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Differentiability and Weak Differentiability
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Abstract. We show that although the differentiability and the weak
differentiability are different “locally”, these notions coincide almost
everywhere “globally”. It is proved that a Banach space valued func-
tion F : [0, 1] → X is differentiable almost everywhere on [0, 1], if and
only if F is weakly differentiable almost everywhere on [0, 1].
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1. Introduction and Preliminary

We continue the investigation of characterizations of the differentiability of
Banach space-valued functions defined on [0, 1], started in [5]. At first, the
“local” relationships between the notions of weak differentiability, the Lip-
schitz points and the convex average range are studied. Then, we investigate
the “global” relationships between differentiability and weak differentiability.
We give new necessary and sufficient conditions for a function F : [0, 1] → X
to be differentiable almost everywhere on [0, 1], see Theorem 3.2.

Throughout this paper, X denotes a real Banach space with its norm
|| · || and the topological dual X∗. By B(x, ε), the open ball with center x and
radius ε > 0 is denoted. Assume that a function F : [0, 1] → X and a point
t ∈ [0, 1] are given. We set

ΔF (t, h) =
F (t + h) − F (t)

h
( h �= ∅), AF (t, δ) = {ΔF (t, h) : 0 < |h| < δ}

˜AF (t, δ) = conv (AF (t, δ))

and
AF (t) =

⋂

δ>0

AF (t, δ), ˜AF (t) =
⋂

δ>0

˜AF (t, δ),

where conv (AF (t, δ)) is the closure of the convex hull of AF (t, δ); AF (t) and
˜AF (t) are said to be the average range and the convex average range of F
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at the point t, respectively. Clearly, AF (t) �= ∅ implies ˜AF (t) �= ∅, but the
converse is not valid, as the following example shows.

Example 1.1. Let F : [−1, 1] → �∞ be a function defined as follows

F (t) = (
√

|t|, . . . ,
√

|t|, . . . ), for all t ∈ [−1, 1].

Then AF (0) = ∅ and ˜AF (0) �= ∅.

Proof. Fix a real number 0 < h < 1. Since

ΔF (0, h) =
(

1√
h

)

and ΔF (1,−h) =
( −1√

h

)

,

we obtain
1
2
ΔF (0, h) +

(

1 − 1
2

)

ΔF (0,−h) = (0, . . . , 0, . . . ) ∈ ˜AF (t, δ)

for each δ > 0. Hence

(0, . . . , 0, . . . ) ∈ ˜AF (0).

Suppose that there exists w ∈ AF (0). Then, since

AF (0) =
+∞
⋂

n=1

AF

(

0,
1
n

)

there exists a sequence (ΔF (0, hn)), such that 0 < |hn| < 1
n , for all n ∈ N,

and

lim
n→∞ ΔF (0, hn) = w.

On the other hand, we have

lim
n→∞ ||ΔF (0, hn)||�∞ = lim

n→∞
1

√|hn| = +∞.

This contradicts the fact that every convergent sequence is bounded. Thus,
we have AF (0) = ∅ and the proof is finished. �

The function F is said to be differentiable at the point t, if there exists
a vector x ∈ X such that

lim
h→0

||ΔF (t, h) − x|| = 0.

We say that F is weakly differentiable at the point t, if there exists a vector
xw ∈ X such that

lim
h→0

Δ(x∗ ◦ F )(t, h) = x∗(xw), for each x∗ ∈ X∗.

We denote by F ′(t) = x, the derivative of F and by F ′
w(t) = xw, the weak-

derivative of F at t.
By I, the family of all non-degenerate closed subintervals of [0, 1] is de-

noted and by λ the Lebesgue measure on the family L of all Lebesgue mea-
surable subset of [0, 1]. The intervals I, J ∈ I are said to be nonoverlapping
if int(I) ∩ int(J) = ∅, where int(I) denotes the interior of I. If F : [0, 1] → X
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is a function, then we denote by ˜F the interval function ˜F : I → X defined
by ˜F ([u, v]) = F (v) − F (u), for all [u, v] ∈ I.

A function F : [0, 1] → X is said to be absolutely continuous (AC) if
for each ε > 0 there exists η > 0 such that ||∑p

j=1
˜F (Ij)|| < ε, whenever

{I1, . . . , Ip} is a finite collection of pairwise non-overlapping subintervals in
I with

∑p
i=1 λ(Ij) < η.

A function F : [0, 1] → X is said to be Lipschitz, if there exists M > 0
such that

||F (t′) − F (t′′)|| ≤ M · |t′ − t′′|, for all t′, t′′ ∈ [0, 1].

We say that F is pointwise Lipschitz at t ∈ [0, 1], if there exist ct > 0 and
δt > 0 such that

|h| < δt and t + h ∈ [0, 1] ⇒ ||F (t + h) − F (t)|| ≤ ct · |h|.
If F : [0, 1] → X is a function, then we denote by S(F ), the set of all

points t ∈ [0, 1] at which F is pointwise Lipschitz and by Sn(F ) the set of all
points t ∈ S(F ) such that ||F (t + h) − F (t)|| ≤ n · |h|, whenever |h| < 1/n
and t + h ∈ [0, 1]. Then, Sn(F ) is a closed set, see Lemma 1 in [1], and
S(F ) = ∪∞

n=1Sn(F ). Fix an arbitrary n ∈ N, and let

(0, 1)\Sn(F ) =
∞
⋃

k=1

(a(n)
k , b

(n)
k ).

Define the function Fn : [0, 1] → X by Fn(t) = F (t) for all t ∈ Sn(F ),
Fn(0) = F (0), Fn(1) = F (1) and

Fn(t) = F (a(n)
k ) +

F (b(n)k ) − F (a(n)
k )

b
(n)
k − a

(n)
k

· (t − a
(n)
k ), (1.1)

for all t ∈ [a(n)
k , b

(n)
k ] and k ∈ N.

2. The “Local” Relationships Between the Weak
Differentiability, the Lipschitz Points and the Convex
Average Range

In this section, we study the “local” relationships between weak differentia-
bility, the Lipschitz points and the convex average range. Let F be the family
of all functions defined on [0, 1] and taking values in the Banach space X,
and let t ∈ (0, 1). We set

Dd(t) = {F ∈ F : F is differentiable at t},

Dw(t) = {F ∈ F : F is weakly differentiable at t}
Dlip(t) = {F ∈ F : F is pointwise Lipschitz at t}

It is known that

Dd(t) ⊂ Dw(t) (Dw(t) �⊂ Dd(t)) and Dd(t) ⊂ Dlip(t) (Dlip(t) �⊂ Dd(t)).

At first, we will show
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• Dw(t) ⊂ Dlip(t) (Theorem 2.1),
• Dlip(t) �⊂ Dw(t) (Example 2.2).

Theorem 2.1. Let F : [0, 1] → X be a function and let t ∈ (0, 1). If F is
weakly differentiable at t, then F is pointwise Lipschitz at t.

Proof. Let (hn) be an arbitrary sequence of real numbers such that

lim
n→∞ hn = 0.

Then, there exists a vector xw ∈ X such that

lim
n→∞ x∗(xn) = x∗(xw), for each x∗ ∈ X∗, (2.1)

where

xn = ΔF (t, hn), for all n ∈ N.

For each n ∈ N, define a function x̂n : X∗ → R as follows

x̂n(x∗) = x∗(xn), for all x∗ ∈ X∗.

By (2.1) we obtain that the set

{x̂n(x∗) : n ∈ N}
is bounded for each x∗ ∈ X∗. Therefore, by Corollary II.1.1 in [8], we have

{||xn|| : n ∈ N} = {||ΔF (t, hn)|| : n ∈ N} is a bounded set. (2.2)

Since the sequence (hn) is arbitrary, the last result holds for each sequence
(hn) which converges to zero.

Now suppose that F is not pointwise Lipschitz at the point t. Then, for
each n ∈ N there exists hn ∈ N such that

0 < |hn| <
1
n

and ||ΔF (t, hn)|| > n.

This contradicts (2.2). Hence, F is pointwise Lipschitz at t, and this ends the
proof. �

Example 2.2. Let F : [−1, 1] → �1 be a function given as follows

F (t) =
{

(0, . . . , 0, . . . ) if t �= 1
n

(0, . . . , 0, 1
n , 0, . . . ) if t = 1

n

, t ∈ [−1, 1] n = 1, 2, 3, . . .

Then F is Lipschitz at the point t = 0 but not weakly differentiable.

Proof. Note that

ΔF (0, h) =
{

(0, . . . , 0, . . . ) if h �= 1
n

(0, . . . , 0, 1, 0, . . . ) if h = 1
n

and
||F (t) − F (0)||�1 ≤ |t|, for all t ∈ [−1, 1].

Thus, F is Lipschitz at the point t = 0.
Taking x∗

0 = (1, 1, 1, . . . ) ∈ �∗
1 = �∞, we have

x∗
0

(

F ( 1
n ) − F (0)

1
n

)

= 1, for all n ∈ N



Vol. 13 (2016) Differentiability and Weak Differentiability 2805

and

x∗
0

(

F (h) − F (0)
h

)

= 0, for h �= 1
n

.

Therefore, the weak derivative of F cannot exist at t = 0. �

We now investigate the relation between the weak differentiability and
the convex average range at a point.

Theorem 2.3. Let F : [0, 1] → X be a function and let t ∈ (0, 1). If F is
weakly differentiable at t with F ′

w(t) = xw, then

˜AF (t) = {xw}.

Proof. By hypothesis, we have

lim
h→0

Δ(x∗ ◦ F )(t, h) = x∗(xw), for each x∗ ∈ X∗. (2.3)

Fix an arbitrary x∗ ∈ X∗. We claim that
˜Ax∗◦F (t) = {x∗(xw)}. (2.4)

Indeed, by (2.3), we obtain

x∗(xw) ∈ ˜Ax∗◦F (t)

and
lim
δ→0

diam (Ax∗◦F (t, δ)) = 0,

where diam(R) = sup{|r′ − r′′| : r′, r′′ ∈ R}, R ⊂ R. The last equality
together with

diam (Ax∗◦F (t, δ)) = diam
(

˜Ax∗◦F (t, δ)
)

,

yields
lim
δ→0

diam
(

˜Ax∗◦F (t, δ)
)

= 0,

Therefore,

diam
(

˜Ax∗◦F (t)
)

= 0,

and since x∗(xw) ∈ ˜Ax∗◦F (t), we obtain that (2.4) holds true. Since x∗ is
arbitrary the equality (2.4) holds for each x∗ ∈ X∗.

We now claim that xw ∈ ˜AF (t). Indeed, if we suppose that xw /∈ ˜AF (t),
then there exists δw > 0 such that xw /∈ ˜AF (t, δw). Therefore, by Theorem
V.2.10 in [3], there exist x∗

w ∈ X∗, c ∈ R and α > 0 such that

x∗
w(xw) ≤ c < c + α ≤ x∗

w

(

˜AF (t, δw)
)

. (2.5)

On the other hand, it is easy to see that

x∗
w [ conv (AF (t, δw))] = ˜Ax∗

w◦F (t, δw),

and since x∗
w(Y ) = x∗

w(Y ), Y ⊂ X, it follows that

x∗
w

(

˜AF (t, δw)
)

= ˜Ax∗
w◦F (t, δw).
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The last equality together with (2.5) contradicts (2.4). Thus, xw ∈ ˜AF (t).
It remains to prove that if x1 ∈ ˜AF (t), then x1 = xw. By the inclusion

x∗
(

˜AF (t)
)

⊂ ˜Ax∗◦F (t),

we obtain x∗(x1) = x∗(xw), for all x∗ ∈ X∗. Hence, by Hahn–Banach theo-
rem, x1 = xw. Thus, ˜AF (t) = {xw}, and this ends the proof. �

Corollary 2.4. Let F : [0, 1] → X be a function and let t ∈ (0, 1). If F is
differentiable at t with F ′(t) = x0, then

˜AF (t) = {x0}.

The following example shows that the converse to Theorem 2.3 is false.

Example 2.5. Let F : [− 1
2 , 1

2 ] → �2 be a function defined as follows

F (t) =

{

(0, . . . , 0, . . . ) if t ∈ [− 1
2 , 0]

(0, . . . , k
2k+1 , k+1

2k+2 . . . ) if t ∈ (

1
2k+1 , 1

2k

] k = 1, 2, . . . .

Then ˜AF (0) = {(0, . . . , 0, . . . )} and F is not weakly differentiable at t = 0.

Proof. First, we will prove that
˜AF (0) = {(0, . . . , 0, . . . )}. (2.6)

We have

ΔF (0, h) =

{

(0, . . . , 0, . . . ) if − 1
2 < h < 0

1
h · (0, . . . , k

2k+1 , k+1
2k+2 . . . ) if h ∈ (

1
2k+1 , 1

2k

]

and

(0, . . . , 0, . . . ) ∈ ˜AF

(

0,
1
2k

)

, for all k ∈ N,

and since

˜AF (0) =
+∞
⋂

k=1

˜AF

(

0,
1
2k

)

it follows that

(0, . . . , 0, . . . ) ∈ ˜AF (0).

Assume that

w = (w1, . . . , wn, . . . ) ∈ ˜AF (0).

Then, there exists a sequence (zk) ⊂ �2 such that

zk ∈ conv
(

AF

(

0,
1
2k

))

, for each k ∈ N

and
lim

k→∞
||zk − w||�2 = 0. (2.7)

Since

zk = (0, . . . , 0, . . . ) or zk = (0, . . . , 0, z
(k)
k+1, z

(k)
k+2 . . . )
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for each k ∈ N, we have

||zk − w||�2 =

(

+∞
∑

i=k+1

|z(k)i − wi|2 +
k

∑

i=1

|wi|2
)

1
2

.

The last equality together with (2.7) yields

w = (0, . . . , 0, . . . )

and, therefore, (2.6) holds true.
We now prove that F is not weakly differentiable at t = 0. To see this,

let us consider the vector

x∗ =
(

1,
1
2
, . . . ,

1
k

, . . .

)

∈ �∗
2 = �2.

Since

x∗(x) =
+∞
∑

k=1

1
k

· xk, for each x = (x1, . . . , xk, . . . ) ∈ �2,

we obtain

x∗
(

ΔF

(

0,
1
2k

))

=
+∞
∑

m=1

1
2m

>
1
2
.

This means that F is not weakly differentiable at t = 0. �

3. The “Global” Relationships Between the Differentiability
and the Weak Differentiability

We now investigate the relationships between the differentiability and the
weak differentiability almost everywhere on [0, 1] of a function F : [0, 1] → X.
Let us now set

Dd = {F ∈ F : F is differentiable a.e. on [0, 1]},

Dw = {F ∈ F : F is weakly differentiable a.e. on [0, 1]},

Dlip = {F ∈ F : F is pointwise Lipschitz a.e. on [0, 1]},

Dcar = {F ∈ F : ˜AF (t) �= ∅ a.e. on [0, 1]},

Dar = {F ∈ F : AF (t) �= ∅ a.e. on [0, 1]}.

We will show

Dd = Dw = Dlip ∩ Dcar = Dlip ∩ Dar (Theorem 3.2).

Let us start with the following auxiliary lemma.

Lemma 3.1. If F : [0, 1] → X is a Lipschitz function and ˜AF (t) �= ∅ for
almost all t ∈ [0, 1], then AF (t) �= ∅ for almost all t ∈ [0, 1].
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Proof. By hypothesis, there exists Z ⊂ [0, 1] with λ(Z) = 0, such that
˜AF (t) �= ∅ for all t ∈ [0, 1]\Z. Then, we can choose a vector xt ∈ ˜AF (t),
for all t ∈ [0, 1]\Z, and define the function f : [0, 1] → X as follows

f(t) =
{

xt if t ∈ [0, 1]\Z
0 if t ∈ Z

.

Since x∗ ◦ F is Lipschitz, x∗ ◦ F is differentiable almost everywhere on [0, 1].
Thus, for each x∗ ∈ X∗, there exists Z(x∗) ⊂ [0, 1] with λ(Z(x∗)) = 0 such
that (x∗ ◦ F )′(t) exists for all t ∈ [0, 1]\Z(x∗). Further, by Corollary 2.4, we
obtain

˜Ax∗◦F (t) = {(x∗ ◦ F )′(t)}, for all t ∈ [0, 1]\Z(x∗),

and since

x∗
(

˜AF (t)
)

⊂ ˜Ax∗◦F (t),

it follows that

(x∗ ◦ F )′(t) = (x∗ ◦ f)(t), for all t ∈ [0, 1]\(Z ∪ Z(x∗)).

We have also that F is AC. Therefore, by Theorem 5.1 in [7], f is Pettis
integrable on [0, 1] with the primitive F , i.e., ˜F (I) = (P )

∫

I
f(t)dλ, for all

I ∈ I.
In the same manner as in the proof of Theorem 2.3 (iv) (⇒) (i), [4],

we can prove that f is Bochner integrable with the primitive F , i.e., ˜F (I) =
(B)

∫

I
f(t)dλ, for all I ∈ I. Hence, by Theorem II.2.9 in [2], F is differentiable

almost everywhere on [0, 1]. Thus, there exists ZB ⊂ [0, 1] with λ(ZB) = 0
such that F ′(t) exists at all t ∈ [0, 1]\ZB , and since

F ′(t) ∈ AF (t), for each t ∈ [0, 1]\ZB ,

the proof is finished. �

We are now ready to present the main result of this paper. The equiva-
lence (i) ⇔ (iv) in the following theorem has been proved in [5]. Here similar
techniques and ideas are developed.

Theorem 3.2. Let F : [0, 1] → X be a function. Then, the following are
equivalent:

(i) F is differentiable almost everywhere on [0, 1],
(ii) F is weakly differentiable almost everywhere on [0, 1],
(iii) F is pointwise Lipschitz at t and ˜AF (t) �= ∅ for almost all t ∈ [0, 1].
(iv) F is pointwise Lipschitz at t and AF (t) �= ∅ for almost all t ∈ [0, 1].

Proof. Clearly, (i) ⇒ (ii). Theorem 2.1 together with Theorem 2.3 yields (ii)
⇒ (iii).

(iii) ⇒ (iv). Assume that there exists Z ⊂ [0, 1] with λ(Z) = 0 such
that ˜AF (t) �= ∅ and F is pointwise Lipschitz for all t ∈ [0, 1]\Z.

It is enough to show that AF (t) �= ∅ for almost all t ∈ S(F ). To see this,
fix an arbitrary n ∈ N. In the same manner as in the proof of Theorem 2.2
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in [5], we can prove that there exists Zn ⊂ [0, 1] with λ(Zn) = 0 such that
the equality

lim
h→0

F (t + h) − Fn(t + h)
h

= 0, (3.1)

holds for all t ∈ Sn(F )\Zn, where Fn is defined by (1.1).
We now prove that the inclusion

˜AF (t) ⊂ ˜AFn
(t), (3.2)

holds for each t ∈ Sn(F )\(Z ∪ Zn). Assume that an arbitrary point t ∈
Sn(F )\(Z ∪ Zn), a vector x ∈ ˜AF (t) and a natural number k ∈ N are given.
By virtue of (3.1), given ε > 0, there exists δε > 0 such that for each h ∈ R,
we have

0 < |h| < δε ⇒
∥

∥

∥

∥

F (t + h) − Fn(t + h)
h

∥

∥

∥

∥

<
ε

2
. (3.3)

Fix kε ∈ N such that
1
kε

< min
{

1
k

, δε

}

. (3.4)

Since

x ∈ ˜AF (t) =
+∞
⋂

m=1

˜AF

(

t,
1
m

)

⊂ ˜AF

(

t,
1
kε

)

there exist r1, . . . , rs ∈ [0, 1] with
∑s

i=1 r1 = 1, and

ΔF (t, h1), . . . ,ΔF (t, hs) ∈ AF

(

t,
1
kε

)

,

such that
s

∑

i=1

ri · ΔF (t, hi) ∈ B
(

x,
ε

2

)

or
∣

∣

∣

∣

∣

∣

∣

∣

s
∑

i=1

ri · ΔF (t, hi) − x

∣

∣

∣

∣

∣

∣

∣

∣

<
ε

2
. (3.5)

Since t ∈ Sn(F ), we have also

ΔFn(t, h) =
Fn(t + h) − F (t + h)

h
+ ΔF (t, h). (3.6)

The last equality together with (3.5), (3.3) and (3.4) yields
∣

∣

∣

∣

∣

∣

∣

∣

s
∑

i=1

ri · ΔFn(t, hi) − x

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

∣

∣

(

s
∑

i=1

ri · ΔF (t, hi) − x

)

+
s

∑

i=1

ri · Fn(t + hi) − F (t + hi)
hi

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

s
∑

i=1

ri · ΔF (t, hi) − x

∣

∣

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

∣

∣

s
∑

i=1

ri · Fn(t + hi) − F (t + hi)
hi

∣

∣

∣

∣

∣

∣

∣

∣

<
ε

2
+

s
∑

i=1

ri ·
∥

∥

∥

∥

Fn(t + hi) − F (t + hi)
hi

∥

∥

∥

∥

<
ε

2
+

ε

2
= ε.
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This means that B(x, ε) ∩ conv
(

AFn
(t, 1

kε
)
)

�= ∅. Hence, by (3.4), we obtain

B(x, ε) ∩ conv

(

AFn

(

t,
1
k

))

�= ∅.

Thus, x ∈ ˜AFn

(

t, 1
k

)

, and since k is arbitrary, it follows that

x ∈ ˜AFn
(t) =

+∞
⋂

m=1

˜AFn

(

t,
1
m

)

.

Since t and x have been taken arbitrarily, (3.2) holds for all t ∈ Sn(F )\(Z ∪
Zn). Hence

˜AFn
(t) �= ∅, for almost all t ∈ Sn(F ),

and by (1.1), we have also ˜AFn
(t) �= ∅ at all t ∈ (a(n)

k , b
(n)
k ), for each k ∈ N.

Thus
˜AFn

(t) �= ∅, for almost all t ∈ [0, 1]. (3.7)

Since lim
k→∞

(b(n)k − a
(n)
k ) = 0, there is a real number Mn ≥ 1 such that

||F (b(n)k ) − F (a(n)
k )||

(b(n)k − a
(n)
k )

≤ Mn, for all k ∈ N.

It follows that

|| ˜Fn(I)|| ≤ λ(I) · max{n,Mn}, for all I ∈ I.

The last result together with (3.7) and Lemma 3.1 yields

AFn
(t) �= ∅, for almost all t ∈ [0, 1],

and since

AFn
(t) = AF (t), for almost all t ∈ Sn(F ),

(see [Claim 5] in Theorem 2.6, [6]), we obtain

AF (t) �= ∅, for almost all t ∈ Sn(F ).

Since n is arbitrary, AF (t) �= ∅ for almost all t ∈ S(F ) = ∪∞
n=1Sn(F ).

Finally, by Theorem 2.2 in [5], we obtain immediately (iv) ⇒ (i), and
this ends the proof. �
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