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1. Introduction

A variety of problems in physics, engineering and biology have their math-
ematical setting as integro-differential equations [2,8,15,16,18,20]. In recent
years, there has been a growing interest in integro-differential equations,
which have been considered in the literature for theoretical as well as practical
purposes.

Recently, in [4], Berenguer et al. used the Banach contraction principle
to prove the existence and uniqueness of continuous solutions to nonlinear
Volterra integro-differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = u(t, x(t)) +

t∫

0

K(t, s, x(s))ds, t ∈ [0,+∞)

x(0) = x0;

(1.1)

where u and K are continuous functions satisfying Lipschitz conditions with
respect to the last variable.

The purpose of the present work is to study the existence of an ab-
solutely continuous solution to (1.1) under fairly simple conditions of
Carathéodory type.
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Our approach is based on the conjunction of the technique of the mea-
sure of weak noncompactness with some iterative techniques and an improved
version of the Schauder fixed point theorem. It is of interest that our solution
is continuous and almost everywhere derivable. However, uniqueness does not
follow from our assumptions. The results obtained in this paper generalize
their corresponding results in [4,5].

The paper is arranged as follows. In Sect. 2, we recall some definitions
and results used in this paper. In Sect. 3, we discuss the existence of absolutely
continuous solutions to the integro-differential equation (1.1).

2. Preliminaries

In this section, we recall from the literature some notations, definitions, and
auxiliary results which will be used throughout this paper. Let I be an interval
of R. We denote by L1(I) the set of all Lebesgue integrable functions on I,
endowed with the standard norm

‖x‖L1(I) =
∫

I

|x(t)|dt.

C(I) refers to the set of all continuous functions on I. If I is bounded, then
C(I) is endowed with the norm

‖x‖L∞(I) = sup {|x(t)|, t ∈ I} .

Also, denote by L1
Loc(I) the set of all Lebesgue integrable functions on any

compact subset of I. Consider a function f : I × R −→ R. We say that f
satisfies Carathéodory conditions if, it is measurable in t for any x ∈ R and
continuous in x for almost all t ∈ I.

The following definitions are frequently used in the subsequent part of
this paper.

Definition 2.1 [14,19]. A function f : [a, b] −→ R is absolutely continuous, if
for each ε > 0 there exists δ > 0 such that

n∑

i=1

|f(x′
i) − f(xi)| < ε,

for any finite collection {]xi, x
′
i[; i = 1, . . . , n} of pairwise disjoint intervals in

[a, b] with
∑n

i=1 |x′
i − xi| < δ.

Definition 2.2. A function f : R+ −→ R is absolutely continuous, if it is
absolutely continuous on any interval [a, b] in R

+.
Denote by AC(R+) the set of all absolutely continuous functions on R

+.

Remark 2.3 [14]. It is clear that any absolutely continuous function is con-
tinuous.

Absolutely continuous functions enjoy the following interesting proper-
ties.
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Theorem 2.4 [14]. If g is absolutely continuous on [a, b], then g has a deriv-
ative almost everywhere on [a, b]. Moreover, g′(t) is integrable on [a, b] and

g(t) = g(a) +

t∫

a

g′(s)ds.

Theorem 2.5 [19]. Let g be an integrable function on [a, b], then the function

G(t) = G(a) +

t∫

a

g(s)ds

is absolutely continuous. Moreover, G is derivable almost everywhere on [a, b]
and

G′(t) = g(t) for a.e. t ∈ [a, b].

From now on, X will always denote a Banach space. Denote by B(X) the
collection of all nonempty bounded subsets of X and by W(X) the subset of
B(X) consisting of all relatively weakly compact subsets of X. Let Br denote
the closed ball centered at origin with radius r.

Throughout this paper, we will adopt the following axiomatic definition
of a measure of weak noncompactness.

Definition 2.6 [3,10]. A function μ : B(X) −→ R+ is said to be a measure of
weak noncompactness if it satisfies the following conditions

1. The family ker(μ)={M ∈ B(X) : μ(M) = 0} is nonempty and ker(μ)⊂
W(X).

2. M1 ⊂ M2 ⇒ μ(M1) ≤ μ(M2).
3. μ(co(M)) = μ(M), where co(M) is the convex hull of M .
4. μ(λM1 + (1 − λ)M2) ≤ λμ(M1) + (1 − λ)μ(M2) for λ ∈ [0, 1].
5. If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with

M1 bounded and M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · such that limn→∞ μ(Mn)
= 0, then M∞ :=

⋂∞
n=1 Mn is nonempty.

We refer the reader to [6,7,11] for details concerning measures of weak
noncompactness. A handy and useful example of a measure of weak noncom-
pactness in the space L1(I) (I is a bounded interval) was given by Appel and
De Pascale [1] as follows: for a nonempty and bounded subset M of the space
L1(I)

μ(M) = lim
ε→0

⎧
⎨

⎩
sup
x∈M

⎧
⎨

⎩
sup

⎡

⎣

∫

D

|x(t)|dt : D ⊂ I,meas(D) ≤ ε

⎤

⎦

⎫
⎬

⎭

⎫
⎬

⎭
.

The following concept is crucial for our purpose.

Definition 2.7 [13]. Let M be a subset of a Banach space X. A continuous
map A : M −→ X is said to be (ws)-compact if for any weakly convergent
sequence (xn)n∈N in M the sequence (Axn)n∈N has a strongly convergent
subsequence in X.
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The considerations of this paper are based on the following fixed point
result [17].

Theorem 2.8. Let M be a nonempty bounded closed convex subset of a Banach
space X. Suppose that A : M −→ M satisfies:

(i) A is (ws)-compact.
(ii) A(M) is relatively weakly compact.

Then there is a x ∈ M such that Ax = x.

We will also use the following criterion for relatively weakly compact
sets.

Theorem 2.9 [9,12]. A bounded set S is relatively weakly compact in L1(I)
(I is a bounded interval) if and only if for any ε > 0 there exists δ > 0 such
that if meas(D) ≤ δ then

∫

D
|x(t)| ≤ ε for all x ∈ S.

3. Main Result

Equation (1.1) will be studied under the following assumptions:

(i) u : R+ × R −→ R satisfies Carathéodory conditions and there exist a
constant b1 and a function a1 ∈ L1

Loc(R+) such that |u(t, x)| ≤ a1(t) +
b1|x| for all t ∈ R+ and for all x ∈ R.

(ii) The function h : R+×R+ −→ R+ satisfies Carathéodory conditions and
the linear Volterra operator

Hx(t) =

t∫

0

h(t, s)x(s)ds, t ∈ R+

transforms the space L1
Loc(R+) into itself.

(iii) K : R+×R+×R −→ R satisfies Carathéodory conditions and there exist
a constant b2 and a function a2 ∈ L1

Loc(R+) such that |K(t, s, x)| ≤
h(t, s)(a2(s) + b2|x|) for all t ∈ R+ and for all x ∈ R.

Remark 3.1. Under the assumptions above and in view of Theorems 2.4 and
2.5, we have x ∈ AC(R+) is a solution of Eq. (1.1) if and only if x is a solution
of the following integral equation

x(t) = x0 +

t∫

0

u(s, x(s))ds +

t∫

0

s∫

0

K(s, r, x(r))drds, t ∈ [0,+∞). (3.1)

In order to prove an existence theorem for (1.1), we shall first prove the
following theorem:

Theorem 3.2. Let −∞ < α < β < +∞ and let g : [α, β] −→ R be an absolutely
continuous function. Assume (i)–(iii) hold, and in addition suppose

(β − α)(b1 + ‖H‖L1(I)b2) < 1, (3.2)
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is satisfied. Then, the nonlinear integral equation

x(t) = g(t) +

t∫

α

u(s, x(s))ds +

t∫

α

s∫

α

K(s, r, x(r))drds, t ∈ I, (3.3)

has an absolutely continuous solution on [α, β].

Proof. Define the operator A on L1([α, β]) by

Ax(t) = g(t) +

t∫

α

u(s, x(s))ds +

t∫

α

s∫

α

K(s, r, x(r))drds.

We show that A satisfies all the conditions of Theorem 2.8. This will be
achieved in three steps.

Step 1. We first show that there exists r0 such that the operator A transforms
the ball Br0 into itself, where Br is the ball of L1([α, β]) centered at origin
with radius r. To see this, let x ∈ Br. Then,

‖Ax‖ =

β∫

α

∣
∣
∣
∣
∣
∣
g(t) +

t∫

α

u(s, x(s))ds +

t∫

α

s∫

α

K(s, r, x(r))drds

∣
∣
∣
∣
∣
∣
dt

≤
β∫

α

|g(t)|dt +

β∫

α

t∫

α

(a1(s) + b1|x(s)|) dsdt

+

β∫

α

β∫

α

s∫

α

h(s, r)(a2(r) + b2|x(r)|)drdsdt

≤ ‖g‖L1(I) +

β∫

α

β∫

α

(a1(s) + b1|x(s)|) dsdt

+

β∫

α

β∫

α

(Ha2(s) + b2H|x|(s)) dsdt

≤ ‖g‖L1(I) + (β − α)
(‖a1‖ + b1r + ‖H‖L1(I)(‖a2‖ + b2r)

)

= ‖g‖L1(I)+(β − α)
(‖a1‖ + ‖H‖L1(I)‖a2‖

)
+ (β − α)

(
b1 + ‖H‖L1(I)b2

)
r.

Due to assumption (3.2), we have that the operator A transforms the ball

Br0 into itself provided that r0 >
‖g‖L1(I)+(β−α)(‖a1‖+‖H‖L1(I)‖a2‖)

1−(β−α)(b1+‖H‖L1(I)b2)
.

Step 2. We then illustrate that A is ws-compact. To see this, let (yn) be a
weakly convergence sequence in Br0 . Notice first that the set S = {yn, n ∈ N}
is weakly relatively compact. Now, take t1, t2 ∈ [α, β] such that t1 ≤ t2. Then,
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for an arbitrary n ∈ N, we have

|Ayn(t2) − Ayn(t1)| ≤ |g(t2) − g(t1)| +

∣
∣
∣
∣
∣
∣

t2∫

α

u(s, yn(s))ds −
t1∫

α

u(s, yn(s))ds

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

t2∫

α

s∫

α

K(s, r, yn(r))drds −
t1∫

α

s∫

α

K(s, r, yn(r))drds

∣
∣
∣
∣
∣
∣

≤ |g(t2) − g(t1)| +

t2∫

t1

|u(s, yn(s))|ds

+

t2∫

t1

s∫

α

|K(s, r, yn(r))|drds

≤ |g(t2) − g(t1)| +

t2∫

t1

(a1(s) + b1|yn(s)|) ds

+ ‖H‖L1(I)

t2∫

t1

(a2(s) + b2yn(s)) ds.

Taking into account that {yn, n ∈ N} is relatively weakly compact and in-
voking Theorem 2.9 we deduce that the terms

∫ t2
t1

|a1(s)|ds,
∫ t2

t1
|a2(s)|ds and

∫ t2
t1

|yn(s)|ds are arbitrarily small provided that the number t2 − t1 is small
enough. This means that the sequence (Ayn) is equicontinuous on [α, β]. No-
tice also that for an arbitrary t ∈ [α, β] and for n ∈ N, we have

|Ayn(t)| =

∣
∣
∣
∣
∣
∣
g(t) +

t∫

α

u(s, yn(s))ds +

α∫

t

s∫

α

K(s, r, yn(r))drds

∣
∣
∣
∣
∣
∣

≤ ‖g‖L1(I) +

t∫

α

[a1(s) + b1|yn(s)|)]ds

+

t∫

α

s∫

α

h(s, r)(a2(s) + b2|yn(s)|)ds

≤ ‖g‖L1(I) + ‖a1‖ + b1r0 + ‖H‖L1(I)(‖a2‖ + b2r0).

Hence we conclude that the sequence (Ayn) is uniformly bounded in C([α, β]).
By applying the Arzela–Ascoli theorem, we obtain that the sequence (Ayn)
has a convergent subsequence (Aynk

) in C([α, β]). This subsequence is a
Cauchy sequence in C([α, β]) and therefore it is a Cauchy sequence in
L1([α, β]). Consequently, A is (ws)-compact.
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Step 3. We examine that A(Br0) is relatively weakly compact. To perform
this, take an arbitrary number ε > 0 and a nonempty subset D of [α, β] such
that D is measurable and meas(D) ≤ ε. Then for any x ∈ Br0 we have,

∫

D

|Ax(t)|dt =
∫

D

∣
∣
∣
∣
∣
∣
g(t) +

t∫

α

u(s, x(s))ds +

t∫

α

s∫

α

K(s, r, x(r))drds

∣
∣
∣
∣
∣
∣
dt

≤ meas(D)
(‖g‖L∞(I) + ‖a1‖ + b1r0 + ‖H‖L1(I)(‖a1‖ + b2r0)

)
.

This implies that μ(A(Br0)) = 0 and, therefore, A(Br0) is relatively weakly
compact.

Thus, the hypotheses of Theorem 2.8 are fulfilled. Consequently, the
operator A has a fixed point x∗ which is a solution of the integral equa-
tion (3.3) in L1[α, β]. Now, since the functions s 
−→ u(s, x(s)) ∈ L1([α, β])
and s 
−→ ∫ s

0
K(s, r, x(r))dr ∈ L1([α, β]), then, in view of Theorem 2.5, the

solution x∗ is absolutely continuous on [α, β]. �

Now, we are in a position to state the main result of this section.

Theorem 3.3. Assume (i)–(iii) hold. Then, the nonlinear integro-differential
equation (1.1) has at least one solution x ∈ AC(R+). Moreover, x′ ∈ L1

Loc

(R+).

Proof. We first claim that Eq. (3.1) has an absolutely continuous solution
on [0, T ] for any T > 0. To see this, we divide the interval [0, T ] into N
subintervals In = [tn−1, tn] such that tn = n T

N , n = 0, . . . , N and N >
1

b1+‖H‖L1([0,T ])b2
.

Notice that (t1 − t0)(b1 + ‖H‖L1(I0)b2) < 1, hence by Theorem 3.2 the
equation

x(t) = x0 +

t∫

0

u(s, x(s))ds +

t∫

0

s∫

0

K(s, r, x(r))drds, t ∈ I0

has an absolutely continuous solution x1 on I1. By proceeding inductively we
infer that Eq. (3.1) takes on In the following form

x(t) = x0 +

tn−1∫

0

u(s, yn(s))ds +

t∫

tn−1

u(s, x(s))ds

+

tn−1∫

0

s∫

0

K(s, r, yn(r))drds +

t∫

tn−1

tn−1∫

0

K(s, r, yn(r))drds

+

t∫

tn−1

s∫

tn−1

K(s, r, x(r))drds, t ∈ In,
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where yn is defined on [0, tn−1] by yn = xi on Ii for i = 0, . . . , n − 1.
Put

g(t) = x0 +

tn−1∫

0

u(s, yn(s))ds +

tn−1∫

0

s∫

0

K(s, r, yn(r))drds

+

t∫

tn−1

tn−1∫

0

K(s, r, yn(r))drds, t ∈ In.

Since the function s 
−→ ∫ tn−1

0
K(s, r, yn(r))dr ∈ L1(In), then g is absolutely

continuous on In. Theorem 3.2 implies that the integral equation

x(t) = g(t) +

t∫

tn−1

u(s, x(s))ds +

t∫

tn−1

s∫

tn−1

K(s, r, x(r))drds, t ∈ In

has an absolutely continuous solution xn on In.
Accordingly, Eq. (3.1) has an absolutely continuous solution on [0, T ]

given by

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0(t), t ∈ I0
x2(t), t ∈ I1
...
xN−1(t), t ∈ IN−1

for all T > 0. Thus, our claim is established.
Now, we show that Eq. (3.1) has a solution x ∈ AC(R+). To see this,

notice first that from Claim 1, we know that Eq. (3.1) has an absolutely
continuous solution xn on [0, n] for each n ∈ N

∗. Define x : R+ −→ R as
follows: x = x1 on the interval [0, 1), and for n ≥ 2 and t ∈ [n − 1, n),

x(t) = x0 +
n−1∑

i=1

i∫

i−1

u(s, xi(s))ds +
n−1∑

i=1

i−1∫

i

s∫

0

K(s, r, xi(r))drds

+

t∫

n−1

u(s, xn(s))ds +

t∫

n−1

s∫

0

K(s, r, xn(r))drds.

Using a simple induction, we can easily prove that the function x is a so-
lution of Eq. (3.1) on R

+. Since s 
−→ u(s, x(s)) ∈ L1
Loc(R

+) and s 
−→∫ s

0
K(s, r, x(r))dr ∈ L1

Loc(R
+), then by Theorem 2.5 we infer that x ∈

AC(R+) and x′ ∈ L1
Loc(R

+). This completes the proof. �
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