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On Observer Design for a Class of Nonlinear
Systems Including Unknown Time-Delay
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Abstract. The observer design for nonlinear systems with unknown,
bounded, time-varying delays, on both input and state, is still an open
problem for researchers. In this paper, a new observer design for a class of
nonlinear system with unknown, bounded, time-varying delay was pre-
sented. For the proof of the observer stability, a Lyapunov–Krasovskii
function was chosen. Sufficient assumptions are provided to prove the
practical stability of the proposed observer. Furthermore, the exponen-
tial convergence of the observer was proved in the case of a constant
time delay. Simulation results were shown to illustrate the feasibility of
the proposed strategy.
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1. Introduction

The observer design for nonlinear systems is a well-known issue in the con-
trol theory and it is still an open problem for researchers [21,24,26,28,30].
The analysis of nonlinear systems under time delays is typically more difficult
compared to systems without time delays [6,12,15,17,29]. In literature, there
are several works on the stability of small delayed systems, for example, the
work of [4,22]. Time delay is a property of various dynamical systems, for
example, in communications, tele-operation, biological embedded systems,
electrical, mechanical, and many other applications [3,7,25]. The observer
design for time-delay nonlinear systems has been an attractive alternative
for the researchers in recent years. In addition, significant efforts have been
made to solve such a problem and many observation approaches have been
used. For example, those based on exponential method [10,18], asymptotic
approach [11,16], numerical approach [2], sliding mode approach [14,25], alge-
braic method [9,23], H∞ method [19,31], and so on. Such methods have been
developed for linear [16,27] and for nonlinear [10,18], time-delay systems.
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Practically, an exponential convergence of the observation error of a
high-gain observer for nonlinear system in triangular form under unknown
time delay has been proposed in [10]. Nevertheless, the time delay is still
regarded the same for the system and its observer.

In [11], a state observer for single-output single-input nonlinear delay
systems has been suggested. Assumptions for exponential observation error
with constant known time delay are shown. In [18], an adaptive observer
is suggested for nonlinear systems presented in a triangular form. It has
been presented that the observer gain has been caused only by updating one
parameter of the Riccati equation. Nevertheless, this design is constructed
by the fact that the system constant delay is known. Based on the theory of
linear systems with time delay, in [23], it has been presented how to design an
observer for a class of nonlinear systems under constant time delay. Finally,
other notions of parameter identifiability for nonlinear systems under known
time delay have been shown in [32]. However, the observation techniques
outlined above suppose that the time delay is known [1,10,18,23].

From a practical point of view, dynamics, measurement, noises or dis-
turbances often prevent the error signals from tending to zero. Thus, the
property of ultimate boundedness is often established. In this case, all state
trajectories are bounded and approach the origin (or some of its sufficiently
small neighborhood) in a sufficiently fast manner. This property is referred
to as ’practical’ stability, which is more suitable in several situations than
Lyapunov stability (see [5,8,12]).

In this work, based on the work of [12], a new class of nonlinear systems
under unknown small time-varying delay is proposed. A Luenberger observer
is suggested, and new criteria are given to insure the practical stability in
which the error converges to a small ball. In the case of a constant time
delay, the exponential stability of the observer is described. An appropriate
choice of the Lyapunov–Krasovskii function (see [20] for more details) is used
for the stability analysis of the proposed observer.

The paper is organized as follows. In Sect. 2, the practical stability defi-
nition is presented. In Sect. 3, the system description is shown. The observer
design and its stability analysis are given in Sect. 4. In Sect. 5, an illustrative
example is described and the simulation results show the performances of the
suggested observer. Finally, some concluding remarks are given in Sect. 6.

2. Preliminary

We consider the following system:{
ẋ = f(t, x(t), x(t − τ(t))), t ≥ 0
x(s) = ϕ(s), ∀s ∈ [−τ∗, 0],

(2.1)

where τ∗ = sup(τ(t))t∈R+ and x(t) is the system solution with initial function
ϕ verifying:

x(s) = ϕ(s), ∀s ∈ [−τ∗, 0],
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ϕ is a constant function in the Banach space Cn,τ∗ := C([−τ∗, 0],Rn) with
norm:

‖ϕ‖τ∗ := maxs∈[−τ∗,0]‖ϕ(s)‖,

f : R+ ×R
n ×R

n −→ R
n is a piecewise continuous function in t, and locally

Lipschitz in x, and τ(t) is the time-varying delay.
The definition of the practical stability introduced in [3] is presented as

follows:

Definition 2.1 [3]. Equation (2.1) is said to be globally uniformly practically
exponentially stable if there exists a ball BR = {x ∈ R

n : ‖x‖ ≤ R} such
that BR is globally uniformly practically exponentially stable, it means that:
there exists R ≥ 0 such that for all t ≥ t0 and ϕ ∈ Cn,τ∗ ,

‖x(t, t0, ϕ)‖ ≤ R + λ1‖ϕ‖ exp(−λ2(t − t0)),

with λ1 > 0, λ2 > 0.

When R = 0, in this case the origin is an equilibrium point, then we
point the classical definition of the exponential stability.

Remark 2.2. For stability purpose, we introduce the following assumption:
There exist positive constants α1, α2, and ζ such that

‖f(t, x, y) − f(t, x̄, ȳ)‖ ≤ α1‖x − x̄‖ + α2‖y − ȳ‖,

for all t ≥ 0, and x, y, x̄, ȳ ∈ R
n. Moreover, ‖f(t, 0, 0)‖ ≤ ζ for all t ≥ 0.

Note that under this assumption, Eq. (2.1) has a unique solution
denoted by x(t). Moreover, the system admits a trivial solution x(t) = 0
only when ζ = 0 (see [13]). When ζ �= 0, then the origin is not necessar-
ily an equilibrium point. It turns out that, under this assumption, a new
neighborhood of the origin attracting solution of (2.1) can be estimated.

3. System Description

A class of nonlinear time-delay systems is presented as follows:⎧⎪⎨
⎪⎩

ẋ = Ax(t) + f(x(t), xτ(t), u(t), uτ(t)), t ≥ 0
y(t) = Cx(t)
x(s) = ϕ(s), ∀s ∈ [−τ∗, 0],

(3.1)

where x(t) ∈ R
n is the state of the system, u(t) ∈ R

m is the input, y(t) ∈ R
p

represents the output of the system and xτ(t) = x(t − τ(t)) and uτ(t) =

u(t − τ(t)) are, respectively, the delayed state and input, and x =

⎛
⎝ x1

.

.

.
xn

⎞
⎠,

xτ(t) =

⎛
⎝ x1,τ(t)

.

.

.
xn,τ(t)

⎞
⎠, A ∈ Mn(R), C ∈ Mp,n(R) where xi,τ(t) = xi(t − τ(t)),

for i = 1, . . . , n and τ∗ > 0 denotes the known upper bound of τ(t), and the
pair(A,C) is observable.
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To complete the description of system (3.1), the following assumptions
are considered.
(A1) The state and the input are bounded, that is, x(t) ∈ K ⊂ R

n (that is
a compact subset of Rn).

(A2) The function f(x(t), xτ(t), u(t), uτ(t)) is globally Lipschitz (on K) with
respect to x, xτ(t) and uτ(t), uniformly with respect to u.

4. Observer Design

In this section of the paper, we are interested in designing an observer to esti-
mate the states of the time-delay nonlinear system (3.1). Generally, not all
the states of a system are available for direct measurement. Then, the unmea-
sured states must be observed if they are needed for control. The observer
is a dynamical system which estimates the states of the system. The main
objective in the next section is to design a state estimator for the system (3.1)
such that the practical stability convergence of the resulting error system can
be guaranteed. The following state observer is proposed:{

˙̂x(t) = Ax̂(t) + f(x̂(t), x̂τ∗ , u(t), uτ∗) + L{Cx(t) − ŷ(t)}
ŷ(t) = Cx̂(t),

(4.1)

where x̂(t) denotes the estimate of the state x(t). The observation problem
consists in finding a gain L so that the system (4.2) is stable.

The dynamics of the observer error is expressed as follows:

ė = ẋ − ˙̂x = (A − LC)e + f(x(t), xτ(t), u(t), uτ(t)) − f(x̂(t), x̂τ∗ , u(t), uτ∗).
(4.2)

Remark 4.1. For the nominal part of the system (3.1) which is linear, since
(A,C) is an observable canonical form, there exists a gain matrix L such that
for all positive definite symmetric matrix Q, there exists a positive definite
symmetric matrix P which satisfies.

PAc + AT
c P = −Q, (4.3)

where Ac = A − LC.

Remark 4.2. To invoke assumptions (A1) and (A2), the term f(x(t), xτ(t),
u(t), uτ(t)) − f(x̂(t), x̂τ∗ , u(t), uτ∗) is rewritten as follows by adding and sub-
tracting f(x(t), xτ∗ , u(t), uτ∗):

f(x(t), xτ(t), u(t), uτ(t)) − f(x̂(t), x̂τ∗ , u(t), uτ∗)

= f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗) + f̄ ,

f̄ = f(x(t), xτ(t), u(t), uτ(t)) − f(x(t), xτ∗ , u(t), uτ∗).

The following inequalities hold globally (on K) thanks to assumption
(A2),

‖f(x(t), xτ∗ , u, uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)‖ ≤ ν‖(x − x̂)‖ + ν‖(xτ∗ − x̂τ∗)‖
≤ ν‖e‖ + ν‖eτ∗‖ (4.4)
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‖f̄‖ ≤ ν0‖xτ∗ − xτ(t)‖ + ν0‖uτ∗ − uτ(t)‖, (4.5)

where ν is a Lipschitz constant in (4.4), and ν0 > νf̄ , with νf̄ , is a Lipschitz
constant of f̄ , in (4.5).

From assumption (A1), there exists a bounded constant ν1 > ν0νxu such
that (4.5) can be written as follows:

‖f̄‖ ≤ ν1, (4.6)

where νxu is a positive constant which refers to the boundedness of ‖xτ∗ −
xτ(t)‖ + ‖uτ∗ − uτ(t)‖.

Theorem 4.3. Suppose that assumptions (A1)–(A2) are fulfilled, and there
exist two matrices Q and P which verify Eq. (4.3), such that

λmin(Q) >
λmax(P )
λmin(P )

(
2λmax(P )ν +

5
4

+ λmax(P )2ν2

)
, (4.7)

with λmin (respectively, λmax) represents the minimum (respectively, the max-
imum) eigenvalue.

Then, the error dynamics (4.2) is globally (on K) practically exponen-
tially stable.

Proof. Define the Lyapunov–Krasovskii candidate function:

V (e) = V1(e) + V2(e), (4.8)

with V1(e) = eT Pe which satisfies the following inequality:

λmin(P )‖e‖2 ≤ V1(e) ≤ λmax(P )‖e‖2

and

V2(e) =
∫ t

t−τ∗
e− α

2τ∗ (t−σ)eT (σ)e(σ)dσ

with α a positive constant defined thereafter. Taking the time derivative of
(4.8) along the trajectories of (4.2), and making use of (4.3), we have

V̇ (e) ≤ −ηV1 + 2eT P f̄

+ 2eT P{f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)}
+ eT e − eT

τ∗eτ∗e− α
2 − α

2τ∗ V2, (4.9)

where η = λmin(Q)
λmax(P ) . Inequality (4.9) can be written as:

V̇ (e) +
α

2τ∗ V (e) ≤ −
(
η − α

2τ∗
)

eT Pe + 2eT P f̄

+ 2eT P{f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)}
+ eT e − eT

τ∗eτ∗e− α
2 . (4.10)
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We have 2eT P f̄ ≤ 2‖e‖‖P‖‖f̄‖ (by Cauchy–Schwarz), ‖P‖ = λmax(P ), and
‖f̄‖ ≤ ν1 (inequality (4.6)). So 2eT P f̄ ≤ 2λmax(P )ν1‖e‖. We have

2eT P{f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)}
≤ 2‖e‖‖P‖‖f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)‖
≤ 2λmax(P )‖e‖‖f(x(t), xτ∗ , u(t), uτ∗) − f(x̂(t), x̂τ∗ , u(t), uτ∗)‖
≤ 2λmax(P )‖e‖(ν‖e‖ + ν‖eτ∗‖)

.

So,

V̇ (e) +
α

2τ∗ V (e) ≤ −λmin(P )
(
η − α

2τ∗
)

‖e‖2 + 2λmax(P )ν1‖e‖
+ 2λmax(P )ν‖e‖‖eτ∗‖ + 2λmax(P )ν‖e‖2 + ‖e‖2
−‖eτ∗‖2e− α

2 . (4.11)

Inequality (4.11) can be expressed as:

V̇ (e) +
α

2τ∗ V (e) ≤
(
−λmin(P )

(
η − α

2τ∗
)

+ 2λmax(P )ν + 1
)

‖e‖2

+ 2λmax(P )ν1‖e‖ + 2λmax(P )ν‖e‖‖eτ∗‖
−‖eτ∗‖2e− α

2 .

So, we have

V̇ (e) +
α

2τ∗ V (e) ≤ −ξ1(α, τ∗)‖e‖2 + θ‖e‖
+ ξ2‖e‖‖eτ∗‖ − ‖eτ∗‖2e− α

2 (4.12)

with ξ1(α, τ∗) = (λmin(P )(η − α
2τ∗ )− (2λmax(P )ν +1)

)
, ξ2 = 2λmax(P )ν and

θ = 2λmax(P )ν1.
The following inequality is verified: 2xy ≤ x2 + y2; x, y ∈ R. Replacing

x by 1
2‖e‖ and y by θ, we find

θ‖e‖ ≤ 1
4
‖e‖2 + θ2. (4.13)

Using Eq. (4.13), inequality (4.12) can be written as:

V̇ (e) +
α

2τ∗ V (e) − θ2 ≤ −
(

ξ1(α, τ∗) − 1
4

)
‖e‖2

+ ξ2‖e‖‖eτ∗‖ − ‖eτ∗‖2e− α
2 (4.14)

Now, the right site of the above inequality can be written as follows:

−
(

ξ1(α, τ∗) − 1
4

)
‖e‖2 + ξ2‖e‖‖eτ∗‖ − ‖eτ∗‖2e− α

2

= −
(

ξ1(α, τ∗) − 1
4

− ξ22
4

e
α
2

)
‖e‖2 −

(
ξ2

2e− α
4

‖e‖ − ‖eτ∗‖e− α
4

)2

.
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To satisfy inequality (4.14), all we need to do is to choose α such that(
ξ1(α, τ∗) − 1

4
− ξ22

4
e

α
2

)
> 0,

which is equivalent to

λmin(P )
α

2τ∗ +
ξ22
4

(e
α
2 − 1) < λmin(Q)

λmin(P )
λmax(P )

−
(

2λmax(P )ν +
5
4

+
ξ22
4

)
.

(4.15)

Let

ω(x) = λmin(P )
x

2τ∗ +
ξ22
4

(e
x
2 − 1),

we have ω(x) > 0 ∀x > 0 and ω(0) = 0. Let γ = λmin(Q) λmin(P )
λmax(P ) −(

2λmax(P )ν + 5
4 + ξ2

2
4

)
.

Since ω is continuous at 0, there exists δ > 0 such that ∀x ∈]0, δ[,
0 < ω(x) < γ

2 .
We choose δ1 = min(δ, 2ητ∗). Let α ∈]0, δ1[; then inequality (4.15) is

verified and η − α
2τ∗ > 0.

Inequality (4.14) becomes

V̇ (e) ≤ − α

2τ∗ V + θ2.

It follows that

V (e(t)) ≤ e− α
2τ∗ tV (e(0)) + 2θ2

τ∗

α
. (4.16)

According to (4.8), we have

V (e(0)) ≤ λmax(P )‖e(0)‖2 −
∫ 0

−τ∗
e

α
2τ∗ σ‖e(σ)‖2dσ

≤ (λmax(P ) + τ∗)sups∈[−τ∗,0]‖e(s)‖2, (4.17)

and

λmin(P )‖e(t)‖2 ≤ V (e(t)), (4.18)

then

‖e(t)‖ ≤ λ1e
− α

4τ∗ tsups∈[−τ∗,0]‖e(s)‖ + λ2 (4.19)

where λ1 =
√

λmax(P )+τ∗
λmin(P ) and λ2 =

√
2θ2τ∗

αλmin(P ) .
So the error dynamics (4.2) is globally (on K) practically exponentially stable.

�

The following theorem provides the stability result in the case of a con-
stant time delay in which we state the exponential stability behavior of the
system (4.2).
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Theorem 4.4. Let τc be a known constant time delay. Consider system (3.1)
with τ(t) = τc. If the function f(x(t), xτc

, u(t), uτc
) is globally Lipschitz (on

the compact K ⊂ R
n) with respect to x and xτc

, and uniformly with respect
to u and uτc

. Then, system (4.1) is a globally (on K) exponential observer
for system (3.1).

Proof. The time delay is constant and known (τ(t) = τc). As a matter of
the fact, we have θ = 0 and, consequently, we have λ2 = 0. Then, the error
dynamics (4.2) is globally (on K) exponentially stable. �

5. Example

Let us consider the nonlinear system under unknown time-variable delay:⎧⎪⎨
⎪⎩

ẋ1 = −3x1 + x2 + 1
2 (uτ(t)x2,τ(t) + cos(uτ(t)x1,τ(t)))

ẋ2 = −4x2 + x1 + 1
2uτ(t)x1

y = x1,

(5.1)

where A =
( −3 1

1 −4

)
,

f(x(t), xτ(t), u(t), uτ(t)) =
1
2

(
uτ(t)x2,τ(t) + cos(uτ(t)x1,τ(t))

uτ(t)x1

)
,

the input u = sin(2πft) with f = 50Hz; the function τ(t) is defined as follows:
τ(t) = 0.001 sin2(t)

2 and the initial conditions for the system are x(0) = [1 2]T ,
for the observer x̂(0) = [−1 − 1]T .

For this example, it is clear that the pair (A,C) is observable; we also
have the Lipchitz constant defined in (4.4) equal to

√
2
2 . In this case, the input

and the states are bounded. The gain L is chosen such that Ac = A − LC

is stable; we choose L = [1 1]T and it implies that Ac =
( −4 1

0 −4

)
, we also
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Figure 1. The evolution of x1 and its estimate x̂1
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Figure 2. The evolution of x2 and its estimate x̂2

choose the matrix Q as follows: Q =
(

8 0

0 8

)
and by solving the Lyapunov

equation defined in (4.3), the matrix P is given by P =
(

1 0.125

0.125 1.0313

)
. So,

the assumptions of the theorem (4.3) are satisfied . It is clear from Figs. 1
and 2 that the estimated magnitudes converges practically to the real one.

6. Conclusion

In this paper, an observer design for a class of nonlinear systems under time-
varying delay was proposed. Sufficient assumptions were given to guarantee
a practical stability of the suggested observer. Furthermore, the exponential
convergence of the observer was proved in the case of a constant time delay.
Simulation results were shown to illustrate the good performances of the
suggested observer. As a perspective, a new observer design for the same
system taking into account the reduction of the number of assumptions will
be a future work.
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