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1. Introduction

A pseudo-Riemannian manifold (M, g) is called homogeneous, if I(M), the
group of isometries of M , acts transitively on M . Equivalently, for any given
points p, q ∈ M , an isometry φ of M exists such that φ(p) = q [15].

Homogeneous manifolds of dimension three have been completely stud-
ied through Riemannian and Lorentzian manifolds. Until recent years, most
of the works in dimension four were focused on the Riemannian spaces (see
for example [2]), while little was studied about different signatures [8,9]. A
classification of four-dimensional pseudo-Riemannian homogeneous manifolds
with non-trivial isotropy has been given in [14] to present the solutions of the
Einstein–Maxwell equation.

Einstein metrics and spaces with constant scalar curvature are impor-
tant families of pseudo-Riemannian metrics with wide applications in geom-
etry and applied physics. It is well known that every Einstein metric is nec-
essarily Ricci-parallel (i.e., (∇XRic) = 0, for all vector fields X tangent to
M). Other properties, based on the Ricci tensor, were introduced by Gray
[13]:

(M, g) admits a cyclic-parallel Ricci tensor, or belongs to class A , if

(∇XRic)(Y,Z) + (∇Y Ric)(Z,X) + (∇ZRic)(X,Y ) = 0, (1.1)
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for all vector fields X, Y and Z tangent to M . The Equation (1.1) is equivalent
to requiring that Ric is a Killing tensor, that is,

(∇XRic)(X,X) = 0, ∀X ∈ X(M). (1.2)

The Eq. (1.2) is also known as the first odd Ledger condition. It is
a necessary condition for a (pseudo-)Riemannian manifold to be a D’Atri
space. Hence, to classify homogeneous pseudo-Riemannian manifolds of a
given dimension satisfying (1.2) is the first step to understand D’Atri spaces
of that dimension [1].

(M, g) admits a Codazzi Ricci tensor, or belongs to class B, if

(∇XRic)(Y,Z) = (∇Y Ric)(X,Z), (1.3)

for all X, Y , Z ∈ X(M). These two conditions which are known as Einstein-
like property, are in fact generalization of Einstein and Ricci-parallel metrics.

Several authors investigated Einstein-like metrics through different kinds
of homogeneous spaces, in both Riemannian and pseudo-Rimannian signa-
tures. In the pseudo-Riemannian case, most of investigations focused on
the three-dimensional case and few works also have been done in dimen-
sion four [7]. In [3], the complete classification of Einstein-like metrics on
three-dimensional homogeneous Lorentzian manifolds was obtained. The
same author classified three-dimensional curvature homogeneous Lorentzian
manifolds equipped with either Einstein-like or conformally flat metric [4].
Einstein-like metrics have been studied in the class of three-dimensional
Lorentzian manifolds admitting a parallel null vector field [11]. In order to
study Einstein-like homogeneous four-dimensional spaces, it is necessary to
consider this matter through four-dimensional homogeneous spaces with non-
trivial isotropy and this is the subject of the present work.

This paper is organized in the following way: In Sect. 2 we report
some basic facts on the pseudo-Riemannian homogeneous spaces. Pseudo-
Riemannian four-dimensional homogeneous spaces with non-trivial isotropy,
equipped with a Ricci-parallel invariant metric, will be presented in Sect. 3.
Section 4 is devoted to study non-Ricci-parallel homogeneous pseudo-
Riemnnian four-dimensional manifolds which are cyclic parallel. Finally, the
non-Ricci-parallel invariant metrics g which are Codazzi, also strict examples
of class B will be presented in the last section. The Obtained results are
summarized in the following diagram (Fig. 1):

Figure 1. Set specification of the results
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2. Preliminaries

Working on a homogeneous space permits us to see the whole manifold, as
a single point! In fact, geometrical properties of the manifold can be studied
by expressing the (pseudo-)Riemannian manifold as a coset space M = G/H
with an invariant metric. At this point of view, the geometrical objects on M
will be expressed in Lie terms, in the sense that we apply the Lie algebras g
and h and the factor space m, to study different objects on M = G/H. Many
authors worked on the different subjects of homogeneous spaces. As a sample,
a three-dimensional complete, connected and simply connected homogeneous
Riemannian manifold is either symmetric or it is a Lie group equipped with
a left-invariant Riemannian metric [16]. Similar results were proved for the
Lorentzian signature in [5,6]. In dimension four, pseudo-Riemannian homo-
geneous manifolds were studied in [8,12], where it is proved that a complete,
connected and simply connected homogeneous manifold with non-degenerate
Ricci operator is isometric to a Lie group equipped with a left-invariant
metric of the appropriate signature. Ricci-parallel examples of the pseudo-
Riemannian homogeneous manifolds were also classified in the same articles.

Let M = G/H be a four dimensional homogeneous space with non-
trivial isotropy. The condition h �= 0 permits us to suppose that M corre-
sponds to one of the examples listed in [14], where the complete classification
of pseudo-Riemannian homogeneous four-manifolds is presented and used for
classifying four-dimensional Einstein–Maxwell homogeneous spaces.

In order to classify four-dimensional Einstein-like homogeneous pseudo-
Riemannian manifolds, the first step is to consider case by case the classifi-
cation of homogeneous pseudo-Riemannian manifolds given in [14].

Let g be the Lie algebra of G and h be the isotropy subalgebra. Let
m = g/h be the factor space which is the subspace of g complementary to
h. Now, the isotropy representation is defined uniquely by the pair (g, h) as
following:

φ : g → gl(m), φ(x)(y) = [x, y]m, for all x ∈ g, y ∈ m.

Let g be a matrix with respect to a basis {h1, . . . , hr, u1, . . . , un} of g, where
{hj} and {ui} are bases of h and m for 1 ≤ j ≤ r = dimH and 1 ≤ i ≤
n = dimM , respectively. We can present a bilinear form on m by the matrix
g. Using the isotropy representation a bilinear form is invariant if and only
if tφ(x) ◦ g + g ◦ φ(x) = 0, for all x ∈ h. From [14], every invariant pseudo-
Riemannian metric ḡ on the homogeneous space M = G/H corresponds
uniquely with a nondegenerate invariant symmetric bilinear form g on m. For
the invariant bilinear form g, the corresponding Levi–Civita connection Λ is
determined by the identity

Λ(x)(ym) =
1
2
[x, y]m + ν(x, y), for all x, y ∈ g, (2.1)

where ν : g × g → m is the h-invariant symmetric mapping uniquely deter-
mined by

2g(ν(x, y), zm) = g(xm, [z, y]m) + g(ym, [z, x]m), for all x, y, z ∈ g.



3458 A. Zaeim and A. Haji-Badali MJOM

The curvature tensor is then determined by

R : m × m → gl(m)
(x, y) → [Λ(x),Λ(y)] − Λ([x, y]). (2.2)

Finally, the Ricci tensor Ric of g will be deduced by contraction on the first
and third indices of the curvature tensor.

We then have all the needed information to check whether Eqs. (1.1)
and (1.3) hold, that is, if M = G/H is Einstein-like. We have applied the
above argument to all the spaces included in Komrakov’s classification [14] of
four-dimensional homogeneous pseudo-Riemannian manifolds with nontrivial
isotropy and checked the possible forms for the covariant derivative of Ricci
tensor to hold on (1.1) and (1.3). The results we obtained are resumed in the
following sections.

3. Four-Dimensional Homogeneous Ricci-Parallel Examples

In this section we study the Ricci-parallel examples of pseudo-Riemannian
homogeneous spaces with non-trivial isotropy. It is obvious that such exam-
ples belong to A and B.

A pseudo-Riemannian manifold (M, g) is called Einstein if

Ric = ηg, (3.1)

for a real constant η. It is well known that every Einstein pseudo-Riemannian
manifold is Ricci-parallel. The Einstein examples of homogeneous pseudo-
Riemannian four-spaces with non-trivial isotropy are completely determined
in [14]. In the following theorem we explicitly determine the strictly Ricci-
parallel (that is, non-Einstein) examples of homogeneous pseudo-Riemannian
four-spaces with non-trivial isotropy.

Theorem 3.1. Let (G/H, g) be arbitrary pseudo-Riemannian four-dimensional
homogeneous spaces with non-trivial isotropy, equipped with an invariant met-
ric g. Then (G/H, g) is strictly Ricci-parallel, if and only if it belongs to one
of the cases of the Table 1.

In Table 1, N stands for “neutral metric”, L for “Lorentzian metric”,
{θ1, . . . , θ4} is the dual basis of {u1, . . . , u4} and � means that all of the
invariant metrics are strictly Ricci-parallel.

Proof. We apply the notation of [14] to identify four dimensional homoge-
neous spaces with non-trivial isotropy. A homogeneous space of type n.mk:q is
the one corresponding to the q-th pair (g, h) of type n.mk, where n = dim(h)
(= 1, . . . , 6), m is the number of the complex subalgebra hC of so(4,C) and k is
the number of the real form of hC [10]. We considered all the spaces included
in Komrakov’s classification of M = G/H, four-dimensional homogeneous
pseudo-Riemannian with nontrivial isotropy which appeared in Theorem 2
of [14], and checked the possibility of being Ricci-parallel. We summarize
below the full details of the case 1.11 : 1 in Komrakov’s list. We studied
the other cases in the same way. For this homogeneous pseudo-Riemannian
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four-manifold M = G/H, there exists a basis {h1, u1, . . . u4} of g, where the
non-zero brackets are

[h1, u1] = u1, [h1, u3] = −u3, [u1, u3] = [u2, u4] = u2, [u3, u4] = u3,

and the isotropy is h = span{h1} [14]. Then, by taking m = span{u1, . . . u4}
we have the following isotropy representation for h1 and invariant metrics
with respect to {ui}:

H1 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ , g =

⎛
⎜⎜⎝

0 0 a 0
0 b 0 c
a 0 0 0
0 c 0 d

⎞
⎟⎟⎠ , (3.2)

for some real constants a, b, c, d. The metric g in this case is non-degenerate
if and only if a2(c2 − bd) �= 0. It is obvious that if bd > c2 the manifold is
Lorentzian, otherwise if bd < c2 then g is of signature (2, 2). Setting Λi =
Λ(ui), the invariant Levi–Civita connection is completely determined using
Eq. (2.1):

Λ1 =

⎛
⎜⎜⎜⎝

0 − b
2a

0 a−c
2a

0 0 bd+ac−c2

2(bd−c2)
0

0 0 0 0
0 0 − ab

2(bd−c2)
0

⎞
⎟⎟⎟⎠, Λ2 =

⎛
⎜⎜⎝

− b
2a

0 0 0
0 bc

bd−c2
0 bd

bd−c2

0 0 b
2a

0

0 −b2

bd−c2
0 bc

bd−c2

⎞
⎟⎟⎠,

Λ3 =

⎛
⎜⎜⎜⎝

0 0 0 0
−bd+ac+c2

2(bd−c2)
0 0 0

0 b
2a

0 a+c
2a

− ab
2(bd−c2)

0 0 0

⎞
⎟⎟⎟⎠, Λ4 =

⎛
⎜⎜⎜⎝

a−c
2a

0 0 0

0 c2

bd−c2
0 dc

bd−c2

0 0 −a−c
2a

0

0 − bc
bd−c2

0 − c2

bd−c2

⎞
⎟⎟⎟⎠.

(3.3)

Next, we use (2.2) to calculate Rij := R(ui, uj). The curvature tensor of
(G/H, g) is completely determined by

R12 =

⎛
⎜⎜⎜⎜⎝

0 − b2(2a2+bd−c2)
4a2(bd−c2) 0 − b((bd−c2)(a+c)+2a2c)

4a2(bd−c2)

0 0 (bd−ac−c2+2a2)b
4a(bd−c2) 0

0 0 0 0
0 0 b2

4(bd−c2) 0

⎞
⎟⎟⎟⎟⎠

,

R13 =

⎛
⎜⎜⎜⎜⎝

b(3bd−3c2−a2)
4a(bd−c2) 0 0 0

0 − cb
2(bd−c2) 0 − db

2(bd−c2)

0 0 b(−3bd+3c2+a2)
4a(bd−c2) 0

0 b2

2(bd−c2) 0 cb
2(bd−c2)

⎞
⎟⎟⎟⎟⎠

,

R14 =

⎛
⎜⎜⎜⎝

0 − b((c2−bd)(a−c)+2a2c)
4a2(bd−c2) 0 − c2(a2−c2)+bd(a2+c2)

4a2(bd−c2)

0 0 −bad+cbd+a2c−c3

4a(bd−c2) 0
0 0 0 0
0 0 b(a+c)

4(bd−c2) 0

⎞
⎟⎟⎟⎠ ,
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R23 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
− (bd+ac+2a2−c2)b

4a(bd−c2) 0 0 0

0 b2(2a2+bd−c2)
4a2(bd−c2) 0 b((c2−bd)(a−c)+2a2c)

4a2(bd−c2)
b2

4(bd−c2) 0 0 0

⎞
⎟⎟⎟⎟⎠

,

R24 =

⎛
⎜⎜⎝

b
2a 0 0 0
0 − cb

bd−c2 0 − bd
bd−c2

0 0 − b
2a 0

0 b2

bd−c2 0 bc
bd−c2

⎞
⎟⎟⎠ ,

R34 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
bd(a+c)+a2c−c3

4a(bd−c2) 0 0 0

0 − b((bd−c2)(a+c)+2a2c)
4a2(bd−c2) 0 − c2(a2−c2)+bd(a2+c2)

4a2(bd−c2)
(a−c)b

4(bd−c2) 0 0 0

⎞
⎟⎟⎟⎟⎠

.

Consequently, the Ricci tensor Ric is given by

Ric=

⎛
⎜⎜⎜⎝

0 0 b
2a + ab

c2−bd 0

0 1
2b2

(
− 1

a2 + 4
c2−bd

)
0 − bc

2a2 + 2bc
c2−bd

b
2a + ab

c2−bd 0 0 0
0 − bc

2a2 + 2bc
c2−bd 0 − 3

2 − c2

2a2 + 2c2

c2−bd

⎞
⎟⎟⎟⎠ .

(3.4)
Moreover, using (3.3) and (3.4), we have the following nonzero component
for the covariant derivatives of the Ricci tensor

Λ1Ric23 = b2(a2−c2+bd)
2a2(bd−c2) , Λ1Ric34 = b(a−2c)(a2−c2+bd)

4a2(c2−bd) ,

Λ2Ric24 = b2(a2−c2+bd)
2a2(bd−c2) , Λ2Ric44 = bc(a2−c2+bd)

a2(bd−c2) ,

Λ3Ric12 = b2(a2−c2+bd)
2a2(c2−bd) , Λ3Ric14 = b(a+2c)(a2−c2+bd)

4a2(c2−bd) ,

Λ4Ric24 = bc(a2−c2+bd)
2a2(bd−c2) , Λ4Ric44 = c2(a2−c2+bd)

a2(bd−c2) ,

(3.5)

where by ΛiRicjk we mean (Λ(ui)Ric)(uj , uk). According to (3.5) it is easy
to check that g is Ricci-parallel if and only if

bd = c2 − a2, (3.6)

but this is the necessary and sufficient condition to be Einstein, according to
the Eq. (3.1). Thus, this case is not contained in the Table 1. �

One can easily find in the Table 1 some examples which are not always
strict Ricci-parallel. For example, case 1.11.2 with p �= 0, 1

2 is not even Ricci-
parallel; same is the case 1.11.3 when b �= a.

4. Examples of Class A

In the previous section we studied the Ricci-parallel examples of pseudo-
Riemannian homogeneous 4-spaces with non-trivial isotropy. It is obvious
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Table 2. Strict examples of class A

Case Class A

1.11 : 3 b �= a
1.11 : 4 b �= 0
1.12 : 3 b �= a
1.12 : 4 b �= −a
1.12 : 5 b �= 0
1.41 : 1 d = −4a, b �= 0
1.41 : 2 p = 0, b �= 0
1.41 : 5 b �= 0
2.51 : 1 b �= 0
2.52 : 1 b �= 0

that such examples belong to both classes of Einstein-like spaces. Strict exam-
ples of class A , i. e. non-Ricci-parallel spaces of this kind, are determined in
the following theorem:

Theorem 4.1. Let (G/H, g) be an arbitrary non-Ricci-parallel pseudo-Rieman-
nian four-dimensional homogeneous spaces with non-trivial isotropy, equipped
with an invariant metric g. Then (G/H, g) is in class A if it belongs to one
of the cases of the following Table 2.

Proof. Like for Theorem 3.1 we bring the details of the cases 1.11 : 1 and
1.11 : 3 and the other cases were treated by similar arguments. For the
case 1.11 : 1, Eq. (3.5) enables us to consider Eq. (1.1). Straightforward
calculations yield that a homogeneous space of type 1.11 : 1 belongs to class
A if and only if bd = c2 − a2 which is equivalent to be Ricci-parallel. This
shows that we do not have any strict cyclic parallel space of this type.

Now, let (G/H, g) be a homogeneous space of type 1.11 : 3. With respect
to a basis {h1, u1, . . . , u4} for g, the non-zero brackets are

[h1, u1] = u1, [h1, u3] = −u3, [u1, u3] = h1 + u2,

where h = span{h1} [14]. The isotropy representation and invariant metric g
with respect to the basis {u1, . . . , u4} are the same as Eq. (3.2). The Levi–
Civita connection will be determined by applying the Eq. (2.1) and we get

Λ1 =

⎛
⎜⎜⎝

0 − b
2a 0 − c

2a
0 0 1

2 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Λ2 =

⎛
⎜⎜⎝

− b
2a 0 0 0
0 0 0 0
0 0 b

2a 0
0 0 0 0

⎞
⎟⎟⎠ ,

Λ3 =

⎛
⎜⎜⎝

0 0 0 0
− 1

2 0 0 0
0 b

2a 0 c
2a

0 0 0 0

⎞
⎟⎟⎠ , Λ4 =

⎛
⎜⎜⎝

− c
2a 0 0 0
0 0 0 0
0 0 c

2a 0
0 0 0 0

⎞
⎟⎟⎠ .
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We then specify the curvature tensor from the Eq. (2.2) and the non-zero
components are

R12 =

⎛
⎜⎜⎝

0 − b2

4a2 0 − bc
4a2

0 0 b
4a 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , R13 =

⎛
⎜⎜⎝

3b−4a
4a 0 0 0
0 0 0 0
0 0 −3b+4a

4a 0
0 0 0 0

⎞
⎟⎟⎠ ,

R14 =

⎛
⎜⎜⎝

0 − bc
4a2 0 − c2

4a2

0 0 c
4a 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , R23 =

⎛
⎜⎜⎝

0 0 0 0
− b

4a 0 0 0
0 b2

4a2 0 bc
4a2

0 0 0 0

⎞
⎟⎟⎠ ,

R34 =

⎛
⎜⎜⎝

0 0 0 0
c
4a 0 0 0
0 − bc

4a2 0 − c2

4a2

0 0 0 0

⎞
⎟⎟⎠ .

The Ricci tensor will be deduced by applying Equation (??) and have

Ric =

⎛
⎜⎜⎝

0 0 b−2a
2a 0

0 − b2

2a2 0 − bc
2a2

b−2a
2a 0 0 0
0 − bc

2a2 0 − c2

2a2

⎞
⎟⎟⎠ .

To check when � is Killing, we first determine the covariant derivative of the
Ricci tensor.

Λ1� =

⎛
⎜⎜⎝

0 0 0 0

0 0 b(b−a)

2a2 0

0 b(b−a)

2a2 0 c(b−a)

2a2

0 0 c(b−a)

2a2 0

⎞
⎟⎟⎠ , Λ3� =

⎛
⎜⎜⎝

0 b(a−b)

2a2 0 c(a−b)

2a2
b(a−b)

2a2 0 0 0
0 0 0 0

c(a−b)

2a2 0 0 0

⎞
⎟⎟⎠ ,

Λ4� = Λ2� = 0.

It is clear that the Killing equation always holds and so any homogeneous
space of type 1.11 : 3 belongs to class A . The strict examples of this type were
determined by excluding the Ricci-parallel examples of the
Table 1. �

5. Examples of Class B

Finally, we will consider 4-dimensional homogeneous Einstein-like spaces of
class B which are not Ricci-parallel. All of this kind of spaces is determined
in the following theorem.

Theorem 5.1. Let (G/H, g) be an arbitrary non-Ricci-parallel pseudo-Rieman-
nian four-dimensional homogeneous space with non-trivial isotropy, equipped
with an invariant metric g. Then (G/H, g) is in class B if it belongs to one
of the cases of the following Table 3:
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Table 3. Strict examples of class B

Case Class B

1.11 : 1 b = 0, a �= ±c
1.11 : 2 b = 0, p �= 0, 1

2
1.12 : 1 b = 0
1.12 : 2 b = 0, p �= 0, 1
1.31 : 2 l �= 0
1.31 : 4 �
1.31 : 5 l �= 0 or l = 0, μ �= 0, 2
1.31 : 7 �
1.31 : 12 μ �= l ± 1
1.31 : 13 l �= − 1

2 , 3
2

1.31 : 14 l �= 0, 1
1.31 : 15, 16, 19, 22, 26 − 29 �
1.31 : 21, 24, 25 l �= 0, 2
1.31 : 30 l �= 1 or l = 1, μ �= ±1
1.41 : 2 p = 3, b �= 0
1.41 : 9 d �= −2a(h2 + h + r)
1.41 : 10 r �= −h − h2

1.41 : 11 d �= −2ar
1.41 : 12 r �= 0
2.21 : 2 p �= 0,±2
2.21 : 3 �
2.51 : 3 − 4 2h − h2 + 4g �= 0
2.52 : 2 r2 + p �= 0
3.31 : 1 p �= 0
3.32 : 1 p �= 0

Proof. The proof is based on case by case study of Komrakow’s list. We
bring the details of the case 1.11 : 1 and just apply the similar arguments
for the other cases. According to the Eqs. (3.5), (1.3) satisfies if and only if
either b = 0 or d = c2−a2

b . The second solution yields that the Ricci tensor
is parallel and we must exclude the Ricci-parallel solutions from the first
solution. Clearly c �= ±a in this case according to the Eq. (3.6). �

Two pseudo-Riemannian manifolds (M, g) and (M, g̃) are called con-
formally equivalent, if g = e2f g̃, for f ∈ C∞(M). By this definition, (M, g)
is called conformally flat if that is conformally equivalent to a flat manifold
(M, g̃). In dimension n ≥ 4, conformal flatness translates into the following
system of algebraic equations:

Wijkh = Rijkh − 1
2
(gik�jh + gjh�ik − gih�jk − gjk�ih)

+
r

6
(gikgjh − gihgjk) = 0,

for all indices i, j, k, h = 1, . . . , 4, (5.1)
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where W denotes the Weyl tensor and r is the scalar curvature. To belong to
class B is a necessary condition for being conformally flat. A complete classifi-
cation of four-dimensional conformally flat homogeneous pseudo-Riemannian
manifolds was obtained in [10]. As a conclusion of the Theorem 5.1, we have
the following corollary:

Corollary 5.2. Let (G/H, g) be a pseudo-Riemannian four-dimensional homo-
geneous space of the Table 3. Then (G/H, g) properly belongs to strict class
B (i.e., it is not conformally flat), if it is one of the cases of the following
Table 4:

Proof. We consider case by case the strict examples of class B, which are
presented in the Table 3. For the case 1.11 : 1, the non-zero components of
the Weyl tensor are

W1223 = − b2(a2−2bd+2c2)
12a(bd−c2) , W1234 = b(a2c−2bcd+2c3−3abd+3ac2)

12a(bd−c2) ,

W1313 = b(a2−2bd+2c2)
6(bd−c2) , W1324 = − b

2 ,

W1423 = − b(a2c−2bcd+2c3+3abd−3ac2)
12a(bd−c2) , W1434 = bd(a2−2bd+2c2)

12a(bd−c2) ,

W2424 = − b(a2−2bd+2c2)
6a2 .

Thus, the Weyl tensor vanishes identically if and only if b = 0 and so the
strict examples of class B, belonging to the case 1.11 : 1, are conformally flat
and so not contained in the Table 4. The other cases were checked by similar
arguments. �

Table 4. Proper examples of strict class B

Case Proper class B

1.31 : 2 d �= 0
1.31 : 4 d �= 0
1.31 : 5 bμ(μ − 1) �= 2cl(μ − 1) − d(l2 + μ) and (2c + dl)2 + μ2 �= 0
1.31 : 7 d �= bλ − 2c
1.31 : 12 b(l + μ − 1)(μ − 1

2 ) �= 0
1.31 : 15 b �= −d
1.31 : 16 b �= d
1.31 : 19 b �= 0
1.31 : 21 b(l − 1

2 ) �= 0
1.31 : 24 (b − 2d(l2 − l))(l − 2

3 ) �= 0
1.31 : 25 (b + 2d(l2 − l))(l − 2

3 ) �= 0
1.31 : 28 b �= 2d
1.31 : 29 b �= −2d
1.31 : 30 b + d − ld − μb �= 2c
1.41 : 9 d2 + (p2 + p − r)2 �= 0 and (p + 1

2 )2 + (4ar + a + 4d)2 �= 0
1.41 : 10 r �= h + h2

2.52 : 2 s �= 0
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Note that, as also shown by the above Corollary 5.2, differently from the
Riemannian case, a (locally) homogeneous conformally flat pseudo-Rieman-
nian manifold need not be (locally) symmetric (see also [10]).
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