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Abstract. A new method to construct semi-copulas is introduced. These
semi-copulas are called focal semi-copulas and their construction is based
on linear interpolation on segments connecting the diagonal of the unit
square with two focal points. Several classes of semilinear semi-copulas,
such as lower semilinear semi-copulas, upper semilinear semi-copulas,
ortholinear semi-copulas and biconic semi-copulas with a given diagonal
section, turn out to be special cases of focal semi-copulas. Subclasses of
focal semi-copulas, such as focal (quasi-)copulas are characterized as
well.
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1. Introduction

Aggregation functions are used in several fields of applied sciences as tools to
convert finitely many input values into a representative output value. These
values are usually assumed to belong to the unit interval [0, 1]. Two prop-
erties are fundamental for any aggregation function. They coincide in the
point (0, . . . , 0) as well as in the point (1, . . . , 1), and they are increasing.
Subclasses of aggregation functions are obtained by adding more properties.
For instance, semi-copulas are binary aggregation functions that have 1 as
neutral element. Semi-copulas turn out to be appropriate tools for capturing
the relation between multivariate aging and dependence [2,9,14]. Some other
properties such as 1-Lipschitz continuity and 2-increasingness have respec-
tively led to the notions of quasi-copulas and copulas [24]. Quasi-copulas
appear in fuzzy set theoretical approaches to preference modeling and simi-
larity measurement [5–7]. Copulas turn out to be appropriate tools for linking
a joint distribution function with its margins [27]. For this reason, they have
become very popular in statistics and probability theory [18].

Recall that a semi-copula [12,13] is a function S : [0, 1]2 → [0, 1] satis-
fying the following conditions:
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(i) for any x ∈ [0, 1], it holds that

S(x, 0) = S(0, x) = 0, S(x, 1) = S(1, x) = x ;

(ii) for any x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′, it holds that
S(x, y) ≤ S(x′, y′).

The semi-copulas TM and TD given by TM(x, y) = min(x, y) and TD(x, y) =
min(x, y) whenever max(x, y) = 1, and TD(x, y) = 0 elsewhere, are respec-
tively the greatest and the smallest semi-copula, i.e. for any semi-copula S,
it holds that TD ≤ S ≤ TM.

A semi-copula S is semilinear [19] if for any x ∈ [0, 1]2, there exists
y ∈ [0, 1]2, y �= x, such that S is linear on the segment connecting the points
x and y. The semi-copulas TM and TD are semilinear.

A semi-copula Q is a quasi-copula [16,17,23] if it is 1-Lipschitz contin-
uous, i.e. for any x, x′, y, y′ ∈ [0, 1], it holds that

|Q(x′, y′) − Q(x, y)| ≤ |x′ − x| + |y′ − y|.
A semi-copula C is a copula [1,22,24] if it is 2-increasing, i.e. for any x, x′, y,
y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′, it holds that

VC([x, x′] × [y, y′]) := C(x′, y′) + C(x, y) − C(x′, y) − C(x, y′) ≥ 0.

VC([x, x′] × [y, y′]) is called the C-volume of the rectangle [x, x′] × [y, y′].
The copulas TM and TL with TL(x, y) = max(x + y − 1, 0) are respectively
the greatest and the smallest copula, i.e. for any copula C, it holds that
TL ≤ C ≤ TM. Note that for any copula C it holds that

∂2C(x, y)
∂x∂y

≥ 0, (1)

for any (x, y) ∈ [0, 1]2 where the mixed partial derivative exists. If the mixed
partial derivative of a semi-copula exists everywhere, then (1) guarantees that
it is a copula [3].

The diagonal section of a [0, 1]2 → [0, 1] function F is the function
δF : [0, 1] → [0, 1] defined by δF (x) = F (x, x). A diagonal function [10] is a
function δ : [0, 1] → [0, 1] satisfying the following conditions:
(D1) δ(0) = 0, δ(1) = 1;
(D2) δ is increasing;
(D3) for any x ∈ [0, 1], it holds that δ(x) ≤ x;
(D4) δ is 2-Lipschitz continuous, i.e. for any x, x′ ∈ [0, 1], it holds that

|δ(x′) − δ(x)| ≤ 2|x′ − x|.
The functions δM(x) = x and δW(x) = max(2x − 1, 0) are examples of
diagonal functions. Moreover, for any diagonal function δ, it holds that

δW ≤ δ ≤ δM.

The set of all diagonal functions will be denoted by D; the subset of twice
differentiable functions in D will be denoted by Dd. The set of all [0, 1] → [0, 1]
functions that satisfy conditions (D1)–(D3) will be denoted by DS; the subset
of absolutely continuous functions in DS will be denoted by Dac

S .
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The diagonal section of a copula C is a diagonal function. Conversely,
for any diagonal function δ, there exists at least one copula C with diagonal
section δC = δ. For instance, the copula Cδ defined by

Cδ(x, y) = min
(

x, y,
δ(x) + δ(y)

2

)

is the greatest symmetric copula with diagonal section δ [8,11,25].
Interpolation is a basic method for constructing semi-copulas, quasi-

copulas and copulas. Linear interpolation has led to several classes of semi-
linear semi-copulas with a given diagonal section. For instance, biconic semi-
copulas [20] are obtained by linear interpolation on segments that connect
the diagonal of the unit square to the vertices (0, 1) and (1, 0), while ortho-
linear semi-copulas [21] are obtained by linear interpolation on segments that
are perpendicular to the diagonal of the unit square. Some other classes of
semilinear semi-copulas, such as lower and upper semilinear semi-copulas [10]
and horizontal and vertical semilinear semi-copulas [4], are obtained by lin-
ear interpolation on horizontal and/or vertical segments that connect the
diagonal of the unit square to the boundaries of the unit square.

Characteristic for biconic semi-copulas with a given diagonal section is
that always one of the vertices (0, 1) and (1, 0) is involved in the interpolation
procedure. In other words, the segments on which the linear interpolation is
performed always contain one of these vertices. Moreover, such segments cover
the whole unit square. Inspired by the above observation, we introduce focal
semi-copulas with a given diagonal section by considering linear interpolation
on segments that connect the diagonal of the unit square with either one of
two specific points located outside the unit square. These two points are called
focal points. The segments on which the linear interpolation is performed
cover the unit square for an appropriate choice of these focal points. Choosing
the focal points to be symmetric leads to symmetric focal semi-copulas with
a given diagonal section. For instance, choosing the symmetric focal points
(0, 1) and (1, 0) [resp. (−∞,∞) and (∞, −∞)] leads to the class of biconic
(resp. ortholinear) semi-copulas with a given diagonal section, while choosing
the symmetric focal points (−∞, 1) and (1, −∞) [resp. (0,∞) and (∞, 0)] leads
to the class of lower (resp. upper) semilinear semi-copulas.

This paper is organized as follows. In the following three sections, we
introduce three different classes of focal functions with a given diagonal sec-
tion. For each class, we characterize the corresponding subclasses of focal
semi-copulas, focal quasi-copulas and focal copulas. Finally, we provide some
conclusions.

2. Class 1: Focal Points (−a, 1) and (1,−a)

In this section, we introduce functions that are constructed by linear inter-
polation on segments connecting points on the diagonal of the unit square
to the focal points (−a, 1) and (1,−a), with a ∈ [0,∞]. This interpolation
scheme is depicted in Fig. 1 for some segments.
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(0, 0)

(1,−a)

(−a, 1) (1, 1)

Figure 1. Some segments on which a focal function of class 1
is linear

Let us introduce the notations

s =
x + ay

1 + a + x − y
, (2)

t =
y + ax

1 + a + x − y
, (3)

with a ∈ [0,∞], and

I1 := {(x, y) ∈ [0, 1]2|y ≤ x},

I2 := {(x, y) ∈ [0, 1]2|x ≤ y},

D := I1 ∩ I2.

Let δ ∈ DS and a ∈ [0,∞]. The function Aδ,a : [0, 1]2 → [0, 1] given by

Aδ,a(x, y) =

⎧⎪⎨
⎪⎩

y
δ(t)
t

, if (x, y) ∈ I1,

x
δ(s)
s

, if (x, y) ∈ I2,

(4)

is well defined. This function is called a focal function since it is linear on
segments connecting the points (x, x) and (−a, 1) as well as on segments
connecting the points (x, x) and (1,−a). Since the points (−a, 1) and (1,−a)
are symmetric, any focal function Aδ,a is symmetric. For any focal function
Aδ,a, condition (i) of the definition of a semi-copula always holds. Note that
a focal function Aδ,a is uniquely determined by its diagonal section. Clearly,
a focal function Aδ,a is continuous if and only if δ is continuous.

Remark 1. (i) If a = 0, then the definition of a biconic function is
retrieved [20].
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(ii) If a = ∞, then the definition of a lower semilinear function is
retrieved [10].

2.1. Focal Semi-Copulas of Class 1

In this subsection, we characterize the elements of Dac
S for which the corre-

sponding focal function Aδ,a is a semi-copula. For a focal function Aδ,a, this
characterization involves the use of the functions λδ, μδ : ]0, 1[→ R defined
by

λδ(x) =
δ(x)
x

and μδ(x) =
x − δ(x)

1 − x
. (5)

Proposition 1. Let δ ∈ Dac
S and a ∈ [0,∞]. Then, the focal function Aδ,a

defined in (4) is a semi-copula if and only if the function λδ is increasing.

Proof. Suppose that λδ is increasing. To prove that Aδ,a is a semi-copula, it
suffices to prove its increasingness in each variable. Since Aδ,a is symmetric,
it suffices to prove its increasingness in each variable on I2. We prove that
Aδ,a is increasing in the second variable (the proof of the increasingness in
the first variable is similar).

Let (x, y), (x, y′) ∈ I2 such that y ≤ y′. Let us introduce the notation
s1 = x+ay′

1+a+x−y′ . The increasingness of Aδ,a is then equivalent to

x
δ(s1)
s1

− x
δ(s)
s

= x(λδ(s1) − λδ(s)) ≥ 0. (6)

Since s ≤ s1 and λδ is increasing, inequality (6) immediately follows.
Conversely, suppose that Aδ,a is a semi-copula. Let y, y′ ∈ ]0, 1[ such that

y ≤ y′ and x ∈ [0, 1] such that x ≤ y. Clearly, the points (x, (x+a+1)y−x
y+a ) and

(x, (x+a+1)y′−x
y′+a ) are located in I2. The increasingness of Aδ,a in the second

variable implies

Aδ,a

(
x,

(x + a + 1)y′ − x

y′ + a

)
− Aδ,a

(
x,

(x + a + 1)y − x

y + a

)
≥ 0, (7)

or, equivalently,

x(λδ(y′) − λδ(y)) ≥ 0.

Hence, the increasingness of λδ follows. �

Example 1. Consider the diagonal function δM. Clearly, δM ∈ Dac
S . One

easily verifies that the function λδM is increasing. The corresponding focal
semi-copula is TM.

Example 2. Consider the diagonal function δ(x) = x1+θ with θ ∈ [0, 1].
Clearly, δ ∈ Dac

S . One easily verifies that the function λδ is increasing. The
corresponding family of focal semi-copulas is given by

Aδ,a(x, y) =

{
ytθ, if (x, y) ∈ I1,

xsθ, if (x, y) ∈ I2,

where s and t are given in (2) and (3).
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2.2. Focal Quasi-Copulas of Class 1

In this subsection, we characterize the elements of D for which the corre-
sponding focal function Aδ,a is a quasi-copula.

Proposition 2. Let δ ∈ D and a ∈ [0,∞]. Then, the focal function Aδ,a defined
in (4) is a quasi-copula if and only if the following conditions are fulfilled:

(i) the function λδ defined in (5) is increasing;
(ii) the function ψδ,a : ]0, 1[→ R defined by

ψδ,a(x) =
(

x

1 − x

)1+a

(1 − λδ(x))

is increasing;
(iii) the inequality

1 − x(a + x)(1 + c)
1 + c

λ′
δ(x) ≥ 0

holds for any x ∈ ]0, 1[ where the derivative exists.

Proof. Suppose that conditions (i)–(iii) are fulfilled. Due to Proposition 1, the
function Aδ,a is increasing. Therefore, to prove that Aδ,a is a quasi-copula,
we need to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz
continuity is equivalent to the 1-Lipschitz continuity in each variable. Since
Aδ,a is symmetric, it is sufficient to show that Aδ,a is 1-Lipschitz continuous
in each variable on I2. We prove that Aδ,a is 1-Lipschitz continuous in the first
variable on I2 (the proof of the 1-Lipschitz continuity in the second variable is
similar). Let (x, y), (x′, y) ∈ I2 such that x ≤ x′. Let us introduce the notation
s2 = x′+ay

1+a+x′−y . The 1-Lipschitz continuity of Aδ,a is then equivalent to

x′ δ(s2)
s2

− x
δ(s)
s

≤ x′ − x,

or, equivalently,

x′
(

1 − s2
s2

)1+a

ψδ,a(s2) − x

(
1 − s

s

)1+a

ψδ,a(s) ≥ 0.

Since x ≤ x′, s ≤ s2 and ψδ,a is increasing, it holds that

x′
(

1 − s2
s2

)1+a

ψδ,a(s2) − x

(
1 − s

s

)1+a

ψδ,a(s)

≥ x

(
1 − s

s

)1+a

(ψδ,a(s2) − ψδ,a(s)) ≥ 0.

Conversely, suppose that Aδ,a is a quasi-copula. Proposition 1 implies the
increasingness of λδ. Let x, x′ ∈ ]0, 1[ such that x ≤ x′ and y ∈ [0, 1] such
that x′ ≤ y. The 1-Lipschitz continuity of Aδ,a in the first variable implies
that

x′ δ(s2)
s2

− x
δ(s)
s

≤ x′ − x. (8)
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Dividing by x′ − x and taking the limit x′ → x, inequality (8) becomes

λδ(s) + x
(1 + a)(1 − y)

(1 + a + x − y)2
λ′

δ(s) ≤ 1,

where the derivative exists. Setting x = y, the last inequality reduces to

(1 + a)(1 − λδ(x)) − x(1 − x)λ′
δ(x) ≥ 0,

or, equivalently, ψ′
δ,a(x) ≥ 0, where the derivative exists. Since δ is absolutely

continuous, it holds that ψδ,a is absolutely continuous. The fact that ψ′
δ,a(x) ≥

0 on the interval ]0, 1[, where the derivative exists, then implies that ψδ,a is
increasing. Similarly, the 1-Lipschitz continuity of Aδ,a in the second variable
implies condition (iii). �

Example 3. Consider the diagonal function of Example 2. Clearly, condi-
tions (i)–(iii) of Proposition 2 are fulfilled. The corresponding family of focal
functions is a family of focal quasi-copulas.

2.3. Focal Copulas of Class 1

In this subsection, we characterize the elements of Dd for which the corre-
sponding focal function Aδ,a is a copula.

Theorem 1. Let δ ∈ Dd and a ∈ [0,∞]. Then, the focal function Aδ,a defined
in (4) is a copula if and only if the following conditions are fulfilled:

(i) the function λδ defined in (5) is increasing;
(ii) the function hδ,a : ]0, 1[→ R defined by

hδ,a(x) = x(a + x)
(

x

1 − x

)a

λ′
δ(x)

is increasing;
(iii) the inequality

x(1 − a − 2x)δ′(x) + 2(a + x)δ(x) ≥ 0 (9)

holds for any x ∈ ]0, 1].

Proof. Suppose that Aδ,a is a copula. Due to Proposition 1 condition (i)
immediately follows. For any (x, y) ∈ I2\D, the 2-increasingness of Aδ,a

implies that

∂2Aδ,a(x, y)
∂x∂y

≥ 0.

Substituting the expression of Aδ,a, the latter inequality becomes(
x + a

(1 + a + x − y)2
+

x(1 − a − x − y)
(1 + a + x − y)3

)
λ′

δ(s)

+
(1 + a)x(a + x)(1 − y)

(1 + a + x − y)4
λ′′

δ (s) ≥ 0, (10)

where the derivatives exist. Setting y = x, the latter inequality reduces to

(a(1 + a) + 2x(1 − x))λ′
δ(x) + x(1 − x)(a + x)λ′′

δ (x) ≥ 0, (11)
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where the derivatives exist. Some elementary manipulations yield h′
δ,a(x) ≥ 0

where the derivative exists. Hence, condition (ii) follows. Finally, the fact that
VAδ,a

(S) ≥ 0 for any square S = [x, x′] × [x, x′] centered around the main
diagonal yields

VAδ,a
([x, x′] × [x, x′]) = δ(x) + δ(x′) − Aδ,a(x, x′) − Aδ,a(x′, x)

= δ(x) + δ(x′) − 2x
δ(s)
s

≥ 0.

Dividing by (x′ − x) and taking the limit x′ → x, condition (iii) immediately
follows.

Conversely, suppose that conditions (i)–(iii) are fulfilled. Due to Propo-
sition 1, Aδ,a is a semi-copula. To prove that Aδ,a is a copula, we need to
show its 2-increasingness. We distinguish the following three cases:

(a) If (x, y) ∈ I2\D, then the 2-increasingness of Aδ,a is equivalent to
inequality (10). Since hδ,a is increasing, inequality (11) holds and the
left-hand side of inequality (10) is greater than or equal to

(
x + a

(1 + a + x − y)2
+

x(1 − a − x − y)
(1 + a + x − y)3

)
λ′

δ(s)

− (1 + a)x(a + x)(1 − y)
(1 + a + x − y)4

a(1 + a) + 2s(1 − s)
s(1 − s)(a + s)

λ′
δ(s).

Some elementary manipulations show that the positivity of the latter
expression is equivalent to

(1 + a)(y − x)λ′
δ(s) ≥ 0.

Since λδ is increasing, the latter inequality clearly holds.
(b) If (x, y) ∈ I1\D, then the proof of the 2-increasingness of Aδ,a is identical

due to its symmetry.
(c) Finally, let S = [x, x′] × [x, x′] be a square centered around the main

diagonal. Its volume is given by

VAδ,a
(S) = δ(x) + δ(x′) − 2Aδ,a(x, x′).

Due to (a), it holds that

∂2Aδ,a(u, v)
∂u∂v

≥ 0,

for any (u, v) ∈ I2\D, which implies that

V1 =
∫ x′

x

du

∫ x′

u

∂2Aδ,a(u, v)
∂u∂v

dv ≥ 0.



Vol. 13 (2016) Focal Copulas 2919

Some elementary manipulations yield

V1 =
∫ x′

x

(
∂Aδ,a(u, x′)

∂u
− ∂Aδ,a(u, v)

∂u
|v=u

)
du

= δ(x′) − Aδ,a(x, x′) − 1
1 + a

∫ x′

x

u(1 − u)δ′(u) + (a + u)δ(u)
u

du

= δ(x′) − Aδ,a(x, x′) − 1
1 + a

(δ(x′) − δ(x))

+
1

1 + a

∫ x′

x

u2δ′(u) − (a + u)δ(u)
u

du.

Note that inequality (9) is equivalent to

u(1 − a − 2u)δ′(u) + 2(a + u)δ(u) ≥ 0,

for any u ∈ ]0, 1]. Dividing by (1 + a)u, the latter inequality becomes

1
1 + a

u(1 − a − 2u)δ′(u) + 2(a + u)δ(u)
u

≥ 0,

which implies that

V2 =
1

1 + a

∫ x′

x

u(1 − a − 2u)δ′(u) + 2(a + u)δ(u)
u

du ≥ 0.

Some elementary manipulations yield

V2 =
1 − a

1 + a
(δ(x′) − δ(x)) − 2

1 + a

∫ x′

x

u2δ′(u) − (a + u)δ(u)
u

du.

It now follows that

2V1 + V2 = δ(x) + δ(x′) − 2Aδ,a(x, x′) = VAδ,a
(S) ≥ 0.

�

Example 4. Consider the diagonal function of Example 2. Clearly, the condi-
tions of Theorem 1 are fulfilled. The corresponding family of focal functions
is a family of focal copulas.

In the following proposition, we provide sufficient conditions for the
conditions of Theorem 1.

Proposition 3. Let δ ∈ Dd and a ∈ [0,∞]. If the following conditions

(i) the function λδ defined in (5) is increasing;
(ii) the function λδ is convex;
(iii) the function ρδ : ]0, 1] → R defined by

ρδ(x) =
λδ(x)

x
=

δ(x)
x2

is decreasing,

are fulfilled, then the focal function Aδ,a is a copula.
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Proof. Suppose that conditions (i)–(iii) are fulfilled. Condition (ii) clearly
implies inequality (10) and hence condition (ii) of Theorem 1 follows. Inequal-
ity (9) can be written as

x(1 − 2x)δ′(x) + 2xδ(x) + a(2δ(x) − xδ′(x)) ≥ 0. (12)

Since ρδ is decreasing, it follows that

ρ′
δ(x) =

δ′(x)x2 − 2xδ(x)
x4

≤ 0,

or, equivalently, 2δ(x) ≥ xδ′(x). Denoting the left-hand side of inequality (12)
as β, it then holds that

β ≥ x((1 − 2x) + x)δ′(x) + a(2δ(x) − xδ′(x))
= x(1 − x)δ′(x) + a(2δ(x) − xδ′(x)) ≥ 0.

�

Example 5. Consider the diagonal function δ(x) = x
2−x . Clearly, the condi-

tions of Proposition 3 are fulfilled. The corresponding focal function is a focal
copula.

Note that the conditions of Proposition 3 are not necessary in general.
This fact is illustrated in the following example.

Example 6. Consider the diagonal function of Example 2. Note that the
function λδ is not convex, while the conditions of Theorem 1 are fulfilled.

3. Class 2: Focal Points (0, 1 + c) and (1 + c, 0)

In this section, we introduce functions that are constructed by linear inter-
polation on segments connecting points on the diagonal of the unit square to
the focal points (0, 1 + c) and (1 + c, 0), with c ∈ [0,∞]. This interpolation
scheme is depicted in Fig. 2 for some segments.

Let us introduce the notations

p =
(1 + c)x

1 + c + x − y
, (13)

q =
(1 + c)y

1 + c + y − x
, (14)

with c ∈ [0,∞]. Let δ ∈ DS and c ∈ [0,∞]. The function Cδ,c : [0, 1]2 → [0, 1]
given by

Cδ,c(x, y) =

⎧⎪⎨
⎪⎩

y − (1 − x)
q − δ(q)
1 − q

, if (x, y) ∈ I1,

x − (1 − y)
p − δ(p)
1 − p

, if (x, y) ∈ I2,
(15)

is well defined. This function is called a focal function since it is linear on
segments connecting the points (x, x) and (0, 1 + c) as well as on segments
connecting the points (x, x) and (1 + c, 0). Since the points (0, 1 + c) and
(1 + c, 0) are symmetric, any focal function Cδ,c is symmetric. For any focal
function Cδ,c, condition (i) of the definition of a semi-copula always holds.
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(0, 0) (1 + c, 0)

(0, 1 + c)

(1, 1)

Figure 2. Some segments on which a focal function of class 2
is linear

Note that a focal function Cδ,c is uniquely determined by its diagonal section.
Clearly, a focal function Cδ,c is continuous if and only if δ is continuous.

Remark 2. (i) If c = 0, then the definition of a biconic function is
retrieved [20].

(ii) If c = ∞, then the definition of an upper semilinear function is
retrieved [10].

3.1. Focal Semi-Copulas of Class 2

In this subsection, we characterize the elements of Dac
S for which the corre-

sponding focal function Cδ,c is a semi-copula.

Proposition 4. Let δ ∈ Dac
S and c ∈ [0,∞]. Then, the focal function Cδ,c

defined in (15) is a semi-copula if and only if the following conditions are
fulfilled:

(i) the function τδ,c : ]0, 1[→ R defined by

τδ,c(x) =
(

x

1 − x

)1+c

μδ(x)

is decreasing;
(ii) the inequality

1 − (1 − x)(1 + c − x)
1 + c

μ′
δ(x) ≥ 0

holds for any x ∈ ]0, 1[ where the derivative exists.
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Proof. Suppose that conditions (i) and (ii) are fulfilled. To prove that Cδ,c

is a semi-copula, it suffices to prove its increasingness in each variable. Since
Cδ,c is symmetric, it suffices to prove its increasingness in each variable on
I2. We prove that Cδ,c is increasing in the second variable (the proof of the
increasingness in the first variable is similar). Let (x, y′), (x, y) ∈ I2 such that
y ≤ y′. Let us introduce the notation p1 = (1+c)x

1+c+x−y′ . The increasingness of
Cδ,c is then equivalent to

x − (1 − y′)
p1 − δ(p1)

1 − p1
− x + (1 − y)

p − δ(p)
1 − p

= (1 − y)
(

1 − p

p

)1+c

τδ,c(p) − (1 − y′)
(

1 − p1
p1

)1+c

τδ,c(p1)) ≥ 0.

Since p ≤ p1 and τδ,c is decreasing, it follows that

(1 − y)
(

1 − p

p

)1+c

τδ,c(p) − (1 − y′)
(

1 − p1
p1

)1+c

τδ,c(p1)

≥ (1 − y)
(

1 − p

p

)1+c

(τδ,c(p) − τδ,c(p1)) ≥ 0.

Conversely, suppose that Cδ,c is a semi-copula. Let y, y′ ∈ ]0, 1[ such
that y < y′ and x ∈ [0, 1] such that x ≤ y. The increasingness of Cδ,c in the
second variable implies

(1 − y)
p − δ(p)
1 − p

− (1 − y′)
p1 − δ(p1)

1 − p1
≥ 0. (16)

Dividing by y′ − y and taking the limit y′ → y, inequality (16) becomes

μδ(p) − (1 + c)x(1 − y)
(1 + c + x − y)2

μ′
δ(p) ≥ 0,

where the derivative exists. Setting x = y, the last inequality reduces to

(1 + c)μ(x) − x(1 − x)μ′
δ(x) ≥ 0,

or, equivalently, τ ′
δ,c(x) ≤ 0, where the derivative exists. Since δ is absolutely

continuous, it holds that τδ,c is absolutely continuous. The fact that τ ′
δ,c(x) ≤

0 on the interval ]0, 1[, where the derivative exists, then implies that τδ,c is
decreasing. Condition (ii) can be proved similarly using the increasingness of
Cδ,c in the first variable. �

Example 7. Consider the diagonal function of Example 2. Clearly, the condi-
tions of Proposition 4 are fulfilled. The corresponding family of focal functions
is a family of focal semi-copulas.

3.2. Focal (Quasi-)Copulas of Class 2

Consider a diagonal function δ and let δ1 be the diagonal function defined by
δ1(x) = 2x − 1 + δ(1 − x). Let Aδ1,a, with a ∈ [0,∞], be the focal function
defined in (4), and Cδ,a be the focal function defined in (15). One easily
verifies that

Cδ,a(x, y) = x + y − 1 + Aδ1,a(1 − x, 1 − y).
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If Aδ1,a is a (quasi-)copula, then Cδ,a is a (quasi-)copula as well [15]. This
transformation allows us to characterize focal (quasi-)copulas in a straight-
forward manner.

Proposition 5. Let δ ∈ D and c ∈ [0,∞]. Then, the focal function Cδ,c defined
in (15) is a quasi-copula if and only if the following conditions are fulfilled:

(i) the conditions of Proposition 4;
(ii) the function μδ defined in (5) is increasing.

Proposition 6. Let δ ∈ Dd and c ∈ [0,∞]. Then the focal function Cδ,c defined
in (15) is a copula if and only if the following conditions are fulfilled:

(i) the conditions of Proposition 4;
(ii) the function kδ,c : ]0, 1[→ R defined by

kδ,c(x) =
1 − x

x
(x(1 + c − x))1+cμ′

δ(x)

is decreasing;
(iii) the inequality

c((1 − x)δ′(x) − 2(x − δ(x))) + (1 − x)((1 − 2x)δ′(x) + 2δ(x)) ≥ 0

holds for any x ∈ ]0, 1[.

4. Class 3: Focal Points (−b, 1 + b) and (1 + b,−b)

In this section, we introduce functions that are constructed by linear inter-
polation on segments connecting points on the diagonal of the unit square
to the points (−b, 1 + b) and (1 + b,−b), with b ∈ [0,∞]. This interpolation
scheme is depicted in Fig. 3 for some segments.

Let us introduce the notations

u =
x + b(x + y)

1 + 2b + x − y
, (17)

v =
y + b(x + y)

1 + 2b + x − y
, (18)

with b ∈ [0,∞], and (see Fig. 4 for an illustration)

T1 := {(x, y) ∈ [0, 1]2|0 ≤ y ≤ 1/2 and y ≤ x ≤ 1 − y},

T2 := {(x, y) ∈ [0, 1]2|0 ≤ x ≤ 1/2 and x ≤ y ≤ 1 − x},

T3 := {(x, y) ∈ [0, 1]2|1/2 ≤ y ≤ 1 and 1 − y ≤ x ≤ y},

T4 := {(x, y) ∈ [0, 1]2|1/2 ≤ x ≤ 1 and 1 − x ≤ y ≤ x},

O := (T2 ∪ T3) ∩ (T1 ∪ T4).
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(0, 0)

(1 + b,−b)

(−b, 1 + b)

(1, 1)

Figure 3. Some segments on which a focal function of class 3
is linear

T1

T2

T3

T4

(0, 1()0 , 0)

(0, 1()1 , 1)

Figure 4. Illustration for the triangles T1, T2, T3 and T4
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Let δ ∈ DS and b ∈ [0,∞]. The function Bδ,b : [0, 1]2 → [0, 1] given by

Bδ,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y
δ(v)
v

, if (x, y) ∈ T1,

x
δ(u)
u

, if (x, y) ∈ T2,

x − (1 − y)
u − δ(u)

1 − u
, if (x, y) ∈ T3,

y − (1 − x)
v − δ(v)
1 − v

, if (x, y) ∈ T4,

(19)

is well defined. This function is called a focal function since it is linear on
segments connecting the points (x, x) and (−b, 1 + b) as well as on segments
connecting the points (x, x) and (1 + b,−b). Since the points (−b, 1 + b) and
(1+ b,−b) are symmetric, any focal function Bδ,b is symmetric. For any focal
function, condition (i) of the definition of a semi-copula always holds. Note
that a focal function Bδ,b is uniquely determined by its diagonal section.
Clearly, a focal function Bδ,b is continuous if and only if δ is continuous.

Remark 3. (i) If b = 0, then the definition of a biconic function is
retrieved [20].

(ii) If b = ∞, then the definition of an ortholinear function is retrieved [21].

4.1. Focal Semi-Copulas of Class 3

In this subsection, we characterize the elements of Dac
S for which the corre-

sponding focal function Bδ,b is a semi-copula.

Proposition 7. Let δ ∈ Dac
S and b ∈ [0,∞]. Then, the focal function Bδ,b

defined in (19) is a semi-copula if and only if the following conditions are
fulfilled:

(i) the function λδ defined in (5) is increasing on the interval ]0, 1/2];
(ii) the function ξδ,b : ]0, 1[→ R defined by

ξδ,b(x) =
(

1 − x

b + x

) 2b+1
1+b

μδ(x)

is decreasing on the interval [1/2, 1[.

Proof. Suppose that conditions (i) and (ii) are fulfilled. To prove that Bδ,b is a
semi-copula, it suffices to prove its increasingness in each variable. Since Bδ,b

is symmetric, it suffices to prove its increasingness in each variable on T2∪T3.
We prove that Bδ,b is increasing in the second variable (the proof of the
increasingness in the first variable is similar). Let (x, y), (x, y′) ∈ T2 ∪T3 such
that y ≤ y′. Let us introduce the notation u1 = x+b(x+y′)

1+2b+x−y′ . If (x, y), (x, y′) ∈
T2, then the increasingness of Bδ,b is equivalent to

x
δ(u1)
u1

− x
δ(u)
u

= x(λδ(u1) − λδ(u)) ≥ 0. (20)

Since u ≤ u1 and λδ is increasing on the interval ]0, 1/2], inequality (20)
immediately follows. If (x, y), (x, y′) ∈ T3, then the increasingness of Bδ,b is
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equivalent to

−(1 − y′)
u1 − δ(u1)

1 − u1
+ (1 − y)

u − δ(u)
1 − u

≥ 0,

or, equivalently,

(1 − y)
(

b + u

1 − u

) 1+2b
1+b

ξδ,b(u) − (1 − y′)
(

b + u1

1 − u1

) 1+2b
1+b

ξδ(u1) ≥ 0.

Since y ≤ y′, u ≤ u1 and ξδ,b is decreasing on the interval [1/2, 1[, it holds
that

(1 − y)(b + u)
(1 − u)

(
b + u

1 − u

) b
1+b

ξδ,b(u) − (1 − y′)(b + u1)
(1 − u1)

(
b + u1

1 − u1

) b
1+b

ξδ(u1)

≥ (1 − y′)(b + u1)
(1 − u1)

(
b + u1

1 − u1

) b
1+b

(ξδ,b(u) − ξδ,b(u1)) ≥ 0.

If (x, y) ∈ T2 and (x, y′) ∈ T3, then the preceding cases imply that
Bδ,b(x, y′) − Bδ,b(x, y) =

(Bδ,b(x, y′) − Bδ,b(x, 1 − x)) + (Bδ,b(x, 1 − x) − Bδ,b(x, y)) ≥ 0.

Conversely, suppose that Bδ,b is a semi-copula. Let y, y′ ∈ ]0, 1/2] such that
y ≤ y′ and x ∈ [0, 1] such that x ≤ y and x + y′ ≤ 1. Clearly, the
points (x, (x+2b+1)y−(1+b)x

y+b ) and (x, (x+2b+1)y′−(1+b)x
y′+b ) are located in T2. The

increasingness of Bδ,b in the second variable implies

Bδ,b

(
x,

(x + 2b + 1)y′ − (1 + b)x
y′ + b

)
−Bδ,b

(
x,

(x + 2b + 1)y − (1 + b)x
y + b

)
≥ 0,

(21)
or, equivalently,

x(λδ(y′) − λδ(y)) ≥ 0.

Hence, the increasingness of λδ on the interval ]0, 1/2] follows. Let y, y′ ∈
[1/2, 1[ such that y < y′ and x ∈ [0, 1] such that x ≤ y and x + y ≥ 1. The
increasingness of Bδ,b in the second variable implies

(1 − y)
u − δ(u)

1 − u
− (1 − y′)

u1 − δ(u1)
1 − u1

≥ 0. (22)

Dividing by y′ − y and taking the limit y′ → y, inequality (22) becomes

u − δ(u)
1 − u

− (1 − y)(y + b)
2b + 1

(
u − δ(u)

1 − u

)′
≥ 0,

where the derivative exists. Setting y = x, the last inequality reduces to

(2b + 1)x − (1 + b − x)δ(x) + (1 − x)(x + b)δ′(x) ≥ 0,

or, equivalently, ξ′
δ,b(x) ≤ 0, where the derivative exists. Since δ is absolutely

continuous, it holds that ξδ,b is absolutely continuous. The fact that ξ′
δ,b(x) ≤

0 on the interval [1/2, 1[, where the derivative exists, then implies that ξδ,b is
decreasing on the interval [1/2, 1[. �
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Example 8. Consider the diagonal functions δM and δW. Clearly, δM and
δW belong to Dac

S . One easily verifies that the functions λδM and λδW are
increasing on the interval ]0, 1/2], and that the functions ξδM,b and ξδW,b are
decreasing on the interval [1/2, 1[. The corresponding focal semi-copulas are
TM and TL, respectively.

Example 9. Consider the diagonal function of Example 2. Clearly, δ ∈ Dac
S .

As mentioned before in Example 2, λδ is increasing. One easily verifies that
ξδ,b is decreasing on the interval [1/2, 1[. The corresponding family of focal
semi-copulas is given by

Bδ,b(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yvθ, if (x, y) ∈ T1,

xuθ, if (x, y) ∈ T1,

x − (1 − y)
u(1 − uθ)

1 − u
, if (x, y) ∈ T3,

y − (1 − x)
v(1 − vθ)

1 − v
, if (x, y) ∈ T4,

where u and v are given in (17) and (18).

4.2. Focal Quasi-Copulas of Class 3

In this subsection, we characterize the elements of D for which the corre-
sponding focal function Bδ,b is a quasi-copula.

Proposition 8. Let δ ∈ D and b ∈ [0,∞]. Then, the focal function Bδ,b defined
in (19) is a quasi-copula if and only if the following conditions are fulfilled:

(i) the conditions of Proposition 7;
(ii) the function νδ,b : ]0, 1[→ R defined by

νδ,b(x) =
(

x

1 + b − x

) 2b+1
1+b

(1 − λδ(x))

is increasing on the interval ]0, 1/2];
(iii) the function μδ defined in (5) is increasing on the interval [1/2, 1[.

Proof. Suppose that conditions (i)–(iii) are fulfilled. Due to Proposition 7, the
function Bδ,b is increasing. Therefore, to prove that Bδ,b is a quasi-copula,
we need to show that it is 1-Lipschitz continuous. Recall that the 1-Lipschitz
continuity is equivalent to the 1-Lipschitz continuity in each variable. Since
Bδ,b is symmetric, it is sufficient to show that Bδ,b is 1-Lipschitz continuous
in each variable on T2 ∪ T3. We prove that Bδ,b is 1-Lipschitz continuous in
the first variable on T2 ∪ T3 (the proof of the 1-Lipschitz continuity in the
second variable is similar). Let (x, y), (x′, y) ∈ T2 ∪ T3 such that x ≤ x′. Let
us introduce the notation u2 = x′+b(x′+y)

1+2b+x′−y . If (x, y), (x′, y) ∈ T2, then the
1-Lipschitz continuity of Bδ,b is equivalent to

x′ δ(u2)
u2

− x
δ(u)
u

≤ x′ − x,

or, equivalently,

x′
(

x′

1 + b − x

)−2b−1
b+1

νδ,b(u2) − x

(
x

1 + b − x

)−2b−1
b+1

νδ,b(u) ≥ 0.
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Since x ≤ x′, u ≤ u2 and νδ,a is increasing on the interval ]0, 1/2], it holds
that

x′
(

x′

1 + b − x

)−2b−1
b+1

νδ,b(u2) − x

(
x

1 + b − x

)−2b−1
b+1

νδ,b(u)

≥ x

(
x

1 + b − x

)−2b−1
b+1

(νδ,b(u2) − νδ,b(u)) ≥ 0.

If (x, y), (x′, y) ∈ T3, then the 1-Lipschitz continuity of Bδ,b is equivalent to

(1 − y)(μδ(u2) − μδ(u)) ≥ 0. (23)

Since u ≤ u2 and μδ is increasing on the interval [1/2, 1[, inequality (23)
immediately follows. If (x, y) ∈ T2 and (x′, y) ∈ T3, then the preceding cases
imply that

Bδ,b(x′, y) − Bδ,b(x, y)
= (Bδ,b(x′, y) − Bδ,b(1 − y, y)) + (Bδ,b(1 − y, y) − Bδ,b(x, y)) ≤ x′ − x.

Conversely, suppose that Bδ,b is a quasi-copula. Proposition 7 implies
the increasingness of λδ on the interval ]0, 1/2] and the decreasingness of ξδ,b

on the interval [1/2, 1[. Let x, x′ ∈ [1/2, 1[ such that x ≤ x′ and y ∈ [0, 1]
such that x′ ≤ y and x + y ≥ 1. Clearly, the points ( (2b+1)x−(x+b)y

1+b−x , y) and

( (2b+1)x′−(x′+b)y
1+b−x′ , y) are located in T3. The 1-Lipschitz continuity of Bδ,b in

the first variable implies that

Bδ,b

(
(2b + 1)x′ − (x′ + b)y

1 + b − x′ , y

)
− Bδ,b

(
(2b + 1)x − (x + b)y

1 + b − x
, y

)

≤ (2b + 1)x′ − (x′ + b)y
1 + b − x′ − (2b + 1)x − (x + b)y

1 + b − x
,

or, equivalently,

(1 − y)(μδ(x′) − μδ(x)) ≥ 0.

Hence, the increasingness of μδ on the interval [1/2, 1[ follows.
Let x, x′ ∈ ]0, 1/2[ such that x < x′ and y ∈ [0, 1] such that x′ ≤ y and

x′ +y ≤ 1. The 1-Lipschitz continuity of Bδ,b in the first variable implies that

x′ δ(u2)
u2

− x
δ(u)
u

≤ x′ − x. (24)

Dividing by x′ − x and taking the limit x′ → x, inequality (24) becomes

δ(u)
u

+ x
(2b + 1)(1 + b − y)
(x − y + 2b + 1)2

(
δ(u)
u

)′
≤ 1,

where the derivative exists. Setting y = x, the last inequality reduces to

(2b + 1)x − (x + b)δ(x) − x(1 + b − x)δ′(x) ≥ 0,

or, equivalently, ν′
δ,b(x) ≥ 0, where the derivative exists. Since δ is absolutely

continuous, it holds that νδ,b is absolutely continuous. The fact that ν′
δ,b(x) ≥

0 on the interval ]0, 1/2], where the derivative exists, then implies that νδ,b

is increasing on the interval ]0, 1/2]. �
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Example 10. Consider the diagonal function of Example 2. Clearly, the condi-
tions of Proposition 8 are fulfilled. The corresponding family of focal functions
is a family of focal quasi-copulas.

4.3. Focal Copulas of Class 3

In this subsection, we characterize the elements of δ ∈ Dd for which the
corresponding focal function Bδ,b is a copula.

Theorem 2. Let δ ∈ Dd and b ∈ [0,∞]. Then, the focal function Bδ,b defined
in (19) is a copula if and only if the following conditions are fulfilled:

(i) the conditions of Proposition 7;
(ii) the function fδ,b : ]0, 1[→ R defined by

fδ,b(x) = x(b + x)
(

x

1 + b − x

) b
1+b

λ′
δ(x)

is increasing on the interval ]0, 1/2];
(iii) the function gδ,b : ]0, 1[→ R defined by

gδ,b(x) = (1 − x)(1 + b − x)
(

1 − x

b + x

) b
1+b

μ′
δ(x)

is decreasing on the interval [1/2, 1[.

Proof. Suppose that Bδ,b is a copula. The conditions of Proposition 7 immedi-
ately follow. For any (x, y) ∈ T2\(D∪O), the 2-increasingness of Bδ,b implies
that

∂2Bδ,b(x, y)
∂x∂y

≥ 0.

Substituting the expression of Bδ,b, the latter inequality is equivalent to(
1 + b − y

(1 + 2b + x − y)2
+

x(1 − x − y)
(1 + 2b + x − y)3

)
λ′

δ(u)

+
(1 + 2b)x(b + x))(1 + b − y)

(1 + 2b + x − y)4
λ′′

δ (u) ≥ 0, (25)

where the derivatives exist. Setting y = x, the latter inequality reduces to

((1 + b − x)(1 + 2b) + x(1 − 2x))λ′
δ(x) + x(b + x)(1 + b − x)λ′′

δ (x) ≥ 0, (26)

where the derivatives exist. Some elementary manipulations yield f ′
δ,b(x) ≥ 0,

where the derivative exists. Hence, condition (ii) follows.
Similarly, for any (x, y) ∈ T3\(D ∪ O), the 2-increasingness of Bδ,b

implies that (
1 + b − y

(1 + 2b + x − y)2
− (1 − y)(1 − x − y)

(1 + 2b + x − y)3

)
μ′

δ(u)

− (1 + 2b)(1 − y)(b + x))(1 + b − y)
(1 + 2b + x − y)4

μ′′
δ (u) ≥ 0



2930 T. Jwaid et al. MJOM

where the derivatives exist. Setting y = x, the latter inequality reduces to

((1 + b − x)(1 + 2b) − (1 − x)(1 − 2x))μ′
δ(x)

−(1 − x)(b + x)(1 + b − x)μ′′
δ (x) ≥ 0,

where the derivatives exist. Some elementary manipulations yield g′
δ,b(x) ≤ 0,

where the derivative exists. Hence, condition (iii) follows.
Conversely, suppose that conditions (i)–(iii) are fulfilled. Due to Propo-

sition 7, Bδ,b is a semi-copula. To prove that Bδ,b is a copula, we need to
show its 2-increasingness. We distinguish the following cases:
(a) If (x, y) ∈ T2\(D ∪ O), then the 2-increasingness of Bδ,b is equivalent

to inequality (25). Since fδ,b is increasing, inequality (26) holds and the
left-hand side of inequality (25) is greater than or equal to(

1 + b − y

(1 + 2b + x − y)2
+

x(1 − x − y)
(1 + 2b + x − y)3

)
λ′

δ(u)

− (1 + 2b)x(b + x))(1 + b − y)
(1 + 2b + x − y)4

(1 + b − u)(1 + 2b) + u(1 − 2u)
u(1 + b − u)(a + u)

λ′
δ(u).

Some elementary manipulations show that the positivity of the latter
expression side is equivalent to

(1 + 2b)(y − x)λ′
δ(u) ≥ 0.

Since λδ is increasing, the latter inequality clearly holds.
(b) The proof of the 2-increasingness of Bδ,b for any (x, y) ∈ T3\(D ∪ O) is

similar to the previous one.
(c) Let S = [x, x′] × [1 − x′, 1 − x], with x′ ≤ 1/2, be a square centered

around the opposite diagonal of the unit square (the proof when x ≥ 1/2
is identical due to the symmetry of Bδ,b). Its volume is given by

VBδ,a
(S) = −ω(x) − ω(x′) + Bδ,b(x, 1 − x′) + Bδ,b(x′, 1 − x).

Due to (a), it holds that

∂2Bδ,b(s, t)
∂s∂t

≥ 0,

for any (s, t) ∈ T2\(D ∪ O), which implies that

V1 =
∫ 1−x

1−x′
dt

∫ 1−t

x

∂2Bδ,b(s, t)
∂s∂t

ds ≥ 0.

Due to (b), it holds that

∂2Bδ,b(s, t)
∂s∂t

≥ 0,

for any (s, t) ∈ T3\(D ∪ O), which implies that

V2 =
∫ 1−x

1−x′
dt

∫ x′

1−t

∂2Bδ,b(s, t)
∂s∂t

ds ≥ 0.

Since δ is a diagonal function, it holds that

(1 − 2δ(1/2))
b(1 − 2s)

s + b
≥ 0,
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for any s ∈ ]0, 1/2], which implies that

V3 = (1 − 2δ(1/2))
∫ 1−x

1−x′

b(1 − 2s)
s + b

ds ≥ 0.

It now follows that

V1 + V2 + V3 = −ω(x) − ω(x′) + Bδ,b(x, 1 − x′) + Bδ,b(x′, 1 − x)
= VBδ,a

(S) ≥ 0.

(d) Finally, let S = [x, x′]×[x, x′], with x′ ≤ 1/2, be a square centered around
the main diagonal (the proof when x ≥ 1/2 is identical). Its volume is
given by

VBδ,b
(S) = δ(x) + δ(x′) − 2Bδ,b(x, x′).

Due to (a), it holds that

∂2Bδ,b(s, t)
∂s∂t

≥ 0,

for any (s, t) ∈ T2\(D ∪ O), which implies that

V1 =
∫ x′

x

ds

∫ x′

s

∂2Bδ,b(s, t)
∂s∂t

dt ≥ 0.

Since δ is a diagonal function, it holds that
1

1 + 2b

s(1 − 2s)δ′(s) + 2(b + s)δ(s)
s

≥ 0,

for any s ∈ ]0, 1/2], which implies that

V2 =
1

1 + 2b

∫ x′

x

s(1 − 2s)δ′(s) + 2(b + s)δ(s)
s

ds ≥ 0.

It now follows that

2V1 + V2 = δ(x) + δ(x′) − 2Bδ,b(x, x′) = VBδ,b
(S) ≥ 0.

�

Example 11. Consider the diagonal functions δM and δW. Clearly, the con-
ditions of Theorem 2 are fulfilled. The corresponding focal copulas are TM

and TL, respectively.

Example 12. Consider the diagonal function δθ(x) = x2

1−λ(1−x)2 with θ ∈
[−1, 1]. Clearly, the conditions of Theorem 2 are fulfilled. The corresponding
family of focal functions is a family of focal copulas.

In the following proposition, we provide sufficient conditions for the
conditions of Theorem 2.

Proposition 9. Let δ ∈ Dd and b ∈ [0,∞]. If the following conditions
(i) the functions λδ and μδ defined in (5) are increasing;
(ii) the function λδ is convex on the interval ]0, 1/2];
(iii) the function μδ is concave on the interval [1/2, 1[,
are fulfilled, then the focal function Bδ,b is a copula.
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Proof. The proof is similar to the proof of Proposition 3. �

Example 13. Consider the diagonal function δ(x) = x2

1+(1−x)2 . Clearly, the
conditions of Proposition 9 are fulfilled. The corresponding focal function is
a focal copula.

Note that the conditions of Proposition 9 are not necessary in general.
This fact is illustrated in the following example.

Example 14. Consider the diagonal function δ(x) = x
2−x . Note that the func-

tion μδ is not concave on the interval [1/2, 1[, while the conditions of Theo-
rem 2 are fulfilled.

5. Conclusion

We have introduced the notion of a focal function with a given diagonal
section. We have constructed three classes of focal functions with a given
diagonal section. For each class, we have also characterized the correspond-
ing classes of focal semi-copulas, quasi-copulas and copulas. Biconic functions
with a given diagonal section, ortholinear functions, lower semilinear func-
tions and upper semilinear functions turn out to be special cases of these
focal functions.

Several commonly used operations allow us further to identify other
classes of semilinear (quasi-)copulas. The diagonal splice operation amounts
to gluing parts of two (quasi-)copulas that share the same diagonal sec-
tion [26]. For quasi-copulas (resp. symmetric copulas), this method always
leads to a quasi-copula (resp. copula). The resulting (quasi-)copulas are non-
symmetric in general. Since the focal (quasi-)copulas of classes 1–3 are sym-
metric, applying the diagonal splice operation on these focal (quasi-)copulas
will always lead to a (quasi-)copula. For instance, a horizontal (resp. verti-
cal) semilinear (quasi-)copula with diagonal section δ is obtained by applying
the diagonal splice operation on the (quasi-)copula Aδ,∞ (resp. Cδ,∞) from
class 1 (resp. class 2) and the (quasi-)copula Cδ,∞ (resp. Aδ,∞) from class 2
(resp. class 1).

It is well known that appropriate transformations of (quasi-)copulas
result in new (quasi-)copulas. For instance, consider a (quasi-)copula C with
diagonal section δ. The function F : [0, 1] → [0, 1] defined by F (x, y) =
x − C(x, 1 − y) is a (quasi-)copula with opposite diagonal section ω(x) =
F (x, 1 − x) = x − δ(x) [24]. Applying this transformation on focal
(quasi-)copulas of classes 1–3 enables us to obtain similar classes of focal
(quasi-)copulas with a given opposite diagonal section.
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