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Hochschild Cohomology of a Sullivan
Algebra

Jean Baptiste Gatsinzi

Abstract. Let A = (∧V, d) be a minimal Sullivan algebra where V is finite
dimensional. We show that the Hochschild cohomology HH∗(A; A) can
be computed in terms of derivations of A. This provides another method
to compute the loop space homology of a simply connected space for
which π∗(X) ⊗ Q is finite dimensional.
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1. Introduction

Let A = ⊕n≥0A
n be a commutative graded algebra over a commutative ring

k, and M a Z-graded A-module. The A-tensor algebra TA(M) is defined by
TA(M) = ⊕k≥0T

k
A(M), where

T k
A(M) = M ⊗A M ⊗ · · · ⊗A M (k ≥ 1 factors) and T 0

A(M) = A.

The exterior algebra ∧AM is the commutative graded algebra obtained as
the quotient of TA(M) by the ideal generated by elements of the form x⊗y−
(−1)|x||y|y ⊗ x, where x, y ∈ TA(M). The exterior product induces a graded
commutative algebra structure on ∧AM .

Let Z = ⊕iZi be a Z-graded free k-module. There is a canonical iso-
morphism of commutative graded algebras

ϕ : ∧A(A ⊗ Z) → A ⊗ ∧kZ.

We assume that (A, d) is a differential graded algebra with a differential
d : An → An+1, and A ⊗ Z is an (A, d)-differential graded module; then
(∧A(A⊗Z), d) and (A⊗∧Z, d) are endowed with canonical differential graded
algebra structures and ϕ becomes a homomorphism of differential graded
algebras.
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A derivation θ of degree k is a linear mapping An → An−k, such that
θ(ab) = θ(a)b+(−1)k|a|aθ(b). Let Derk A denote the vector space of all deriva-
tions of degree k and DerA = ⊕k Derk A. With the commutator bracket,
DerA becomes a graded Lie algebra. Using the grading convention An = A−n,
we may regard a derivation of degree k as increasing the lower degree by k.
There is a differential δ : Derk A → Derk−1 A defined by δθ = [d, θ].

Moreover, DerA is a differential graded A-module with the action
(aθ)(x) = aθ(x). With the grading convention A−n = An, if θ, θ′ ∈ Derk A
and a ∈ Ai, then aθ ∈ Derk−i A and

[aθ, bθ′] = (−1)|b||θ|ab[θ, θ′] + aθ(b)θ′ + (−1)|aθ||bθ′|bθ′(a)θ. (1)

If A = ∧V and V is finite dimensional, then DerA ∼= A ⊗ V #, where V #

is the graded dual of V (Lemma 5). With the above grading convention,
V # = ⊕i≥1(V #)i is positively graded.

On L = s−1 Der A, we define a bracket of degree 1 by

{α, β} = s−1[sα, sβ] (2)

and a differential δ′(α) = −{d′, α}, where d′ = s−1d ∈ L−2. We extend the
bracket to ∧AL = A ⊕ L ⊕ ∧2

AL ⊕ . . . by {a, b} = 0 for a, b ∈ ∧0
AL = A, and

{α, a} = −(−1)|α|(sα)(a), α ∈ L. It is then defined inductively on ∧≥2
A L by

forcing the Leibniz rule

{α, β ∧ γ} = {α, β} ∧ γ + (−1)(|α|+1)|β|β ∧ {α, γ}
= {α, β} ∧ γ + (−1)(|β||γ|{α, γ} ∧ β.

(3)

Hence for αi, βi in L,

{ α1 ∧ · · · ∧ αm, β1 ∧ · · · ∧ βn}
=

∑

i,j

(−1)εijα1 ∧ · · · α̂i ∧ αm ∧ {αi, βj} ∧ · · · ∧ β̂j ∧ · · · βn, (4)

where ˆmeans omitted and εij =
∑

k>i |αk||αi| +
∑

k<j |βk||βj |. The above
bracket (called Nijenhuis–Schouten bracket) turns ∧AL into a Gerstenhaber
algebra. See [15, Sect. 2] for instance.

The differential δ′ extends into an algebra differential d0 on ∧AL in the
same way, that is, d0α = −{d′, α}, for α ∈ ∧AL. It comes from the Leibniz
rule (3) that d0 is a derivation. Moreover, the Jacobi identity ensures that
d0 is compatible with the bracket. Hence, (∧AL, d0) becomes a differential
graded Gerstenhaber algebra [11, Lemma 5].

From now on, we assume that k is a field of characteristic 0. Let A =
(∧V, d) be a Sullivan algebra where V is finite dimensional and Z = s−1V #.
The isomorphism s−1 Der∧V ∼= A ⊗ Z transfers a bracket of degree 1 on
A ⊗ Z. Moreover if s−1θ, s−1θ′ ∈ Z and a, b ∈ A, one uses Eq. (1) to obtain

{ a ⊗ s−1θ, b ⊗ s−1θ′}
= (−1)|a|+|b|

(
aθ(b) ⊗ s−1θ′ + (−1)|aθ||bθ′|bθ′(a) ⊗ s−1θ

)
. (5)
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The bracket is then extended to A ⊗ ∧Z by the Leibniz rule. In the
same way, the differential is extended to A ⊗ ∧Z by Dα = −{d′, α} where
d′ = s−1d.

The main result states:

Theorem 1. Let A = (∧V, d) be a Sullivan algebra over a field k of char-
acteristic 0, where V = ⊕i≥2V

i is finite dimensional and L the desuspen-
sion of Der∧V with the desuspended differential and Z = s−1V #. Then,
ϕ : (∧AL, d0) → (A⊗∧Z,D) extends to an isomorphism of differential graded
Gerstenhaber algebras.

Let Ā be the kernel of the augmentation ε : A → k. We denote by
C∗(A;A) = Hom(T (sĀ), A) (resp. HH∗(A;A)) the Hochschild complex (resp.
cohomology) of the cochain algebra A with coefficients in A [12]. We recall
the following result.

Theorem 2 ([11]). If A = (∧V, d) is a Sullivan algebra, then there is a map-
ping φ : (∧AL, d0) → C∗(A;A) which induces an isomorphism of graded
Gerstenhaber algebras in homology.

Note that if A is not a Sullivan algebra, then φ does not necessarily
induce a bijective map in homology [1, Theorem 6.2].

By combining Theorems 1 and 2, we get an easy method to compute
the Gerstenhaber bracket on HH∗(A;A), when A = ∧V is a Sullivan algebra
for which V is finite dimensional.

2. Resolutions to Compute HH∗(A;A)

The Hochschild cohomology is usually computed using a semifree resolu-
tion [5]. Let (A, d) be an augmented differential graded algebra, not neces-
sarily commutative. The bar construction B(A;A;A) is defined as follows (see
for instance [7,10]).

Bk(A;A;A) = A ⊗ T k(sĀ) ⊗ A.

An element a[a1|a2| · · · ak]b ∈ A⊗T k(sĀ)⊗A is of degree |a|+|b|+∑k
i=1 |sai|.

The differential d = d0 + d1 is defined as follows.

d0 : Bk(A;A;A) → Bk(A;A;A), d1 : Bk(A;A;A) → Bk−1(A;A;A),

d0(a[a1|a2| · · · ak]b) = (da)[a1|a2| · · · ak]b −
k∑

i=1

(−1)ε(i)a[a1| · · · |dai| · · · |ak]b

+ (−1)ε(k+1)a[a1|a2| · · · ak](db),
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d1(a[a1|a2| · · · ak]b)

= (aa1)[a2| · · · ak]b −
k∑

i=2

(−1)ε(i)a[a1| · · · |ai−1ai| · · · |ak]b

− (−1)ε(k)a[a1|a2| · · · ak−1](akb),

where ε(i) = |a| +
∑i−1

j=1 |saj |. There is a quasi-isomorphism B(A;A;A) →
(A, d) which provides a semifree resolution of A as an A ⊗ Aop-module [5,
Lemma 4.3]. Therefore the Hochschild cochain complex is given by

(C∗(A;A),D) = HomA⊗Aop(B(A;A;A), A) ∼= (Hom(T (sĀ), A),D0 + D1),

where the differential is expressed as follows [9]:

(D0f)([a1|a2| . . . |ak]) = d (f([a1|a2| . . . |ak]))

+
k∑

i=1

(−1)ε̄(i)f([a1| . . . |dai| . . . |ak])

and

(D1f)([a1|a2| . . . |ak]) = −(−1)|sa1||f |a1f([a2| . . . |ak])
+(−1)ε̄(k)f([a1| . . . |ak−1])ak

+
k∑

i=2

(−1)ε̄(i)f([a1| . . . |ai−1ai| . . . |ak]),

where ε̄(i) = |f | + |sa1| + · · · + |sai−1|.
We now define another resolution for a Sullivan algebra (∧V, d). Let f :

(A, d) → (B, d) be a map between commutative differential graded algebras.
There exists a relative Sullivan algebra (A ⊗ ∧V, d) and a quasi-isomorphism
ϕ such that the following diagram commutes [13,16].

(A, d)
f ��

��

������������
(B, d)

(A ⊗ ∧V, d)

ϕ �
��

(6)

Given a Sullivan algebra (∧V, d), the multiplication μ : (∧V ⊗∧V, d′) →
(∧V, d) is a morphism of differential graded algebras, where d′ = d⊗1+1⊗d.
There exists a commutative differential graded algebra (∧V ⊗∧V ⊗∧sV,D),
where sV n = V n+1 such that the following diagram commutes [6].

(∧V ⊗ ∧V, d′)
μ ��

��

����������������
(∧V, d)

(∧V ⊗ ∧V ⊗ ∧sV,D)

� ϕ

��
(7)

Moreover, the differential on ∧V ⊗ ∧V ⊗ ∧sV is defined by

D(v ⊗ 1 ⊗ 1) = dv ⊗ 1 ⊗ 1, D(1 ⊗ v ⊗ 1) = 1 ⊗ dv ⊗ 1,
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and D(1 ⊗ 1 ⊗ sv) is defined by induction on the degree of v by the formula

D(1 ⊗ 1 ⊗ sv) = v ⊗ 1 ⊗ 1 − 1 ⊗ v ⊗ 1 +
∞∑

i=1

(sD)i

i!
(v ⊗ 1 ⊗ 1).

Here, s is the derivation of degree −1 on ∧V ⊗ ∧V ⊗ ∧sV defined as

s(v ⊗ 1 ⊗ 1) = s(1 ⊗ v ⊗ 1) = 1 ⊗ 1 ⊗ sv, s(1 ⊗ 1 ⊗ sv) = 0.

Let

α =
∞∑

i=1

(sD)i

i!
(v ⊗ 1 ⊗ 1) ∈ ∧≥1(V ⊕ V ) ⊗ sV.

The condition D2 = 0 yields

(dv ⊗ 1 − 1 ⊗ dv) ⊗ 1 = Dα.

Proposition 3. The quasi-isomorphism

ϕ : (∧V ⊗ ∧V ⊗ ∧sV,D) → (∧V, d)

is a semifree resolution of (∧V, d) as a ∧V ⊗ ∧V -differential module.

Proof. From the commutativity of the above diagram, one deduces that the
quasi-isomorphism

ϕ : (∧V ⊗ ∧V ⊗ ∧sV,D) → (∧V, d)

is a morphism of A ⊗ A-modules. Let V = V1 ⊕ V2 ⊕ · · · be a decomposition
of V such that dVi ⊂ ∧(V1 ⊕· · ·⊕Vi−1). The filtration of ∧V ⊗∧V ⊗∧sV by
submodules P (n) = ∧V ⊗∧V ⊗∧s(V1⊕· · ·⊕Vn) shows that the above quasi-
isomorphism (∧V ⊗ ∧V ⊗ ∧sV,D) → (∧V, d) is a semifree resolution. �

Therefore, the Hochschild cohomology HH∗(∧V ;∧V ) is given by

HH∗(∧V ;∧V ) ∼= Ext∧V ⊗∧V (∧V,∧V )
∼= H∗(Hom∧V ⊗∧V (∧V ⊗ ∧V ⊗ ∧sV,∧V ), D̃).

Proposition 4. There is a quasi-isomorphism

(∧V ⊗ ∧V ⊗ ∧sV,D) → B(∧V ;∧V ;∧V )

such that the following diagram commutes.

(∧V ⊗ ∧V ⊗ ∧sV,D)
j ��

�
ϕ

��������������
B(∧V ;∧V ;∧V )

�
ψ�������������

(∧V, d)

.

Proof. Recall that the map ψ : B(∧V ;∧V ;∧V ) → (∧V, d) satisfies ψ([ ]) = 1
and ψ([a1| · · · |ak]) = 0, for k > 0 [6, Lemma 4.3]. Moreover, ϕ(sV ) = 0 [4].

As (∧V ⊗∧V ⊗∧sV,D) and B(∧V ;∧V ;∧V ) are semifree resolutions of
∧V as ∧V ⊗ ∧V -modules, there is a quasi-isomorphism

j : (∧V ⊗ ∧V ⊗ ∧sV,D) → B(∧V ;∧V ;∧V ).

However, we give an explicit formula for j.
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Let v ∈ V1, then dv = 0. Define j(sv) = 1⊗ [v]⊗1. As d([v]) = v[ ]− [ ]v,

j(D(sv)) = j((v ⊗ 1 − 1 ⊗ v) ⊗ 1) = v[ ] − [ ]v = Dj(sv).

Let V≤i = V1 ⊕ V2 ⊕ · · · ⊕ Vi. Now assume that j has been defined on
sV≤i, such that j commutes with differentials. We need to define j on sVi+1.
Let v ∈ Vi+1. Recall that

D(sv) = v ⊗ 1 ⊗ 1 − 1 ⊗ v ⊗ 1 + α, where α =
∞∑

k=1

(sD)k(v ⊗ 1 ⊗ 1)
k!

.

As α ∈ ∧V ⊗ ∧V ⊗ s(V≤i), by hypothesis, d(j(Dsv)) = j(D2(sv)) = 0.
But B≥1(∧V ;∧V ;∧V ) is acyclic; hence, j(Dsv) is a boundary. Moreover,

d([v]) = v[ ] − [ ]v − [dv]

and

j(Dsv) = v[ ] − [ ]v + j(α) = d([v]) + [dv] + j(α).

Therefore, j(Dsv) = d([v] + β), where β ∈ ∧(V≤i) ⊗ T≥2s ∧+ (V≤i) ⊗ ∧(V≤i).
Define j(sv) = [v] + β, then dj(sv) = j(Dsv) as required.

We extend j to ∧≥2(sV ) by

j(sv1 ∧ . . . ∧ svn) =
1
n!

∑

σ∈Sn

ε(σ)[j(vσ(1))| . . . |j(vσ(n))],

where vi ∈ V . �

3. Gerstenhaber Structure on the Hochschild Cohomology

Recall that the tensor algebra TV is endowed with a coalgebra structure
when the reduced diagonal is defined

Δ̄(v1 ⊗ · · · ⊗ vn) =
n−1∑

i=1

(v1 ⊗ · · · ⊗ vi) ⊗ (vi+1 ⊗ · · · ⊗ vn).

The multiplicative structure on

HH∗(A;A) = H∗(HomA⊗A(B(A;A;A), A)) = H∗(Hom(T (Ā), A))

derives from the above defined comultiplication on T (Ā). Moreover, ∧V is
endowed with a cocommutative coalgebra structure defined by

Δ̄(x1 ∧ · · · ∧ xn) =
n−1∑

i=1

∑

σ

ε(σ)(xσ(1) ∧ · · · ∧ xσ(i)) ⊗ (xσ(i+1) ∧ · · · ∧ xσ(n)),

where σ is an (i, n − i) shuffle and ε(σ) its Koszul sign. The restriction of j
to ∧sV → T (Ā) is a morphism of coalgebras. Therefore,

Hom(j) : (Hom(T (Ā), A),D) → (Hom∧V (∧V ⊗ ∧sV,∧V ),D)

is a map of differential graded algebras. As Hom(j) is a quasi-isomorphism,
we deduce that H∗(Hom(j)) is an isomorphism of algebras. Moreover, there
is a mapping (∧AL, d) → (C∗(A;A),D0 + D1) which induces a morphism of
Gerstenhaber algebras in homology [11].
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Lemma 5. Assume that V is finite dimensional and let (vi), i ∈ {1, . . . , n}, be
a homogeneous linear basis of V . For i ∈ {1, . . . , n}, let θi be the derivation
of ∧V uniquely determined by

θi(vj) =
{

0 if i 
= j,
1 if i = j.

The graded ∧V -module Der ∧V is freely generated by the derivations θi, (i =
1, . . . , n).

Proof. Let us denote by V # the graded dual of V . The restriction of each θi to
V is an element of V # of upper degree −|vi|. Thus, we have an isomorphism
of graded ∧V -modules

Der ∧V ∼= Hom(V,∧V ) ∼= (∧V ) ⊗ V #.

�

The derivation θi referred to in the proof of the above lemma will be
denoted by (vi, 1).
Proof of Theorem 1. Let A = ∧V where V is finite dimensional. The isomor-
phism DerA ∼= A ⊗ V # extends to an isomorphism of graded algebras

ϕ : ∧As−1(Der A) ∼= ∧As−1(A ⊗ V #) ∼= A ⊗ ∧(s−1V #).

It is explicitly defined by

ϕ(s−1(a1θ1) . . . s−1(anθn)) = (−1)|a1|+···+|an|(−1)εa1 . . . ans−1θ1 . . . s−1θn,

where (−1)ε satisfies

a1s
−1θ1 . . . ans−1θn = (−1)εa1 . . . ans−1θ1 . . . s−1θn.

The next two lemmas will complete the proof.

Lemma 6. The map ϕ is a morphism of Gerstenhaber algebras.

Proof. Clearly, ϕ commutes with brackets. Denote the wedge product α ∧ β
by αβ.

ϕ({α, βγ}) = ϕ({α, β}γ) + (−1)(|α|+1)|β|ϕ(β{α, γ})
= ϕ({α, β})ϕ(γ) + (−1)(|α|+1)|β|ϕ(β)ϕ({α, γ})
= {ϕ(α), ϕ(β)}ϕ(γ) + (−1)(|α|+1)|β|ϕ(β){ϕ(α), ϕ(γ)}
= {ϕ(α), ϕ(β)ϕ(γ)}
= {ϕ(α), ϕ(βγ)}.

By an induction argument, one deduces that ϕ is a morphism of Gerstenhaber
algebras. �

Lemma 7. The map ϕ : (∧As−1(Der ∧V ), d0) → (∧V ⊗ ∧(s−1V #),D) com-
mutes with differentials.

Proof. The differential D on ∧V ⊗∧(s−1V #) is defined by Dα = −{ϕ(d′), α},
where d′ = s−1d. As ϕ is compatible with brackets, we deduce that

ϕ(d0α) = −ϕ({d′, α}) = −{ϕ(d′), ϕ(α)} = D(ϕ(α)).

Hence, ϕ commutes with differentials. �
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Remark 8. The Gerstenhaber structure on Hom∧V (∧V ⊗∧sV,∧V ) is defined
through the isomorphism

Hom∧V (∧V ⊗ ∧sV,∧V ) ∼= ∧V ⊗ ∧(s−1V #).

Moreover, the ∧V -module (∧V ⊗∧(s−1V #),D) is the “dual” of the Sullivan
model of LX described by Sullivan and Vigué-Poirrier [17]. However, the
former carries the Gerstenhaber structure of the free loop space homology.

4. Computation of the Free Loop Space Homology

We apply the above result in the computation of the free loop space homology.
Let X be a closed oriented manifold of dimension m and LX = map(S1,X)
the space of free loops on X. The loop homology of X is the homology of LX
with a shift of degrees, H∗(LX) = H∗+m(LX) and an associative and graded
commutative product

μ : Hp(LX) ⊗ Hq(LX) → Hp+q(LX)

called loop product [2]. When coefficients are taken in a field, there is an
isomorphism of graded vector spaces [14]

HH∗(C∗X;C∗X) ∼= H∗(LX),

which dualizes in

HH∗(C∗X;C∗X) ∼= H∗(LX).

If k is of characteristic 0 and X is simply connected, there is an isomorphism
of Gerstenhaber algebras [8–10]

Φ : H∗(LX) → HH∗(C∗X;C∗X).

Moreover, if A = (∧V, d) is the minimal Sullivan model of X, then one
has an isomorphism of Gerstenhaber algebras [7, Proposition 3.3]

HH∗(A;A) ∼= HH∗(C∗X;C∗X).

We assume that π∗(X)⊗Q is finite dimensional; hence, the minimal Sullivan
model of X is of the from (∧V, d), where V is finite dimensional. There are
isomorphisms of Gerstenhaber algebras

H∗(LX,Q)
∼= �� HH∗(A;A) H∗(∧AL, d0)

∼=�� ∼= �� H∗(∧V ⊗ ∧Z, d),

where L = s−1(Der ∧V ) and Z = s−1V #. In this section, we describe a
spectral sequence of ∧V ⊗ ∧Z that simplifies the computation of H∗(LX,Q)
in some cases.

Proposition 9. If π∗(X)⊗Q is finite dimensional and (∧V, d) is the minimal
Sullivan model of X, then L = Der(∧V, d) is semifree over (∧V, d).

Proof. The minimal Sullivan model is of the form (∧(V1 ⊕ · · · ⊕ Vn), d) such
that dV1 = 0 and dVi ⊂ ∧(V1 ⊕ · · · ⊕ Vi−1) for 1 ≤ i ≤ n.
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Define a filtration on L as follows.

FpL = {θ ∈ L : θ(V1 ⊕ · · · ⊕ Vn−p) = 0}.

We get a filtration

{0} = F0 ⊂ F1L ⊂ · · · ⊂ Fn−1L ⊂ FnL = L.

For instance, if Vn = <vn,1, . . . , vn,k>, then F1L = ∧V ⊗ Z1, where Z1

is spanned by {θ1,1, . . . , θ1,k} and θ1,i = (vn,i, 1). If Vn−1 = <vn−1,1, . . . ,

vn−1,l>, then F2L/F1L = ∧V ⊗ Z2 is spanned by {θ2,1, . . . , θ2,l}, such
that θ2,j = (vn−1,j , 1). Moreover, δZ2 ⊂ (∧V ) ⊗ Z1 = F1L. In general,
FkL/Fk−1L = ∧V ⊗ Zk, where Zk is spanned by derivations {θk,1, . . . , }
with θk,i = (vn−k+1,i, 1) and δZk ⊂ (∧V ) ⊗ (Z1 ⊕ · · · ⊕ Zk−1). This defines
a semifree filtration of L; hence, (L, δ) is a semifree differential module over
(∧V, d). �

It comes from the definition that [FpL, FqL] ⊂ FrL, where r=max{p, q}.
Hence [FpL, FqL] ⊂ Fp+qL. The filtration induces a spectral sequence of
differential Lie algebras such that E0

m,∗ = FmL/Fm−1L ∼= A ⊗ Zm,∗ and
d0 = dA ⊗ 1. Hence, E1

m,∗ ∼= H(A) ⊗ Zm. The E1-term, together with differ-
entials, yields

E1
n,∗

d1 �� E1
n−1,∗ · · · d1 ��d1 �� E1

1,∗

H(A) ⊗ Zn
∗

d1 �� H(A) ⊗ Zn−1
∗ · · · d1 �� H(A) ⊗ Z1

∗ .

In particular, if (∧V, d) = (∧(V1 ⊕ V2), d) with dV1 = 0 and dV2 ⊂ ∧V1, then
the above spectral sequence collapses at the E2-level.

Example 10. Consider the Sullivan algebra (∧(x, y), d) with |x| = 2, |y| = 5
and dy = x3. Here, H = (∧x)/(x3) and Z1 (resp. Z2) is spanned by z1 = (y, 1)
(resp. z2 = (x, 1)). Hence E1 = H ⊗ Z. Moreover, d1z1 = 0, d1z2 = 3x2z1
and d1(xz2) = 0. Therefore, the E2-term is spanned by {z1, xz1, xz2, x

2z2}
as a vector space. We note that xz2 and x2z2 are of respective degrees 0 and
−2.

We can now define a spectral sequence that is useful to compute the
loop space homology for certain spaces. Let X be a simply connected compact
oriented m-manifold of which π∗(X)⊗Q is finite dimensional and A = (∧(V1⊕
· · · ⊕ Vn), d) its minimal Sullivan model, where dVi ⊂ ∧(Vi ⊕ · · · ⊕ Vi−1). Let
Z = s−1V # and Zk = s−1V #

n−k+1. We define a filtration on A ⊗ ∧Z by
Fp = A ⊗ ∧(Z1 ⊕ · · · ⊕ Zp). It verifies

A = F0 ⊂ F1 ⊂ · · · ⊂ Fn = A ⊗ ∧Z.

As FpFq ⊂ Fr, where r = max{p, q}, FpFq ⊂ Fp+q. Moreover, {Fp, Fq} ⊂
Fs, where s = max{p, q}, {Fp, Fq} ⊂ Fp+q. This filtration yields a spectral
sequence of Gerstenhaber algebras for which E1 = H∗(A) ⊗ ∧Z and which
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converges to H∗(A ⊗ ∧Z, d) ∼= H∗(LX,Q). Using this technique, we can re-
cover the loop space homology of complex projective spaces and perform
computations for other homogeneous spaces.

Example 11 [3,7,9]. Consider X = CP (n) of which the minimal Sullivan
model is (∧(x, y), d), dx = 0, dy = xn+1. Therefore,

H∗(CP (n),Q) ∼= H∗(∧x/(xn+1)⊗∧(z1, z2n), d), dz2n =0, dz1=(n + 1)xnz2n.

Here, z1 and z2n are of respective degrees 1and 2n. Homology classes are

{xjzk
2n, xiz1, xiz1z

k
2n, k ≥ 0, 0 ≤ j ≤ n − 1, 1 ≤ i ≤ n}.

Brackets can be computed from the Lie algebra structure of derivations on
(∧(x, y), d). For instance, {xiz2n, xjz2n} = 0, {xiz1, x

jz2n} = jxi+j−1z2n,
{xz1x

izk
2n, xz1x

jzl
2n} = (i − j)xz1x

i+jzk+l
2n . In particular, {xz1, x

jz2n} =
jxjz2n; hence, adk(xz1) 
= 0, for k ≥ 1.

Example 12. We consider the minimal Sullivan model of X = Sp(5)/SU(5)
which is given by A = (∧(x6, x10, y11, y15, y19, d) with dxi = 0, dy11 =
x2
6, dy15 = x6x10, dy19 = x2

10. The rational cohomology is given by classes
of {1, x6, x10, x6y15 − x10y11, x10y15 − x6y19, x6(x10y15 − x6y19)}. The loop
space homology is computed from the complex

(A ⊗ ∧(z10, z14, z18, w5, w9), d), dzi = 0,

dw5 = 2x6z10 + x10z14,

dw9 = x6z14 + 2x10z18.

It contains H∗(X) ⊗ ∧(z10, z14, z18)/I, where I is the ideal generated by
{dw5, dw9}, but also x6wi and x10wi. Nonzero brackets include

{x6w5, x6z
k
i } = x6z

k
i , {x6w9, x10z

k
i } = x6z

k
i ,

{x10w5, x6z
k
i } = x10z

k
i , {z10, (x6y15 − x10y11)zk

i } = −x10z
k
i ,

{z14, (x6y15 − x10y11)zk
i } = x6z

k
i , {z18, (x10y15 − x6y19)zk

i } = −x6z
k
i .

Hence, for α = x6w5, adk α 
= 0, k ≥ 1. It is the same for β = x10w9.

We have the more general result.

Theorem 13. Let X be a homogeneous space of which the minimal Sullivan
model is given by (A, d) = (∧(x1, . . . , xn, y1, . . . , ym), d), where dxi = 0 and
dyi ∈ ∧(x1, . . . , xn). Then the graded Lie algebra sH∗(LX,Q) is not nilpotent.

Proof. We consider the complex (A⊗∧(z1, . . . , zm, w1, . . . , wn), d) where zj =
s−1(yj , 1), wi = s−1(xi, 1), dzj = 0 and dwi =

∑
j

∂fj

∂xi
zj . We need to find

coefficients qi ∈ Q such that α =
∑

i qixiwi is a d1-cocycle.

d1(
∑
i

qixiwi) =
∑
i

∑
j

qixi
∂fj

∂xi
zj

=
∑
j

(
∑
i

qixi
∂fj

∂xi
)zj .

In particular, d1α = 0 if
∑

i qixi
∂fj

∂xi
= cjfj , for j = 1, 2, . . . ,m. It is the

case if one takes qi = |xi| as
∑

i |xi|xi
∂fj

∂xi
= cjfj , where cj is the degree of
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the homogeneous polynomial fj . This is the Euler Theorem for homogeneous
functions in the graded case.

If we denote by Z1 and Z2, the respective spans of {zj} and {wi},
and H = H∗(X,Q), then d1Z

1 = 0 and d1Z
2 ⊂ H ⊗ Z1. As α ∈ H ⊗ Z2

and d1(H ⊗ ∧2Z2) ⊂ H ⊗ ∧+Z1 ⊗ Z2, then α cannot be a d1-coboundary.
Moreover, {α, xizi} = |xi|xizi; hence, sH∗(LX,Q) is not nilpotent. �
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176. Société Mathémarique de France (1989)

[5] Félix, Y., Halperin, S., Thomas, J.-C.: Differential graded algebras in topology.
In: James I.M. (ed.) Handbook of Algebraic Topology, pp. 829–865. North-
Holland (1995)

[6] Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. Graduate
Texts in Mathematics, vol. 205. Springer, New York (2001)

[7] Félix, Y., Menichi, L., Thomas, J.-C.: Gerstenhaber duality in Hochschild co-
homology. J. Pure Appl. Algebra 199, 43–59 (2005)

[8] Félix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc.
Math. Fr. 136, 311–327 (2008)

[9] Félix, Y., Thomas, J.-C., Vigué, M.: Rational string topology. J. Eur. Math.
Soc. (JEMS) 9, 123–156 (2008)
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