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Abstract. In this article, we consider the dynamical behavior of the non-
classical diffusion equation in unbounded domain while the nonlinear-
ity satisfy the arbitrary order polynomial growth conditions. Using the
tail-estimated method and the asymptotic a priori estimate method,
we obtain the existence of (H1(Ω) ∩ Lp(Ω), L2(Ω))-global attractor,
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1. Introduction

The study of global attractor for infinite-dimensional dynamical systems has
attracted much attention and has made fast progress in recent decades, see,
for instance [4,7–9,16,18,19,26,32] and the references therein. Meanwhile,
the asymptotical behavior of infinite-dimensional dynamical systems for par-
tial differential equations in Poincaré domain has attracted much attention in
mathematical literature, see, for example [3,20–22] and the references therein.

Let Ω ⊂ R
N be an open set, not necessarily bounded, and suppose that

Ω satisfies the Poincaré inequality, i.e., there exists a constant λ1 > 0 such
that ∫

Ω

|u(x)|2dx ≤ λ−1
1

∫
Ω

|∇u(x)|2dx, ∀x ∈ H1
0 (Ω).

We investigate the long-time behavior of the solutions for the following
nonclassical parabolic equations

ut − Δut − Δu + ϕ(u) = g(x), x ∈ Ω, (1.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-015-0617-0&domain=pdf
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with the initial data
u(x, 0) = u0, x ∈ Ω, (1.2)

and zero Dirichlet boundary condition

u = 0, x ∈ ∂Ω, (1.3)

where g(x) ∈ L2(Ω), and the nonlinearity ϕ(u) satisfies:

ϕ(u)u ≥ c0|u|p − ψ1(x), (1.4)
|ϕ(u)| ≤ c1|u|p−1 + ψ2(x), (1.5)
ϕ′(u) ≥ −c2, (1.6)

and
c3|u|p − ψ3(x) ≤ Φ(u) ≤ c4|u|p + ψ4(x), (1.7)

where Φ(s) =
∫ s

0
ϕ(r)dr, p ≥ 2, ψ1(x), ψ3(x), ψ4(x) ∈ L1(Ω), ψ2(x) ∈

L
p

p−1 (Ω) are nonnegative functions, and ci(i = 0, 1, 2, 3, 4) are all positive
constants.

This equation is a special form of the nonclassical diffusion equations
used in fluid mechanics, solid mechanics and heat conduction theory (see
[1,2,11–14]) for details.

In recent decades, on bounded domains, the long-time behavior for prob-
lem (1.1), especially the global attractor, exponential attractors and pullback
attractor, has been discussed by many authors in [15,23,24,27,29]. On un-
bounded domain, using the tail-estimate method introduced in [28], the pull-
back attractor was obtained in [31] in H1(RN ), and in [17], the authors proved
the existence of global attractor in H1(RN ) when f(u) = f1(u) + a(x)f2(u).
To the best of our knowledge, the existence of bi-space global attractor for
Eq. (1.1) in unbounded domains has not been considered by predecessors.

Since the nonclassical diffusion equations contain the term −Δut, it is
essentially different from the classical reaction diffusion equation. For exam-
ple, the reaction diffusion equation has some kind of “regularity”; e.g., al-
though the initial data only belong to a weaker topology space, the solution
will belong to a stronger topology space with higher regularity. However, for
problem (1.1), because of −Δut, the solution has no higher regularity, which
is similar to hyperbolic equations. This brings some difficulty in establishing
the existence of bi-space global attractors for nonclassical diffusion equations.

To prove the existence of bi-space global attractors, we need to show
the existence of a family of compact sets. This can be done by using the
standard compact Sobolev embedding of several functional spaces, when we
consider the systems in some bounded domains. However, when we consider
the asymptotic behavior of solutions, particularly, the existence of attractor
in some unbounded domains, the Sobolev embedding is no longer compact.

To overcome these difficulties, using the ideas of Ball [5], and the tail-
estimate method of Wang [28] for reaction diffusion equations, and the as-
ymptotic a priori estimate method of Zhong et al. [32], we prove the existence
of bi-space global attractors for Eq. (1.1) in unbounded domains.

This paper is organized as following: in Sect. 2, we recall some basic
definitions and related theorems that will be used later. In Sect. 3, we obtain
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the existence of weak solution and bounded absorbing set. The main result
is stated and proved in Sect. 4.

2. Preliminaries

In this section, we recall some notations and abstract results.

Definition 2.1 [32]. Let M be a metric space and A be a bounded subsets of
M . The Kuratowski measure of noncompactness of A defined by

mes(A) = inf{δ > 0|A admits a finite cover by sets whose diameter ≤ δ}.

Definition 2.2 [32]. Let X be a Banach space and {S(t)}t≥0 be a family of
operators on X. We say that {S(t)}t≥0 is a continuous semigroup (C0 semi-
group) (or norm-to-weak continuous semigroup) on X, if {S(t)}t≥0 satisfies

(i) S(0) = Id (the identity);
(ii) S(t)S(s) = S(t + s), ∀t, s ≥ 0;
(iii) S(tn)xn → S(t)x, if tn → t, xn → x in X [or (iii) S(tn)xn ⇀ S(t)x, if

tn → t, xn → x in X].

Definition 2.3 [32]. A C0 semigroup (or norm-to-weak continuous semigroup)
{S(t)}t≥0 in a complete metric space M is called ω-limit compact if for every
bounded subset B of M and for every ε > 0, there is a t(B) > 0, such that

mes

⎛
⎝ ⋃

t≥t(B)

S(t)B

⎞
⎠ ≤ ε.

Condition C [32]. For any bounded set B of a Banach space X, there exists a
t(B) > 0 and a finite dimensional subspace X1 of X such that {‖PmS(t)B‖}
is bounded and

‖(I − Pm)S(t)x‖ < ε for t ≥ t(B), x ∈ B.

where Pm : X → X1 is a bounded projector.

Lemma 2.1 [32]. Let X be a Banach space and {S(t)}t≥0 be a C0 semigroup
(or norm-to-weak continuous semigroup) in X.
(1) If Condition C holds, the {S(t)}t≥0 is ω-limit compact.
(2) Let X be a uniformly convex Banach space. Then {S(t)}t≥0 is ω-limit

compact if and only if Condition C holds.

Theorem 2.1 [32]. Let X be a Banach space. Then, the C0 semigroup (or
norm-to-weak continuous semigroup) {S(t)}t≥0 has a global attractor in X if
and only if
(1) there is a bounded absorbing set B ⊂ X.
(2) {S(t)}t≥0 is ω-limit compact.

Next, we iterate some definitions and abstract results concerning the
global attractor, which are necessary to obtain our main results, we refer to
see [4–6,19,25,26,30] for more details.
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Definition 2.4. A set A ⊂ X , which is invariant, closed in X, compact in
Z and attracts the bounded subsets of X in the topology of Z, is called an
(X,Z)-global attractor.

Definition 2.5. Let {S(t)}t≥0 be a semigroup on Banach space X. A set
B0 ⊂ Z, satisfying that, for any bounded subset B ⊂ X, there is a T = T (B),
such that S(t)B ⊂ B0, for any t ≥ T , is called an (X,Z)-bounded absorbing
set.

Definition 2.6. Let {S(t)}t≥0 be a semigroup on Banach space X. {S(t)}t≥0

is called (X,Z)-asymptotically compact, if for any bounded (in X) sequence
{xn}∞

n=1 ⊂ X and tn ≥ 0, tn → ∞ as n → ∞, {S(tn)xn}∞
n=1 has a conver-

gence subsequence with respect to the topology of Z.

Lemma 2.2. Let X be a Sobolev space and {S(t)}t≥0 be a continuous semi-
group on X. Furthermore, we also assume that S(t)X ⊂ Lp(RN ) for some
1 ≤ p < ∞ [the nested relation between X and Lp(RN ) is unknown]. Then
{S(t)}t≥0 has a (X,Lp(RN ))-global attractor provided that the following con-
ditions hold:

(i) {S(t)}t≥0 has a (X,Lp(RN ))-bounded absorbing set B0 ⊂ Lp(RN );
(ii) there is a q(1 ≤ q ≤ p) such that {S(t)}t≥0 is (X,Lq(RN ))-asymptotically

compact;
(iii) for any ε > 0 and any bounded subset B ⊂ X, there exist positive con-

stants M = (ε,B) and T = T (ε,B), such that
∫

Ω(|S(t)u0|≥M)

|S(t)u0|p < ε for any u0 ∈ B and t ≥ T. (2.1)

With the usual notation, hereafter let |u| be the norm of L2(Ω), | · |p
be the norm of Lp(Ω). Let C the arbitrary positive constant, which may be
different from line to line and even in the same line.

3. Bounded Absorbing Set

3.1. Well-Posedness

Using the Galerkin approximation method [4,19,26], and similar to the proof
of Theorem 3.1 in [17], we can get the following result easily.

Theorem 3.1. Under the assumptions of (1.4)–(1.7), then for any T > 0 and
u0 ∈ H1(Ω) ∩ Lp(Ω), there is a unique solution u of (1.1)–(1.3) such that

u ∈ C1([0, T ];H1(Ω)) ∩ Lp(0, T ;Lp(Ω)).

Moreover, the solution continuously depends on the initial data.

According to Theorem 3.1 above, and let S(t)u0 = u(t), S(t) : H1(Ω) ∩
Lp(Ω) → H1(Ω) ∩ Lp(Ω) is a C0 semigroup.
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3.2. Bounded Absorbing Set

Now, we construct the existence of the absorbing set in H1(RN )∩Lp+1(RN )
for the semigroup generated by the Eq. (1.1).

Lemma 3.1. Under the assumptions of (1.4)–(1.7), there is a positive constant
ρ such that for any bounded subset B ∈ B(H1(RN )∩Lp+1(RN )), there exists
T1 > 0 such that

|u(t)|2 + |∇u(t)|2 + |u(t)|pp ≤ ρ2, for all t ≥ T1 and u0 ∈ B.

Proof. Multiplying (1.1) by u, using (1.4), we have
1
2

d
dt

(|∇u|2 + |u|2) + |∇u|2 + C|u(t)|pp ≤ (g(x), u) + C. (3.1)

By the Poincaré inequality, for some ν > 0, there holds
d
dt

(|∇u|2 + |u|2) + ν(|∇u|2 + |u|2) + C(|∇u|2 + |u|2 + |u(t)|pp) ≤ C. (3.2)

In particular, we infer
d
dt

(|∇u|2 + |u|2) + ν(|∇u|2 + |u|2) ≤ C. (3.3)

By the Gronwall lemma, we get

|∇u(t)|2 + |u(t)|2 ≤ e−νt(|∇u(0)|2 + |u(0)|2) + C. (3.4)

Now, integrating (3.2) from s to s + 1, by virtue of (3.4), we obtain∫ s+1

s

(|∇u(t)|2 + |u(t)|2 + |u(t)|pp) ≤ C. (3.5)

According to (1.7), we get

C1|u|pp − C2 ≤
∫

Φ(u)dx ≤ C3|u|pp + C4. (3.6)

Combining (3.5) and (3.6), we obtain∫ s+1

s

(
|∇u(t)|2 + |u(t)|2 + 2

∫
Φ(u)dx

)
≤ C. (3.7)

On the other hand, multiplying (1.1) by ut, we infer

2|ut|2 + 2|∇ut|2 +
d
dt

(
|∇u|2 + 2

∫
Φ(u)dx

)
= 2(g(x), ut). (3.8)

Noting that 2|(g(x), ut)| ≤ |g(x)|2 + |ut|2, we infer

d
dt

(
|∇u|2 + 2

∫
Φ(u)dx

)
≤ C. (3.9)

By virtue of (3.5), using the Poincaré inequality and the uniform Gronwall
inequality, we obtain

|∇u|2 + |u|2 + 2
∫

Φ(u)dx ≤ C. (3.10)

By (3.6), there exists T1 = T1(B), such that for all t ≥ T1, we infer

|u(t)|2 + |∇u(t)|2 + |u(t)|pp ≤ ρ2. (3.11)
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This completes the proof. �

According to Lemma 3.1, we know that the semigroup of operators
{S(t)}t≥0 has an (H1(Ω) ∩ Lp(Ω),H1(Ω) ∩ Lp(Ω))-bounded absorbing set B.

Remark 3.2. The family of (H1(Ω)∩Lp(Ω),H1(Ω)∩Lp(Ω))-bounded absorb-
ing set B is also (H1(Ω) ∩ Lp(Ω), L2(Ω)), (H1(Ω) ∩ Lp(Ω), Lp(Ω)), (H1(Ω) ∩
Lp(Ω),H1(Ω))-bounded absorbing set for the semigroup of operators
{S(t)}t≥0.

4. Global Attractors

4.1. Norm-to-Weak Continuous Semigroup

Lemma 4.1 [32]. Let X, Y be two Banach spaces, and X∗, Y ∗ be their dual
spaces, respectively. We also assume that X is a dense subspace of Y , the
injection i : X → Y is continuous and its adjoint i∗ : Y → X is densely injec-
tive. {S(t)}t≥0 be a semigroup on X and Y , respectively, and assume further-
more that {S(t)}t≥0 is continuous or weak continuous on Y. Then {S(t)}t≥0

is a norm-to-weak continuous semigroup on X if and only if {S(t)}t≥0 maps
compact subsets of X × R

+ into bounded sets of X.

According to the fact that {S(t)}t≥0 is continuous in H1(Ω) and L2(Ω),
by the above lemma, we deduce that {S(t)}t≥0 is norm-to-weak continuous
in Lp(Ω). It is well known that the continuity of the semigroup can guarantee
the invariance of the global attractor, e.g., see [16,32].

4.2. (H1(Ω) ∩ Lp(Ω), L2(Ω))-Global Attractor

The aim of this section is to establish the existence of the (H1(Ω) ∩ Lp(Ω),
L2(Ω))-global attractor.

Lemma 4.2. For any ε > 0, and any B ∈ B(H1(Ω) ∩ Lp(Ω)), there exist
T2 > 0 such that

|ut(t)|2 + |∇ut(t)|2 ≤ C, (4.1)

for all t ≥ T2, u0 ∈ B, where ut(s) = d
dt (S(t)u0)|t=s.

Proof. By differentiating Eq. (1.1) with respect to t, we have

utt − Δutt − Δut + ϕ′(u)ut = 0. (4.2)

Multiplying (4.2) with ut and using (1.6), we obtain

d
dt

(|∇ut|2 + |ut|2) + 2|∇ut|2 ≤ 2c2|ut|. (4.3)

By the Young inequality, we infer
d
dt

(|∇ut|2 + |ut|2) ≤ C(|∇ut|2 + |ut|2). (4.4)

In view of (3.8) and (3.10), we have∫ s+1

s

(|∇ut|2 + |ut|2) ≤ C. (4.5)
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Using the uniform Gronwall inequality, we complete the proof.
We now establish the following skillful estimates, and these estimates

are crucial for proving the asymptotic compactness. �

Lemma 4.3. Under the assumptions of (1.4)–(1.7), for any u0 ∈ H1(Ω) ∩
Lp(Ω) and ε > 0, there are some T3 > 0 and K > 0 such that∫

|x|≥2k

(|u(t)|2 + |∇u(t)|2) ≤ Cε, (4.6)

whenever k ≥ Kand t ≥ T3.

Proof. Choose a smooth function �(x) with

�(x) =

{
0, 0 ≤ s ≤ 1,

1, s ≥ 2,
(4.7)

where 0 ≤ �(s) ≤ 1, 1 ≤ s ≤ 2, and there is a constant c such that |�′(s)| ≤ c.

Multiplying (1.1) with �2( |x|2
k2 )u and integrating on Ω, we obtain

1
2

d
dt

∫
�2

( |x|2
k2

)
(|∇u|2 + |u|2)dx −

∫
�2

( |x|2
k2

)
uΔudx

= −
∫

�2

( |x|2
k2

)
ϕ(u)udx +

∫
4x

k2
�

( |x|2
k2

)
�′

( |x|2
k2

)
u∇utdx

+
∫

�2

( |x|2
k2

)
ugdx. (4.8)

Noting that ∫
Ω

�2

( |x|2
k2

)
uΔudx = −

∫
Ω

�2

( |x|2
k2

)
|∇u|2dx

−
∫

Ω

4x

k2
�

( |x|2
k2

)
�′

( |x|2
k2

)
u∇udx. (4.9)

According to the condition |�′(s)| ≤ c and the existence of a bounded ab-
sorbing set in H1(Ω) ∩ Lp(Ω) for t ≥ t∗, it follows that∣∣∣∣

∫
Ω

4x

k2
�

( |x|2
k2

)
�′

( |x|2
k2

)
u∇udx

∣∣∣∣
=

∣∣∣∣∣
∫

k≤|x|≤√
2k

4x

k2
�

( |x|2
k2

)
�′

( |x|2
k2

)
u∇udx

∣∣∣∣∣
≤ 4

√
2

k

∫
k≤|x|≤√

2k

�2

( |x|2
k2

)
|u||∇u|dx

≤ C

k
(|u|2 + |∇u|2)

≤ Cρ

k
, (4.10)

where Cρ is independent of k.
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Similarly to (4.10), using Lemma 4.2, we infer∣∣∣∣
∫

Ω

4x

k2
�

( |x|2
k2

)
�′

( |x|2
k2

)
u∇utdx

∣∣∣∣ ≤ C

k
(|u|2 + |∇ut|2) ≤ C

k
, (4.11)

where C is independent of k.
Using (1.4), and noting that ψ1(x) ∈ L1(Ω), there exits k2(ε) ≥ k1(ε)

such that

−
∫

Ω

�2

( |x|2
k2

)
ϕ(u)udx ≤ −

∫
Ω

�2

( |x|2
k2

)
|u|pdx +

∫
Ω

�2

( |x|2
k2

)
ψ1(x)dx

≤
∫

|x|≥k

ψ1(x)dx

≤ Cε. (4.12)

From the assumption g(x) ∈ L2(Ω), provided k3(ε) ≥ k2(ε), such that∫
|x|≥k

|g|2dx ≤ εC. (4.13)

Thus combining with (4.8)–(4.13), provided k4(ε) > k3(ε), using the Poincaré
inequality, for some δ > 0, we infer

d
dt

∫
Ω

�2

( |x|2
k2

)
(|∇u|2 + |u|2)dx + δ

∫
Ω

�2

( |x|2
k2

)
(|∇u|2 + |u|2)dx ≤ Cε.

(4.14)

Thus, using the Gronwall lemma, we get∫
|x|≥2k

(|u(t)|2 + |∇u(t)|2)dt ≤ Cε, (4.15)

provided T ≥ T3 and k ≥ K, this completing the proof. �
Theorem 4.1. Under the assumptions of (1.4)–(1.7), then the semigroup
{S(t)}t≥0 associated with the initial value problem (1.1) and (1.3) has an
(H1(Ω) ∩ Lp(Ω), L2(Ω))-global attractor A.

Proof. According to Remark 3.2, the semigroup of operators {S(t)}t≥0 has
an (H1(Ω) ∩ Lp(Ω), L2(Ω))-bounded absorbing set. We only need to show
that {S(t)}t≥0 is (H1(Ω) ∩ Lp(Ω), L2(Ω))-asymptotic compact.

Let {utk} ⊂ B ∈ B(H1(Ω) ∩ Lp(Ω)), and tk → ∞. For a given K > 0,
denote by

ΩK = {x : |x| ≤ K} and Ωc
K = {x : |x| > K}. (4.16)

According to Lemma 4.4, for ε > 0, there exist K > 0 , T3 > 0, such that for
t ≥ T3,

|S(t)u0|L2(Ωc
K) ≤ ε. (4.17)

Noting that tk → ∞, there exists N1 ∈ N such that for all n ≥ N1 and t ≥ T3,
we obtain

|S(tk)utk |L2(Ωc
K) ≤ ε. (4.18)

On the other hand, by Lemma 3.1, there exist ρ > 0, and N2 ∈ N such that
for all n ≥ N1, we get

|S(tk)utk |H1(Ωc
K) ≤ ρ. (4.19)
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Noting that ΩK is a bounded domain, by the compactness of embedding
H1(ΩK) ⊂ L2(ΩK), we know that the sequence {S(tk)utk} is precompact
in L2(ΩK). Hence, for any given ε > 0, {S(tk)utk} has a finite covering in
L2(ΩK) of balls of radius less than ε. Combining with (4.18), we know that
{S(tk)utk} has a finite covering in L2(Ω) of balls of radius less than ε. This
implies that {S(tk)utk} is precompact in L2(Ω).

This completes the proof. �

4.3. (H1(Ω) ∩ Lp(Ω), Lp(Ω))-Global Attractor

In this section, we want to obtain the existence of the (H1(Ω)∩Lp(Ω), Lp(Ω))-
global attractor.

Lemma 4.4. For any ε > 0, and any B ∈ B(H1(Ω) ∩ Lp(Ω)), there exist
M > 0, T4 > 0 such that

mes(Ω(|S(t)u0| ≥ M)) ≤ ε, ∀u0 ∈ B, t ≥ T4,

where Ω(|S(t)u0| ≥ M) = {x ∈ Ω: |u(t, x)| ≥ M} and mes is the Lebesgue
measure.

Proof. Noting that B is an H1(Ω) ∩ Lp(Ω) bounded absorbing set for
{S(t)}t≥0, we know that there exists a positive constant M , such that for
any bounded subset B of (H1(Ω) ∩ Lp(Ω), L2(Ω)), we can find a constant C,
such that |u|2 ≤ C. Hence, we have

C ≥
∫

Ω

|S(t)u0|2 ≥
∫

Ω(|S(t)u0|≥M)

|S(t)u0|2 ≥ M2mes(Ω(|S(t)u0| ≥ M)).

(4.20)

Thus, if we choose M large enough, we can obtain

mes(Ω(|S(t)u0| ≥ M)) ≤ ε.

This completes the proof.
Now, we borrow the asymptotic a priori estimate method of Zhong et

al. [32] to prove the following the lemma. �

Lemma 4.5. For any ε > 0, and any B ∈ B(H1(Ω) ∩ Lp(Ω)), there exist
M > 0, T5 > 0 such that∫

Ω(|u(t)|≥M)

(|u(t) − M |2 + |∇u(t)|2) ≤ ε, (4.21)

for all t ≥ T5, u0 ∈ D.

Proof. We denote

(u − M)+ =

{
u − M u ≥ M,

0, u ≤ M.
(4.22)

According to (1.4) and Lemma 4.4, we can choose M large enough to have∫
Ω

ϕ(u)(u − M)+ ≥ 0, and mes(Ω(u ≥ M)) < +∞.
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Multiplying (1.1) with (u − M)+, we infer

1
2

d
dt

(∫
Ω(u≥M)

|∇u|2 +
∫

Ω(u≥M)

|u − M |2
)

+
∫

Ω(u≥M)

|∇u|2

≤
∫

Ω

g(t)(u − M)+ ≤ 1
2

∫
Ω(u≥M)

|g(x)|2 +
1
2

∫
Ω(u≥M)

(u − M)2,

now, for some ν > 0, we have

d
dt

(∫
Ω(u≥M)

|∇u|2 +
∫

Ω(u≥M)

|u − M |2
)

+ ν

(∫
Ω(u≥M)

|∇u|2 +
∫

Ω(u≥M)

|u − M |2
)

≤
∫

Ω(u≥M)

|g(x)|2. (4.23)

By the Gronwall lemma, and noting that mes(Ω(|S(t)u0| ≥ M)) ≤ ε if we
choose M large enough (Lemma 4.4), for t ≥ T5, we get∫

Ω(u≥M)

|∇u|2 +
∫

Ω(u≥M)

|u − M |2 ≤ ε. (4.24)

Similarly, replacing (u − M)+ by

(u + M)− =

{
u + M, u ≤ −M,

0, u ≥ −M.
(4.25)

we get ∫
Ω(u≤−M)

|∇u|2 +
∫

Ω(u≤−M)

|u − M |2 ≤ ε. (4.26)

This completes the proof. �

Theorem 4.2. Under the assumptions of (1.4)–(1.7), then the semigroup
{S(t)}t≥0 associated with the initial value problem (1.1) and (1.2) has an
(H1(Ω) ∩ Lp(Ω), Lp(Ω))-global attractor A.

Proof. According to Lemma 2.2, Remark 3.2 and Theorem 4.1, we only need
to show that for any ε > 0 and any bounded subset B ⊂ H1(Ω) ∩ Lp(Ω),
there exist positive constants M > 0 and T , such that∫

Ω(|S(t)u0|≥M)

|S(t)u0|p < ε for any u0 ∈ B and t ≥ T. (4.27)

Now, multiplying (1.1) with (u − M)+, we infer∫
Ω(u≥M)

ut(u − M) +
∫

Ω(u≥M)

∇ut∇u +
∫

Ω(u≥M)

|∇u|2 +
∫

Ω

ϕ(u)(u − M)+

=
∫

Ω

g(x)(u − M)+. (4.28)
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Note that∫
Ω

ϕ(u)(u − M)+ ≥ C

∫
Ω(u≥2M)

|u|p − Cmes(Ω(u ≥ 2M)),

if we choose M large enough. Thus, we get

C

∫
Ω(u≥2M)

|u|p ≤
∫

Ω(u≥M)

|ut||(u − M)| +
∫

Ω(u≥M)

|∇ut||∇u|

+
∫

Ω

g(x)(u − M)+ + Cmes(Ω(u ≥ 2M))

≤ |ut|
(∫

Ω(u≥M)

|u − M |2
) 1

2

+ |∇ut|
(∫

Ω(u≥M)

|∇u|2
) 1

2

+ |g(x)|
(∫

Ω(u≥M)

|u − M |2
) 1

2

+ Cmes(Ω(u ≥ 2M)).

(4.29)

Combining Lemmas 4.2 and 4.5, there exist positive constants M > 0 and T ,
such that ∫

Ω(u≥2M)

|u|p < ε. (4.30)

Similarly, replacing (u − M)+ by (u + M)−, we obtain∫
Ω(u≤−2M)

|u|p < ε. (4.31)

This completes the proof. �

4.4. (H1(Ω) ∩ Lp(Ω),H1(Ω))-Global Attractor

In this section, our aim is to obtain the existence of the (H1(Ω) ∩ Lp(Ω),
H1(Ω))-global attractor. The following lemma is the key of this section.

Lemma 4.6. Assume that the semigroup {S(t)}t≥0 associated with the initial
value problem (1.1)–(1.3) has an (H1(Ω) ∩ Lp(Ω), Lr(Ω))-global attractor A,
where 2 ≤ r < ∞. Then for any ε > 0, and any B ∈ B(H1(Ω) ∩ Lp(Ω)),
there exists m ∈ N, T7 > 0 such that∫

Ω

|(I − Pm)S(t)u0|r ≤ ε, (4.32)

for all t ≥ T7, u0 ∈ B and m ≥ m0, where Pm is the canonical projection of
Lr(Ω) onto an m-dimensional subspace.

Proof. Noting that A is an (H1(Ω) ∩ Lp(Ω), Lr(Ω))-global attractor for the
semigroup {S(t)}t≥0, then for any ε > 0, and any B ∈ B(H1(Ω) ∩ Lp(Ω)),
there exists T7 > 0 such that⋃

t≥T7

S(t)D ⊂ N (A, ε, Lr),
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where A ⊂ A, and N (A, ε, Lr) is the ε neighborhood of A in Lr(Ω). Since A
is compact in Lr(Ω), there exist k ∈ N and vi ∈ Lr(Ω), i = 1, . . . , k such that

⋃
t≥T7

S(t)D ⊂
k⋃

i=1

N (A, ε, vi).

For each vi, there is an mi such that∫
Ω

|(I − Pmi
)vi|r ≤ ε.

Taking m0 = max{m1, . . . ,mn}, for t ≥ T7 and u0 ∈ B, there exist vi such
that∫

Ω

|(I − Pm0)S(t)u0|r=
∫

Ω

|(I − Pm0)S(t)u0 − (I − Pm0)vi+(I−Pm0)vi|r

≤ C

∫
Ω

|(I − Pm0)S(t)u0 − (I − Pm0)vi|r + C

∫
Ω

|(I − Pm0)vi|r

≤ Cε. (4.33)

This completes the proof. �

Theorem 4.3. Under the assumptions of (1.4)–(1.7), then the semigroup
{S(t)}t≥0 associated with the initial value problem (1.1) and (1.2) has an
(H1(Ω) ∩ Lp(Ω),H1(Ω))-global attractor A.

Proof. Noting that H1(Ω) is separable, we can choose {ωi}∞
i=1 which form

the basis in H1(Ω). Now, we set Hm = span{ω1, ω2, . . . , ωm}, and Pm is the
orthogonal projection onto Hm. For any u ∈ H1(Ω), u = Pmu+(I −Pm)u �
u1 + u2.

Taking the inner product of (1.1) with u2, we obtain

1
2

d
dt

(|∇u2|2 + |u2|2) + |∇u2|2 + (ϕ(u), u2) = (g(x), u2). (4.34)

Hence, we obtain

d
dt

(|∇u2|2 + |u2|2) + 2|∇u2|2 ≤ 2|f(u)| p
p−1

|u2|p + C|u2|. (4.35)

By (1.5) and Lemma 3.1, we obtain that

|f(u)| p
p−1

≤ C
(
|u|p−1

p + |ψ2|
p

p−1
p

p−1

)

≤ Cρ. (4.36)

According to Lemmas 4.2 and 4.6, and using (4.36), we know that, for any
ε > 0, there exist m ∈ N, T8 > 0 such that

|f(u)| p
p−1

|u2|p ≤ Cε. (4.37)

for all t ≥ T8 and m ≥ m0. Now, using the Poincaré inequality, for some
ν > 0, we have

d
dt

(|∇u2|2 + |u2|2) + ν(|∇u2|2 + |u2|2) ≤ ε. (4.38)
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By the Gronwall inequality, for all t ≥ T8 and m ≥ m0, we obtain

|∇u2(t)|2 + |u2(t)|2 ≤ ε. (4.39)

This completes the proof. �

4.5. (H1(Ω) ∩ Lp(Ω),H1(Ω) ∩ Lp(Ω))-Global Attractor

Theorem 4.4. Under the assumptions of (1.4)–(1.7), then the semigroup
{S(t)}t≥0 associated with the initial value problem (1.1) and (1.3) has an
(H1(Ω) ∩ Lp(Ω),H1(Ω) ∩ Lp(Ω))-global attractor A.

Proof. By Lemma 3.1, Theorems 4.2 and 4.3, we complete the proof. �
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Appendix: Local Solvability of (1.1)

Note that Eq. (1.1) can be written as

ut = (I − Δ)−1[Δu − u + u − φ(u) + g(x)]
= −u + (I − Δ)−1[u − φ(u) + g(x)]. (4.40)

Moreover, the inverse operator (I −Δ)−1 is a sectorial positive operator, and
it has nice regularizing properties (e.g., [8,10]). Similar to the arguments in
[7,8,10], we know that the solution of (1.1) satisfying the following Cauchy’s
integral formula:

u(t) = e−tu0 +
∫ t

0

e−t−s((I − Δ)−1[u − φ(u) + g(x)]).
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