Mediterr. J. Math. 13 (2016), 3765–3776 DOI 10.1007/s00009-016-0713-9 1660-5446/16/063765-12 *published online* April 4, 2016 -c Springer International Publishing 2016

Mediterranean Journal **I** of Mathematics

CrossMark

Hochschild Cohomology of a Sullivan Algebra

Jean Baptiste Gatsinzi

Abstract. Let $A = (\land V, d)$ be a minimal Sullivan algebra where V is finite dimensional. We show that the Hochschild cohomology $HH^*(A;A)$ can be computed in terms of derivations of A. This provides another method to compute the loop space homology of a simply connected space for which $\pi_*(X) \otimes \mathbb{Q}$ is finite dimensional.

Mathematics Subject Classification. Primary 55P62; Secondary 55P35. **Keywords.** Sullivan algebra, Hochschild cohomology.

1. Introduction

Let $A = \bigoplus_{n>0} A^n$ be a commutative graded algebra over a commutative ring k, and M a \mathbb{Z} -graded A-module. The A-tensor algebra $T_A(M)$ is defined by $T_A(M) = \bigoplus_{k \geq 0} T_A^k(M)$, where

 $T_A^k(M) = M \otimes_A M \otimes \cdots \otimes_A M \quad (k \ge 1$ factors) and $T_A^0(M) = A$.

The exterior algebra $\wedge_A M$ is the commutative graded algebra obtained as the quotient of $T_A(M)$ by the ideal generated by elements of the form $x \otimes y$ − $(-1)^{|x||y|}y \otimes x$, where $x, y \in T_A(M)$. The exterior product induces a graded commutative algebra structure on $\wedge_A M$.

Let $Z = \bigoplus_i Z_i$ be a Z-graded free k-module. There is a canonical isomorphism of commutative graded algebras

$$
\varphi: \wedge_A (A \otimes Z) \to A \otimes \wedge_{\Bbbk} Z.
$$

We assume that (A, d) is a differential graded algebra with a differential $d: A^n \to A^{n+1}$, and $A \otimes Z$ is an (A, d) -differential graded module; then $(\wedge_A(A\otimes Z), d)$ and $(A\otimes \wedge Z, d)$ are endowed with canonical differential graded algebra structures and φ becomes a homomorphism of differential graded algebras.

Partial support from the Abdus Salam International Centre for Theoretical Physics and the International Mathematical Union.

A derivation θ of degree k is a linear mapping $A^n \to A^{n-k}$, such that $\theta(ab) = \theta(a)b + (-1)^{k|a|}a\theta(b)$. Let $Der_k A$ denote the vector space of all derivations of degree k and $\text{Der}_k A = \bigoplus_k \text{Der}_k A$. With the commutator bracket, Der A becomes a graded Lie algebra. Using the grading convention $A^n = A_{-n}$, we may regard a derivation of degree k as increasing the lower degree by k . There is a differential $\delta : \text{Der}_k A \to \text{Der}_{k-1} A$ defined by $\delta \theta = [d, \theta].$

Moreover, Der A is a differential graded A-module with the action $(a\theta)(x) = a\theta(x)$. With the grading convention $A_{-n} = A^n$, if $\theta, \theta' \in \text{Der}_k A$ and $a \in A^i$, then $a\theta \in \text{Der}_{k-i} A$ and

$$
[a\theta, b\theta'] = (-1)^{|b||\theta|} ab[\theta, \theta'] + a\theta(b)\theta' + (-1)^{|a\theta||b\theta'|} b\theta'(a)\theta.
$$
 (1)

If $A = \wedge V$ and V is finite dimensional, then Der $A \cong A \otimes V^{\#}$, where $V^{\#}$ is the graded dual of V (Lemma [5\)](#page-5-0). With the above grading convention, $V^{\#} = \bigoplus_{i \geq 1} (V^{\#})_i$ is positively graded.

On $\overline{L} = s^{-1}$ Der A, we define a bracket of degree 1 by

$$
\{\alpha,\beta\} = s^{-1}[s\alpha,s\beta]
$$
 (2)

and a differential $\delta'(\alpha) = -\{d', \alpha\}$, where $d' = s^{-1}d \in L_{-2}$. We extend the bracket to $\wedge_A L = A \oplus L \oplus \wedge_A^2 L \oplus \ldots$ by $\{a, b\} = 0$ for $a, b \in \wedge_A^0 L = A$, and $\{\alpha, a\} = -(-1)^{|\alpha|} (s\alpha)(a), \alpha \in L$. It is then defined inductively on $\wedge_A^{\geq 2} L$ by forcing the Leibniz rule

$$
\{\alpha, \beta \wedge \gamma\} = \{\alpha, \beta\} \wedge \gamma + (-1)^{(|\alpha|+1)|\beta|} \beta \wedge \{\alpha, \gamma\} = \{\alpha, \beta\} \wedge \gamma + (-1)^{(|\beta||\gamma|} \{\alpha, \gamma\} \wedge \beta.
$$
 (3)

Hence for α_i, β_i in L,

$$
\begin{aligned}\n\{\n\alpha_1 \wedge \cdots \wedge \alpha_m, \beta_1 \wedge \cdots \wedge \beta_n\} \\
&= \sum_{i,j} (-1)^{\epsilon_{ij}} \alpha_1 \wedge \cdots \hat{\alpha}_i \wedge \alpha_m \wedge \{\alpha_i, \beta_j\} \wedge \cdots \wedge \hat{\beta}_j \wedge \cdots \beta_n,\n\end{aligned} \tag{4}
$$

where $\hat{ }$ means omitted and $\epsilon_{ij} = \sum_{k>i} |\alpha_k||\alpha_i| + \sum_{k < j} |\beta_k||\beta_j|$. The above bracket (called Nijenhuis–Schouten bracket) turns $\wedge_A L$ into a Gerstenhaber algebra. See [\[15,](#page-10-0) Sect. 2] for instance.

The differential δ' extends into an algebra differential d_0 on $\wedge_A L$ in the same way, that is, $d_0\alpha = -\{d', \alpha\}$, for $\alpha \in \wedge_A L$. It comes from the Leibniz rule (3) that d_0 is a derivation. Moreover, the Jacobi identity ensures that d_0 is compatible with the bracket. Hence, $(\wedge_A L, d_0)$ becomes a differential graded Gerstenhaber algebra [\[11,](#page-10-1) Lemma 5].

From now on, we assume that k is a field of characteristic 0. Let $A =$ $(\wedge V, d)$ be a Sullivan algebra where V is finite dimensional and $Z = s^{-1}V^{\#}$. The isomorphism s^{-1} Der $\wedge V \cong A \otimes Z$ transfers a bracket of degree 1 on $A \otimes Z$. Moreover if $s^{-1}\theta$, $s^{-1}\theta' \in Z$ and $a, b \in A$, one uses Eq. [\(1\)](#page-1-1) to obtain

$$
\begin{aligned} \{ \ a \otimes s^{-1}\theta, b \otimes s^{-1}\theta' \} \\ = (-1)^{|a|+|b|} \left(a\theta(b) \otimes s^{-1}\theta' + (-1)^{|a\theta||b\theta'|} b\theta'(a) \otimes s^{-1}\theta \right). \end{aligned} \tag{5}
$$

The bracket is then extended to $A \otimes \wedge Z$ by the Leibniz rule. In the same way, the differential is extended to $A \otimes \wedge Z$ by $D\alpha = -\{d', \alpha\}$ where $d' = s^{-1}d$.

The main result states:

Theorem 1. Let $A = (\land V, d)$ be a Sullivan algebra over a field \mathbb{k} of char*acteristic 0, where* $V = \bigoplus_{i \geq 2} V^i$ *is finite dimensional and* L *the desuspension of* Der∧V *with the desuspended differential and* $Z = s^{-1}V^{\#}$. Then, $\varphi : (\wedge_A L, d_0) \to (A \otimes \wedge Z, D)$ *extends to an isomorphism of differential graded Gerstenhaber algebras.*

Let \overline{A} be the kernel of the augmentation $\epsilon : A \to \mathbb{k}$. We denote by $C^*(A; A) = \text{Hom}(T(s\overline{A}), A)$ (resp. $HH^*(A; A)$) the Hochschild complex (resp. cohomology) of the cochain algebra A with coefficients in A [\[12](#page-10-2)]. We recall the following result.

Theorem 2 ([\[11](#page-10-1)]). *If* $A = (\land V, d)$ *is a Sullivan algebra, then there is a mapping* ϕ : ($\wedge_A L, d_0$) \rightarrow C^{*}(A;A) *which induces an isomorphism of graded Gerstenhaber algebras in homology.*

Note that if A is not a Sullivan algebra, then ϕ does not necessarily induce a bijective map in homology [\[1,](#page-10-3) Theorem 6.2].

By combining Theorems [1](#page-2-0) and [2,](#page-2-1) we get an easy method to compute the Gerstenhaber bracket on $HH^*(A; A)$, when $A = \wedge V$ is a Sullivan algebra for which V is finite dimensional.

2. Resolutions to Compute $HH^*(A;A)$

The Hochschild cohomology is usually computed using a semifree resolu-tion [\[5\]](#page-10-4). Let (A, d) be an augmented differential graded algebra, not necessarily commutative. The bar construction $\mathbb{B}(A; A; A)$ is defined as follows (see for instance $[7,10]$ $[7,10]$ $[7,10]$.

$$
\mathbb{B}_k(A;A;A) = A \otimes T^k(s\overline{A}) \otimes A.
$$

An element $a[a_1|a_2|\cdots a_k]b \in A\otimes T^k(s\bar{A})\otimes A$ is of degree $|a|+|b|+\sum_{i=1}^k|sa_i|$. The differential $d = d_0 + d_1$ is defined as follows.

$$
d_0: \mathbb{B}_k(A; A; A) \to \mathbb{B}_k(A; A; A), \quad d_1: \mathbb{B}_k(A; A; A) \to \mathbb{B}_{k-1}(A; A; A),
$$

$$
d_0(a[a_1|a_2|\cdots a_k]b) = (da)[a_1|a_2|\cdots a_k]b - \sum_{i=1}^k (-1)^{\epsilon(i)}a[a_1|\cdots|da_i|\cdots|a_k]b
$$

+ $(-1)^{\epsilon(k+1)}a[a_1|a_2|\cdots a_k](db),$

$$
d_1(a[a_1|a_2|\cdots a_k]b)
$$

= $(aa_1)[a_2|\cdots a_k]b - \sum_{i=2}^k (-1)^{\epsilon(i)}a[a_1|\cdots|a_{i-1}a_i|\cdots|a_k]b$
- $(-1)^{\epsilon(k)}a[a_1|a_2|\cdots a_{k-1}](a_kb),$

where $\epsilon(i) = |a| + \sum_{j=1}^{i-1} |sa_j|$. There is a quasi-isomorphism $\mathbb{B}(A;A;A) \rightarrow$ (A, d) which provides a semifree resolution of A as an $A \otimes A^{op}$ -module [\[5,](#page-10-4) Lemma 4.3]. Therefore the Hochschild cochain complex is given by

$$
(C^*(A;A), D) = \text{Hom}_{A \otimes A^{op}}(\mathbb{B}(A;A;A), A) \cong (\text{Hom}(T(s\overline{A}), A), D_0 + D_1),
$$

where the differential is expressed as follows [\[9\]](#page-10-7):

$$
(D_0 f)([a_1|a_2|\dots|a_k]) = d(f([a_1|a_2|\dots|a_k])) + \sum_{i=1}^k (-1)^{\bar{\epsilon}(i)} f([a_1|\dots|da_i|\dots|a_k])
$$

and

$$
(D_1 f)([a_1|a_2|\dots|a_k]) = -(-1)^{|sa_1||f|}a_1 f([a_2|\dots|a_k])
$$

$$
+(-1)^{\bar{\epsilon}(k)} f([a_1|\dots|a_{k-1}])a_k
$$

$$
+ \sum_{i=2}^k (-1)^{\bar{\epsilon}(i)} f([a_1|\dots|a_{i-1}a_i|\dots|a_k]),
$$

where $\bar{\epsilon}(i) = |f| + |sa_1| + \cdots + |sa_{i-1}|$.

We now define another resolution for a Sullivan algebra $(\land V, d)$. Let f: $(A, d) \rightarrow (B, d)$ be a map between commutative differential graded algebras. There exists a relative Sullivan algebra $(A \otimes \wedge V, d)$ and a quasi-isomorphism φ such that the following diagram commutes [\[13](#page-10-8),[16\]](#page-10-9).

$$
(A, d) \xrightarrow{f} (B, d)
$$
\n
$$
\downarrow^{\rho} \simeq
$$
\n
$$
(A \otimes \wedge V, d)
$$
\n(6)

Given a Sullivan algebra $(\land V, d)$, the multiplication $\mu : (\land V \otimes \land V, d') \rightarrow$ $(\land V, d)$ is a morphism of differential graded algebras, where $d' = d \otimes 1 + 1 \otimes d$. There exists a commutative differential graded algebra $(\land V \otimes \land V \otimes \land sV, D)$, where $sV^n = V^{n+1}$ such that the following diagram commutes [\[6](#page-10-10)].

$$
(\land V \otimes \land V, d') \xrightarrow{\mu} (\land V, d) \qquad (7)
$$
\n
$$
\simeq \uparrow \varphi
$$
\n
$$
(\land V \otimes \land V \otimes \land sV, D)
$$

Moreover, the differential on $\land V \otimes \land V \otimes \land sV$ is defined by

$$
D(v\otimes 1\otimes 1)=dv\otimes 1\otimes 1, \quad D(1\otimes v\otimes 1)=1\otimes dv\otimes 1,
$$

and $D(1 \otimes 1 \otimes sv)$ is defined by induction on the degree of v by the formula

$$
D(1 \otimes 1 \otimes sv) = v \otimes 1 \otimes 1 - 1 \otimes v \otimes 1 + \sum_{i=1}^{\infty} \frac{(sD)^i}{i!} (v \otimes 1 \otimes 1).
$$

Here, s is the derivation of degree -1 on $\wedge V \otimes \wedge V \otimes \wedge sV$ defined as

$$
s(v \otimes 1 \otimes 1) = s(1 \otimes v \otimes 1) = 1 \otimes 1 \otimes sv, \quad s(1 \otimes 1 \otimes sv) = 0.
$$

Let

$$
\alpha = \sum_{i=1}^{\infty} \frac{(sD)^i}{i!} (v \otimes 1 \otimes 1) \in \wedge^{\geq 1} (V \oplus V) \otimes sV.
$$

The condition $D^2 = 0$ yields

$$
(dv \otimes 1 - 1 \otimes dv) \otimes 1 = D\alpha.
$$

Proposition 3. *The quasi-isomorphism*

$$
\varphi: (\land V \otimes \land V \otimes \land sV, D) \to (\land V, d)
$$

is a semifree resolution of $(\land V, d)$ *as a* $\land V \otimes \land V$ *-differential module.*

Proof. From the commutativity of the above diagram, one deduces that the quasi-isomorphism

$$
\varphi: (\land V \otimes \land V \otimes \land sV, D) \rightarrow (\land V, d)
$$

is a morphism of $A \otimes A$ -modules. Let $V = V_1 \oplus V_2 \oplus \cdots$ be a decomposition of V such that $dV_i \subset \wedge (V_1 \oplus \cdots \oplus V_{i-1})$. The filtration of $\wedge V \otimes \wedge V \otimes \wedge sV$ by submodules $P(n) = \land V \otimes \land V \otimes \land s(V_1 \oplus \cdots \oplus V_n)$ shows that the above quasi-
isomorphism $(\land V \otimes \land V \otimes \land sV, D) \rightarrow (\land V, d)$ is a semifree resolution. \square isomorphism $(\land V \otimes \land V \otimes \land sV, D) \rightarrow (\land V, d)$ is a semifree resolution.

Therefore, the Hochschild cohomology $HH^*(\land V; \land V)$ is given by

$$
HH^*(\wedge V; \wedge V) \cong \text{Ext}_{\wedge V \otimes \wedge V}(\wedge V, \wedge V)
$$

$$
\cong H^*(\text{Hom}_{\wedge V \otimes \wedge V}(\wedge V \otimes \wedge V \otimes \wedge sV, \wedge V), \tilde{D}).
$$

Proposition 4. *There is a quasi-isomorphism*

$$
(\land V \otimes \land V \otimes \land sV, D) \rightarrow \mathbb{B}(\land V; \land V; \land V)
$$

such that the following diagram commutes.

Proof. Recall that the map $\psi : \mathbb{B}(\wedge V; \wedge V; \wedge V) \rightarrow (\wedge V, d)$ satisfies $\psi([x]) = 1$ and $\psi([a_1|\cdots|a_k]) = 0$, for $k > 0$ [\[6](#page-10-10), Lemma 4.3]. Moreover, $\varphi(sV) = 0$ [\[4](#page-10-11)].

As $(\land V \otimes \land V \otimes \land sV, D)$ and $\mathbb{B}(\land V; \land V; \land V)$ are semifree resolutions of $\wedge V$ as $\wedge V \otimes \wedge V$ -modules, there is a quasi-isomorphism

$$
\jmath:(\wedge V\otimes \wedge V\otimes \wedge sV,D)\rightarrow \mathbb{B}(\wedge V; \wedge V; \wedge V).
$$

However, we give an explicit formula for j.

Let
$$
v \in V_1
$$
, then $dv = 0$. Define $\jmath(sv) = 1 \otimes [v] \otimes 1$. As $d([v]) = v[] - []v$,
\n $\jmath(D(sv)) = \jmath((v \otimes 1 - 1 \otimes v) \otimes 1) = v[] - []v = D\jmath(sv).$

Let $V_{\leq i} = V_1 \oplus V_2 \oplus \cdots \oplus V_i$. Now assume that j has been defined on $sV_{\leq i}$, such that j commutes with differentials. We need to define j on sV_{i+1} . Let $v \in V_{i+1}$. Recall that

$$
D(sv) = v \otimes 1 \otimes 1 - 1 \otimes v \otimes 1 + \alpha, \quad \text{where} \quad \alpha = \sum_{k=1}^{\infty} \frac{(sD)^k (v \otimes 1 \otimes 1)}{k!}.
$$

As $\alpha \in \wedge V \otimes \wedge V \otimes s(V_{\leq i}),$ by hypothesis, $d(j(Dsv)) = j(D^2(sv)) = 0.$ But $\mathbb{B}_{\geq 1}(\wedge V; \wedge V; \wedge V)$ is acyclic; hence, $j(Dsv)$ is a boundary. Moreover,

$$
d([v]) = v[~] - [~]v - [dv]
$$

and

$$
\jmath(Dsv) = v[] - []v + \jmath(\alpha) = d([v]) + [dv] + \jmath(\alpha).
$$

Therefore, $j(Dsv) = d([v] + \beta)$, where $\beta \in \wedge (V_{\leq i}) \otimes T^{\geq 2} s \wedge^+ (V_{\leq i}) \otimes \wedge (V_{\leq i})$. Define $\jmath(sv)=[v] + \beta$, then $dj(sv) = \jmath(Dsv)$ as required.

We extend \jmath to $\wedge^{\geq 2}(sV)$ by

$$
j(sv_1 \wedge \ldots \wedge sv_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \epsilon(\sigma) [j(v_{\sigma(1)})| \ldots |j(v_{\sigma(n)})],
$$

where $v_i \in V$.

3. Gerstenhaber Structure on the Hochschild Cohomology

Recall that the tensor algebra TV is endowed with a coalgebra structure when the reduced diagonal is defined

$$
\bar{\Delta}(v_1 \otimes \cdots \otimes v_n) = \sum_{i=1}^{n-1} (v_1 \otimes \cdots \otimes v_i) \otimes (v_{i+1} \otimes \cdots \otimes v_n).
$$

The multiplicative structure on

$$
HH^*(A;A) = H^*(\text{Hom}_{A \otimes A}(B(A;A;A),A)) = H_*(\text{Hom}(T(\bar{A}),A))
$$

derives from the above defined comultiplication on $T(A)$. Moreover, $\wedge V$ is endowed with a cocommutative coalgebra structure defined by

$$
\bar{\Delta}(x_1 \wedge \cdots \wedge x_n) = \sum_{i=1}^{n-1} \sum_{\sigma} \epsilon(\sigma) (x_{\sigma(1)} \wedge \cdots \wedge x_{\sigma(i)}) \otimes (x_{\sigma(i+1)} \wedge \cdots \wedge x_{\sigma(n)}),
$$

where σ is an $(i, n - i)$ shuffle and $\epsilon(\sigma)$ its Koszul sign. The restriction of j to $\wedge sV \to T(\overline{A})$ is a morphism of coalgebras. Therefore,

$$
\mathrm{Hom}(\jmath) : (\mathrm{Hom}(T(\bar{A}), A), D) \to (\mathrm{Hom}_{\wedge V}(\wedge V \otimes \wedge sV, \wedge V), D)
$$

is a map of differential graded algebras. As $Hom(j)$ is a quasi-isomorphism, we deduce that $H_*(Hom(j))$ is an isomorphism of algebras. Moreover, there is a mapping $(\wedge_A L, d) \rightarrow (C^*(A; A), D_0 + D_1)$ which induces a morphism of Gerstenhaber algebras in homology [\[11\]](#page-10-1).

Lemma 5. *Assume that* V *is finite dimensional and let* (v_i) *,* $i \in \{1, \ldots, n\}$ *, be a homogeneous linear basis of* V. For $i \in \{1, \ldots, n\}$, let θ_i be the derivation *of* [∧]^V *uniquely determined by*

$$
\theta_i(v_j) = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}
$$

The graded $\wedge V$ *-module* Der $\wedge V$ *is freely generated by the derivations* θ_i *, (i = 0)* $1,\ldots,n$).

Proof. Let us denote by $V^{\#}$ the graded dual of V. The restriction of each θ_i to V is an element of $V^{\#}$ of upper degree $-|v_i|$. Thus, we have an isomorphism of graded [∧]^V -modules

$$
\operatorname{Der} \wedge V \cong \operatorname{Hom}(V, \wedge V) \cong (\wedge V) \otimes V^{\#}.
$$

The derivation θ_i referred to in the proof of the above lemma will be denoted by $(v_i, 1)$.

Proof of Theorem [1.](#page-2-0) Let $A = \land V$ where V is finite dimensional. The isomorphism Der $A \cong A \otimes V^{\#}$ extends to an isomorphism of graded algebras

$$
\varphi : \wedge_A s^{-1}(\text{Der }A) \cong \wedge_A s^{-1}(A \otimes V^{\#}) \cong A \otimes \wedge (s^{-1}V^{\#}).
$$

It is explicitly defined by

$$
\varphi(s^{-1}(a_1\theta_1)\dots s^{-1}(a_n\theta_n)) = (-1)^{|a_1|+\dots+|a_n|}(-1)^{\epsilon}a_1\dots a_ns^{-1}\theta_1\dots s^{-1}\theta_n,
$$

where $(-1)^{\epsilon}$ satisfies

$$
a_1s^{-1}\theta_1 \dots a_ns^{-1}\theta_n = (-1)^{\epsilon}a_1 \dots a_ns^{-1}\theta_1 \dots s^{-1}\theta_n.
$$

The next two lemmas will complete the proof.

Lemma 6. *The map* φ *is a morphism of Gerstenhaber algebras.*

Proof. Clearly, φ commutes with brackets. Denote the wedge product $\alpha \wedge \beta$ by α β.

$$
\varphi(\{\alpha,\beta\gamma\}) = \varphi(\{\alpha,\beta\}\gamma) + (-1)^{(|\alpha|+1)|\beta|}\varphi(\beta\{\alpha,\gamma\}) \n= \varphi(\{\alpha,\beta\})\varphi(\gamma) + (-1)^{(|\alpha|+1)|\beta|}\varphi(\beta)\varphi(\{\alpha,\gamma\}) \n= \{\varphi(\alpha),\varphi(\beta)\}\varphi(\gamma) + (-1)^{(|\alpha|+1)|\beta|}\varphi(\beta)\{\varphi(\alpha),\varphi(\gamma)\} \n= \{\varphi(\alpha),\varphi(\beta)\varphi(\gamma)\} \n= \{\varphi(\alpha),\varphi(\beta\gamma)\}.
$$

By an induction argument, one deduces that φ is a morphism of Gerstenhaber algebras. \Box

Lemma 7. *The map* $\varphi : (\wedge_A s^{-1}(\text{Der } \wedge V), d_0) \to (\wedge V \otimes \wedge (s^{-1}V^{\#}), D)$ *commutes with differentials.*

Proof. The differential D on $\land V \otimes \land (s^{-1}V^{\#})$ is defined by $D\alpha = -\{\varphi(d'), \alpha\},\$ where $d' = s^{-1}d$. As φ is compatible with brackets, we deduce that

$$
\varphi(d_0\alpha)=-\varphi(\lbrace d',\alpha\rbrace)=-\lbrace\varphi(d'),\varphi(\alpha)\rbrace=D(\varphi(\alpha)).
$$

Hence, φ commutes with differentials. \Box

 \Box

Remark 8. The Gerstenhaber structure on $\text{Hom}_{\wedge V}(\wedge V \otimes \wedge sV, \wedge V)$ is defined

$$
\operatorname{Hom}_{\wedge V}(\wedge V \otimes \wedge sV, \wedge V) \cong \wedge V \otimes \wedge (s^{-1}V^{\#}).
$$

Moreover, the ∧V-module $(\wedge V \otimes \wedge (s^{-1}V^{\#}), D)$ is the "dual" of the Sullivan model of LX described by Sullivan and Vigué-Poirrier $[17]$. However, the former carries the Gerstenhaber structure of the free loop space homology.

4. Computation of the Free Loop Space Homology

We apply the above result in the computation of the free loop space homology. Let X be a closed oriented manifold of dimension m and $LX = \text{map}(S^1, X)$ the space of free loops on X. The loop homology of X is the homology of $\overline{L}X$ with a shift of degrees, $\mathbb{H}_*(LX) = H_{*+m}(LX)$ and an associative and graded commutative product

$$
\mu: \mathbb{H}_p(LX) \otimes \mathbb{H}_q(LX) \to \mathbb{H}_{p+q}(LX)
$$

called loop product [\[2](#page-10-12)]. When coefficients are taken in a field, there is an isomorphism of graded vector spaces [\[14](#page-10-13)]

$$
HH_*(C^*X; C^*X) \cong H^*(LX),
$$

which dualizes in

$$
HH^*(C^*X; C_*X) \cong H_*(LX).
$$

If $\&$ is of characteristic 0 and X is simply connected, there is an isomorphism of Gerstenhaber algebras [\[8](#page-10-14)[–10](#page-10-6)]

$$
\Phi: \mathbb{H}_*(LX) \to HH^*(C^*X; C^*X).
$$

Moreover, if $A = (\wedge V, d)$ is the minimal Sullivan model of X, then one has an isomorphism of Gerstenhaber algebras [\[7](#page-10-5), Proposition 3.3]

$$
HH^*(A;A) \cong HH^*(C^*X; C^*X).
$$

We assume that $\pi_*(X)\otimes\mathbb{Q}$ is finite dimensional; hence, the minimal Sullivan model of X is of the from $(\land V, d)$, where V is finite dimensional. There are isomorphisms of Gerstenhaber algebras

$$
\mathbb{H}_*(LX,\mathbb{Q}) \xrightarrow{\cong} HH^*(A;A) \xleftarrow{\cong} H_*(\wedge_A L,d_0) \xrightarrow{\cong} H_*(\wedge V \otimes \wedge Z,d),
$$

where $L = s^{-1}(\text{Der } \wedge V)$ and $Z = s^{-1}V^{\#}$. In this section, we describe a spectral sequence of $\wedge V \otimes \wedge Z$ that simplifies the computation of $\mathbb{H}_*(LX, \mathbb{Q})$ in some cases.

Proposition 9. *If* $\pi_*(X) \otimes \mathbb{Q}$ *is finite dimensional and* $(\wedge V, d)$ *is the minimal Sullivan model of* X, *then* $\mathcal{L} = \text{Der}(\land V, d)$ *is semifree over* $(\land V, d)$ *.*

Proof. The minimal Sullivan model is of the form $(\wedge (V_1 \oplus \cdots \oplus V_n), d)$ such that $dV_1 = 0$ and $dV_i \subset \wedge (V_1 \oplus \cdots \oplus V_{i-1})$ for $1 \leq i \leq n$.

through the isomorphism

Define a filtration on $\mathcal L$ as follows.

$$
F_p \mathcal{L} = \{ \theta \in \mathcal{L} : \theta(V_1 \oplus \cdots \oplus V_{n-p}) = 0 \}.
$$

We get a filtration

$$
\{0\} = F_0 \subset F_1 \mathcal{L} \subset \cdots \subset F_{n-1} \mathcal{L} \subset F_n \mathcal{L} = \mathcal{L}.
$$

For instance, if $V_n = \langle v_{n,1}, \ldots, v_{n,k} \rangle$, then $F_1 \mathcal{L} = \wedge V \otimes Z^1$, where Z^1 is spanned by $\{\theta_{1,1},\ldots,\theta_{1,k}\}\$ and $\theta_{1,i} = (v_{n,i}, 1)$. If $V_{n-1} = \langle v_{n-1,1},\ldots, v_{n-1} \rangle$ $v_{n-1,l}$, then $F_2\mathcal{L}/F_1\mathcal{L} = \Lambda V \otimes Z^2$ is spanned by $\{\theta_{2,1},\ldots,\theta_{2,l}\}\$, such that $\theta_{2,j} = (v_{n-1,j}, 1)$. Moreover, $\delta Z^2 \subset (\wedge V) \otimes Z^1 = F_1 \mathcal{L}$. In general, $F_k \mathcal{L}/F_{k-1} \mathcal{L} = \wedge V \otimes Z^k$, where Z^k is spanned by derivations $\{\theta_{k,1},\ldots,\}$ with $\theta_{k,i} = (v_{n-k+1,i}, 1)$ and $\delta Z^k \subset (\wedge V) \otimes (Z^1 \oplus \cdots \oplus Z^{k-1})$. This defines a semifree filtration of \mathcal{L} ; hence, (\mathcal{L}, δ) is a semifree differential module over $(\wedge V, d)$. $(\wedge V, d).$

It comes from the definition that $[F_p\mathcal{L}, F_q\mathcal{L}] \subset F_r\mathcal{L}$, where $r = \max\{p, q\}.$ Hence $[F_p \mathcal{L}, F_q \mathcal{L}] \subset F_{p+q} \mathcal{L}$. The filtration induces a spectral sequence of differential Lie algebras such that $E_{m,*}^0 = F_m \mathcal{L}/F_{m-1}\mathcal{L} \cong A \otimes \mathcal{Z}^{m,*}$ and $d_0 = d_A \otimes 1$. Hence, $E^1_{m,*} \cong H(A) \otimes Z^m$. The E^1 -term, together with differentials, yields

$$
E_{n,*}^1 \xrightarrow{d_1} E_{n-1,*}^1 \cdots \xrightarrow{d_1} E_{1,*}^1
$$
\n
$$
\parallel \qquad \qquad \parallel \qquad \qquad \parallel
$$
\n
$$
H(A) \otimes Z_*^n \xrightarrow{d_1} H(A) \otimes Z_*^{n-1} \cdots \xrightarrow{d_1} H(A) \otimes Z_*^1.
$$

In particular, if $(\land V, d) = (\land (V_1 \oplus V_2), d)$ with $dV_1 = 0$ and $dV_2 \subset \land V_1$, then the above spectral sequence collapses at the E^2 -level.

Example 10. Consider the Sullivan algebra $(\land (x, y), d)$ with $|x| = 2$, $|y| = 5$ and $dy = x^3$. Here, $H = (\wedge x)/(x^3)$ and Z^1 (resp. Z^2) is spanned by $z_1 = (y, 1)$ (resp. $z_2 = (x, 1)$). Hence $E^1 = H \otimes Z$. Moreover, $d_1z_1 = 0$, $d_1z_2 = 3x^2z_1$ and $d_1(xz_2) = 0$. Therefore, the E^2 -term is spanned by $\{z_1, xz_1, xz_2, x^2z_2\}$ as a vector space. We note that xz_2 and x^2z_2 are of respective degrees 0 and −2.

We can now define a spectral sequence that is useful to compute the loop space homology for certain spaces. Let X be a simply connected compact oriented m-manifold of which $\pi_*(X)\otimes\mathbb{Q}$ is finite dimensional and $A = (\wedge(V_1\oplus$ $\cdots \oplus V_n$, d) its minimal Sullivan model, where $dV_i \subset \wedge (V_i \oplus \cdots \oplus V_{i-1})$. Let $Z = s^{-1}V^{\#}$ and $Z^k = s^{-1}V^{\#}_{n-k+1}$. We define a filtration on $A \otimes \wedge Z$ by $F_p = A \otimes \wedge (Z^1 \oplus \cdots \oplus Z^p)$. It verifies

$$
A = F_0 \subset F_1 \subset \cdots \subset F_n = A \otimes \wedge Z.
$$

As $F_pF_q \subset F_r$, where $r = \max\{p, q\}$, $F_pF_q \subset F_{p+q}$. Moreover, $\{F_p, F_q\} \subset$ F_s , where $s = \max\{p, q\}, \{F_p, F_q\} \subset F_{p+q}$. This filtration yields a spectral sequence of Gerstenhaber algebras for which $E^1 = H^*(A) \otimes \wedge Z$ and which

converges to $H_*(A \otimes \wedge Z, d) \cong \mathbb{H}_*(LX, \mathbb{Q})$. Using this technique, we can recover the loop space homology of complex projective spaces and perform computations for other homogeneous spaces.

Example 11 [\[3](#page-10-15)[,7](#page-10-5),[9\]](#page-10-7). Consider $X = \mathbb{C}P(n)$ of which the minimal Sullivan model is $(\wedge(x, y), d)$, $dx = 0$, $dy = x^{n+1}$. Therefore,

$$
\mathbb{H}_*(\mathbb{C}P(n),\mathbb{Q}) \cong H_*(\wedge x/(x^{n+1}) \otimes \wedge (z_1,z_{2n}),d), dz_{2n} = 0, dz_1 = (n+1)x^nz_{2n}.
$$

Here, z_1 and z_{2n} are of respective degrees 1and 2n. Homology classes are

$$
\{x^jz_{2n}^k,\,x^iz_1,\,x^iz_1z_{2n}^k,\quad k\geq 0,\quad 0\leq j\leq n-1,\quad 1\leq i\leq n\}.
$$

Brackets can be computed from the Lie algebra structure of derivations on $(\wedge (x, y), d)$ *.* For instance, $\{x^i z_{2n}, x^j z_{2n}\} = 0, \{x^i z_1, x^j z_{2n}\} = jx^{i+j-1}z_{2n}$ ${x_{21}}x^{i}z_{2n}^{k}$, $xz_{1}x^{j}z_{2n}^{l}$ = $(i-j)x_{21}x^{i+j}z_{2n}^{k+l}$. In particular, ${x_{21}}$, $x^{j}z_{2n}$ = jx^jz_{2n} ; hence, $ad^{k}(xz_1) \neq 0$, for $k \geq 1$.

Example 12. We consider the minimal Sullivan model of $X = Sp(5)/SU(5)$ which is given by $A = (\wedge(x_6, x_{10}, y_{11}, y_{15}, y_{19}, d)$ with $dx_i = 0$, $dy_{11} =$ x_6^2 , $dy_{15} = x_6x_{10}$, $dy_{19} = x_{10}^2$. The rational cohomology is given by classes of $\{1, x_6, x_{10}, x_6y_{15} - x_{10}y_{11}, x_{10}y_{15} - x_6y_{19}, x_6(x_{10}y_{15} - x_6y_{19})\}$. The loop space homology is computed from the complex

$$
(A \otimes \wedge (z_{10}, z_{14}, z_{18}, w_5, w_9), d), dz_i = 0,
$$

\n
$$
dw_5 = 2x_6z_{10} + x_{10}z_{14},
$$

\n
$$
dw_9 = x_6z_{14} + 2x_{10}z_{18}.
$$

It contains $H^*(X) \otimes \wedge (z_{10}, z_{14}, z_{18})/I$, where I is the ideal generated by ${dw_5, dw_9}$, but also x_6w_i and $x_{10}w_i$. Nonzero brackets include

$$
\begin{aligned}\n\{x_6w_5, x_6z_i^k\} &= x_6z_i^k, & \{x_6w_9, x_{10}z_i^k\} = x_6z_i^k, \\
\{x_{10}w_5, x_6z_i^k\} &= x_{10}z_i^k, & \{z_{10}, (x_6y_{15} - x_{10}y_{11})z_i^k\} = -x_{10}z_i^k, \\
\{z_{14}, (x_6y_{15} - x_{10}y_{11})z_i^k\} &= x_6z_i^k, & \{z_{18}, (x_{10}y_{15} - x_{6}y_{19})z_i^k\} = -x_6z_i^k.\n\end{aligned}
$$

Hence, for $\alpha = x_6 w_5$, $ad^k \alpha \neq 0$, $k \geq 1$. It is the same for $\beta = x_{10} w_9$.

We have the more general result.

Theorem 13. *Let* X *be a homogeneous space of which the minimal Sullivan model is given by* $(A, d) = (\land (x_1, \ldots, x_n, y_1, \ldots, y_m), d)$ *, where* $dx_i = 0$ *and* $dy_i \in \wedge(x_1,\ldots,x_n)$. Then the graded Lie algebra s $\mathbb{H}_*(LX,\mathbb{Q})$ *is not nilpotent.*

Proof. We consider the complex $(A \otimes \wedge (z_1, \ldots, z_m, w_1, \ldots, w_n), d)$ where $z_j =$ $s^{-1}(y_j, 1), w_i = s^{-1}(x_i, 1), dz_j = 0$ and $dw_i = \sum_j \frac{\partial f_j}{\partial x_i}$ $\frac{\partial f_j}{\partial x_i}z_j$. We need to find coefficients $q_i \in \mathbb{Q}$ such that $\alpha = \sum_i q_i x_i w_i$ is a d_1 -cocycle.

$$
d_1(\sum_i q_i x_i w_i) = \sum_i \sum_j q_i x_i \frac{\partial f_j}{\partial x_i} z_j
$$

=
$$
\sum_j (\sum_i q_i x_i \frac{\partial f_j}{\partial x_i}) z_j.
$$

In particular, $d_1 \alpha = 0$ if $\sum_i q_i x_i \frac{\partial f_j}{\partial x_i} = c_j f_j$, for $j = 1, 2, ..., m$. It is the case if one takes $q_i = |x_i|$ as $\sum_i |x_i|x_i \frac{\partial f_j}{\partial x_i}| = c_j f_j$, where c_j is the degree of the homogeneous polynomial f_i . This is the Euler Theorem for homogeneous functions in the graded case.

If we denote by Z^1 and Z^2 , the respective spans of $\{z_i\}$ and $\{w_i\}$, and $H = H^*(X, \mathbb{Q})$, then $d_1 Z^1 = 0$ and $d_1 Z^2 \subset H \otimes Z^1$. As $\alpha \in H \otimes Z^2$ and $d_1(H \otimes \wedge^2 Z^2) \subset H \otimes \wedge^+ Z^1 \otimes Z^2$, then α cannot be a d_1 -coboundary.
Moreover, $\{\alpha, x_i z_i\} = |x_i|x_i z_i|$; hence, $s \mathbb{H}_\alpha(LX, \mathbb{O})$ is not nilpotent. Moreover, $\{\alpha, x_i z_i\} = |x_i|x_i z_i;$ hence, $s\mathbb{H}_*(LX, \mathbb{Q})$ is not nilpotent.

References

- [1] Cattaneo, A., Fiorenza, D., Longoni, R.: On the Hochschild–Kostant– Rosenberg map for graded manifolds. Int. Math. Res. Not. **2005**(62), 3899– 3918 (2005)
- [2] Chas, M., Sullivan, D.: String Topology (1999) **(preprint math GT/9911159)**
- [3] Cohen, R.L., Jones, J.D.S., Yuan, J.: The loop homology algebra of spheres and projective spaces. In: Aron, G., Hubbuck, J., Levi, R., Weiss, M. (eds.) Categorical Decompositions Techniques in Algebraic Topology. Progress in Mathematics, vol. 215, pp. 77–92, Birkhäuser, Basel (2003)
- [4] Félix, Y.: La dichotomie elliptique-hyperbolique en homotopie rationnelle, vol. 176. Société Mathémarique de France (1989)
- [5] Félix, Y., Halperin, S., Thomas, J.-C.: Differential graded algebras in topology. In: James I.M. (ed.) Handbook of Algebraic Topology, pp. 829–865. North-Holland (1995)
- [6] Félix, Y., Halperin, S., Thomas, J.-C.: Rational homotopy theory. Graduate Texts in Mathematics, vol. 205. Springer, New York (2001)
- [7] Félix, Y., Menichi, L., Thomas, J.-C.: Gerstenhaber duality in Hochschild cohomology. J. Pure Appl. Algebra **199**, 43–59 (2005)
- [8] Félix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc. Math. Fr. **136**, 311–327 (2008)
- [9] Félix, Y., Thomas, J.-C., Vigué, M.: Rational string topology. J. Eur. Math. Soc. (JEMS) **9**, 123–156 (2008)
- [10] Félix, Y., Thomas, J.-C., Vigué-Poirrier, M.: The Hochschild cohomology of a closed manifold. Publ. Math. Inst. Hautes Etudes Sci ´ **99**, 235–252 (2004)
- [11] Gatsinzi, J.-B.: Derivations, Hochschild cohomology and the Gottlieb group. In: Félix, Y., Lupton, G., Smith, S. (eds.) Homotopy Theory of Function Spaces and Related Topics. Contemporary Mathematics, vol. 519. American Mathematical Society, Providence, pp. 93–104 (2010)
- [12] Gerstenhaber, M: The cohomology structure of an associative ring. Ann. Math **78**, 267–288 (1963)
- [13] Halperin, S.: Lectures on minimal models, M´emoires de la S.M.F, tome 9–10, pp. 1–261 (1983)
- [14] Jones, JDS: Cyclic homology and equivariant homology. Inv. Math. **87**, 403– 423 (1987)
- [15] Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie, Astérisque, Numéro Hors Série, pp. 257–271 (1985)
- [16] Sullivan, D.: Infinitesimal computations in topology. Publ. IHES **47**, 269– 331 (1977)

[17] Sullivan, D., Vigué-Poirrier, M.: The homology theory of the closed geodesic problem. J. Diff. Geom. **11**, 633–644 (1976)

Jean Baptiste Gatsinzi Department of Mathematics Faculty of Science University of Namibia Private Bag 13301 Windhoek Namibia e-mail: jeangatsinzi@yahoo.fr

Received: July 29, 2015. Revised: March 4, 2016. Accepted: March 17, 2016.