an idempotent neighborhood of zero and $\Omega \subset V$. Whence, (A, τ) is locally idempotent.

(2) \implies (1) Let V be a neighborhood of zero. Since (A, τ) is locally idempotent, there exists an idempotent neighborhood U of zero, such that $U \subset V$. Whence, $U^{(n)} \subset V$, for every $n \in \mathbb{N}^*$.

Corollary 2.7. Let (A, τ) be a locally convex algebra. Then, the following assertions are equivalent.

- 1. (A, τ) satisfies (\mathcal{P}_1) .
- 2. (A, τ) is m-convex.

Acknowledgments

The authors thank the referee for a very careful checking of the first version.

References

- Allan, G.A.: A spectral theory for locally convex algebras. Proc. Lond. Math. Soc. 15, 399–421 (1965)
- [2] Arens, R.: The space L^ω and convex topological rings. Bull. Am. Math. Soc. 52, 931–935 (1946)
- [3] Bochnak, J., Siciak, J.: Polynomials and multilinear mappings in topological vector space. Studia. Math. 39, 59–76 (1971)
- [4] El Kinani, A.: Entire functions and equicontinuity of power maps in Baire algebras. Revista Matematica Complutense 13(2), 337–340 (2000)
- [5] El Kinani, A.: Equicontinuity of power maps in locally pseudo-convex algebras. Comment. Math. Univ. Carol. 44(1), 91–98 (2003)
- [6] El Kinani, A., Oudadess, M.: Entire functions and *m*-convex structure in commutative Baire algebra. Bull. Belg. Math. Soc. 4, 685–687 (1997)
- [7] Michael, E.A.: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc. 11, p. 79 (1952)
- [8] Mitiagin, B.S., Rolewics, S., Zelazko, W.: Entire functions in B₀-algebras. Stud. Math. 21, 291–306 (1962)
- [9] Turpin, P.: Une remarque sur les algèbres à inverse continu. C. R. Acad. Sci. Paris A 270(Série A), 1686–1689 (1970)
- [10] Zelazko, W.: Metric generalization of Banach algebras. Rozprway Mat. (Dissertationes Math.) 47 (1965)
- [11] Zelazko, W.: Selected Topics in Topological Algebras. Lecture Notes Series, vol. 31. Aarhus University, Aarhus (1971)
- [12] Żelazko, W.: A non-m-convex algebra on which operate all entire functions. Ann. Polon. Math. 46, 389–394 (1985)
- [13] Zelazko, W.: Concerning entire functions in B0-algebras. Stud. Math. 110(3), 283–290 (1994)

A. El Kinani, R. Choukri and A. Oudades Université Mohammed V Ecole Normale Supérieure de Rabat B.P. 5118 10105 Rabat Morocco e-mail: abdellah_elkinani@yahoo.fr

Received: November 16, 2015. Revised: May 17, 2016. Accepted: May 23, 2016.