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Abstract. B. Y. Chen introduced rectifying curves in R
3 as space curves

whose position vector always lies in its rectifying plane. Recently, the
authors have extended this definition (as well as several results about
rectifying curves) to curves in the three-dimensional sphere. In this
paper, we study rectifying curves in the three-dimensional hyperbolic
space, and obtain some results of characterization and classification for
such kind of curves. Our results give interesting and significant differ-
ences between hyperbolic, spherical and Euclidean geometries.
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1. Introduction

Given a unit speed space curve x in R
3, its Frenet frame {T = x′, N,B =

T × N} satisfies the well-known Frenet–Serret equations: T ′ = κN , N ′ =
−κT + τB, and B′ = −τN , where the functions κ > 0 and τ are called the
curvature and torsion of the curve, respectively. At each point of the curve,
the planes spanned by {T,N}, {T,B} and {N,B} are called the osculating
plane, the rectifying plane, and the normal plane, respectively. Chen proposed
in [2] the geometric question of what are the space curves whose position
vector always lies in its rectifying plane; for simplicity, he called such a curve
a rectifying curve. So, in general, a space curve x is said to be a rectifying
curve if there exists a point p in R

3 such that

x(s) − p = λ(s)T (s) + μ(s)B(s), (1)

for some functions λ and μ. The double interpretation of the space R
3 (on

one hand, as the differentiable manifold where the curve lies, and, on the
other hand, as the tangent vector space at any point of the curve) is precisely
what makes the above equation make sense. Since the paper by Chen, many
authors have extended the notion of rectifying curve to other ambient spaces
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(of dimension n ≥ 3), endowed with a Riemannian or pseudo-Riemannian
metric (see, e.g., [4–10,14]). In all cases, the tangent vector spaces can be
identified with the manifold, and this identification turns out to be crucial
to make a study analogous to that made by Chen. To extend this concept
to other ambient spaces, it is necessary, however, to distinguish between the
manifold and its tangent vector spaces. The key property of Eq. (1) is that
the straight line that connects x(s) with the point p is orthogonal to the
principal normal line [i.e., the line starting at x(s) in the direction of N(s)].
This idea was used by the authors to define rectifying curves in the three-
dimensional sphere S

3(r) [13]. In this paper, we study rectifying curves in
the three-dimensional hyperbolic space H

3(−r), and obtain several results of
characterization and classification for that family of curves.

The paper is organized as follows. After a section devoted to some basic
preliminaries about the geometry of the hyperbolic space H

3(−r) ⊂ R
4
1, we

introduce the concept of rectifying curve (Definition 1). In Sect. 3, we prove
that a curve γ in H

3(−r) is a rectifying curve if and only if γ is a geodesic of
a conical surface. In Sect. 4, we present a nice characterization for rectifying
curves. In fact, we prove that a unit speed curve γ = γ(s) is a rectifying
curve if and only if the ratio of torsion and curvature is given by (τ/κ)(s) =
c1 sinh((s+s0)/r)+c2 cosh((s+s0)/r), for some constants c1, c2 and s0, with
1− c2

1 + c2
2 < 0. In Sect. 5, we study the rectifying developable of a curve and

show that the rectifying developable of γ is a conical surface in H
3(−r) if and

only if γ is a rectifying curve in H
3(−r). In Sect. 6, we present a classification

result for rectifying curves in the hyperbolic space. In fact, we prove that
a curve γ(t) = expp(ρ(t)V (t)) in H

3(−r) is a rectifying curve if and only if
ρ(t) = r arg tanh(a sec(t+ t0)), for some constants a and t0, with 0 < a2 < 1.
Finally, in Sect. 7, we show that a rectifying curve γ = expp(ρV ) in H

3(−r) is
characterized by the property that a certain function (depending on its speed
v, κ and ρ) takes its minimum value, equal to k2

V , among the hyperbolic curves
with the same spherical projection V (kV denotes the geodesic curvature of
V ). A similar result, which does not appear in [13], is stated for rectifying
curves in the three-dimensional sphere S

3(r).
We wish to thank the referee for his/her comments and suggestions that

have substantially improved the original manuscript.

2. Setup and Basic Preliminaries

Let R
4
1 be the four-dimensional Lorentz–Minkowski space with the standard

flat metric g given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where x = (x1, x2, x3, x4) is a rectangular coordinate system of R
4
1. For a

positive number r and a point c ∈ R
4
1, we denote by H

3(c,−r) the (connected)
hyperbolic space centered at c with radius r, which is standardly embedded
in R

4
1 by

H
3(c,−r) = {x ∈ R

4
1| 〈x − c, x − c〉 = −r2, and x1 > 0},
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where 〈, 〉 denotes the Lorentzian inner product on R
4
1. To simplify the nota-

tion, we write H
3(−r) ≡ H

3(0,−r) and H
3 ≡ H

3(0,−1). We will also use 〈, 〉
to denote the flat metric g. Without loss of generality, we assume that c = 0.

Let ∇ and ∇0 denote the Levi-Civita connections on H
3(−r) and R

4
1,

respectively. If X and Y are vector fields tangent to H
3(−r), then ∇ and ∇0

are related by the Gauss formula as follows

∇0
XY = ∇XY +

1
r2

〈X,Y 〉 φ,

where φ : H3(−r) → R
4
1 denotes the position vector.

In the hyperbolic space H3(−r), we can define a cross product as follows.
Consider a point q ∈ H

3(−r) and take two tangent vectors v1, v2 ∈ TqH
3(−r).

The cross product of v1 and v2 is the unique tangent vector v1 × v2 in
TqH

3(−r) such that

〈v1 × v2, w〉 =
1
r

det(v1, v2, w, q), ∀w ∈ TqH
3(−r),

where 〈, 〉 denotes the induced metric on H
3(−r) and the vectors are consid-

ered as column vectors in R
4
1.

Let us consider a unit speed curve γ : I → H
3(−r), where I is a real

open interval, and assume that γ is not a geodesic curve. It is well known
that there exists a moving frame {Tγ = γ′, Nγ , Bγ = Tγ × Nγ} (called the
Frenet frame), and two functions κγ > 0 and τγ , such that

∇0
Tγ

Tγ = κγNγ +
1
r2

γ, ∇0
Tγ

Nγ = −κγTγ + τγBγ , ∇0
Tγ

Bγ = −τγNγ . (2)

For any point γ(s) in the curve γ, the principal normal geodesic in H
3(−r)

starting at γ(s) is defined as the geodesic curve parametrized by

t → expγ(s)(tNγ(s)) = cosh
( t

r

)
γ(s) + r sinh

( t

r

)
Nγ(s), t ∈ R.

Now, we introduce the notion of rectifying curve in the three-dimensional
hyperbolic space.

Definition 1. A unit speed curve γ = γ(s) (s ∈ I) in H
3(−r), with κγ > 0,

is said to be a rectifying curve if there exists a point p ∈ H
3(−r) such that

p �∈ Im(γ) ≡ γ(I) and the geodesics connecting p with γ(s) are orthogonal to
the principal normal geodesics at γ(s), for all s.

Note that this definition is equivalent to saying that the geodesics con-
necting p with γ(s) are tangent to the rectifying planes of γ, i.e., the planes
generated by {Tγ(s), Bγ(s)}.

3. Rectifying Curves and Conical Surfaces

The surface in H
3(−r) formed by the union of all the geodesics that connect

a fixed point p ∈ H
3(−r) (the vertex ) and any point of some curve in H

3(−r)
that does not contain the vertex (a directrix ) is called a conical surface in
H

3(−r). Each of those geodesics is called a ruling of the surface. Hence, a
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conical surface M ⊂ H
3(−r), with vertex at a point p, can be parametrized

as
Ψ(t, z) = expp(zV (t)) = cosh

(z

r

)
p + r sinh

(z

r

)
V (t), z > 0, (3)

where V = V (t) is a unit speed curve in S
2(1) ⊂ TpH

3(−r) ⊂ R
4
1 called the

director curve. The tangent plane at a point Ψ(t, z) is the plane spanned by
the vectors {Ψt(t, z),Ψz(t, z)}, given by

Ψt(t, z) = r sinh
(z

r

)
V ′(t), (4)

Ψz(t, z) =
1
r

sinh
(z

r

)
p + cosh

(z

r

)
V (t). (5)

The unit normal vector field N(t, z) can be computed as

N(t, z) =
Ψt × Ψz

||Ψt × Ψz|| (t, z) = −NV (t), (6)

where NV (t) = V (t) × V ′(t) is a unit vector field tangent to S
2(1) ⊂

TpH
3(−r).
A straightforward computation, bearing in mind Eqs. (4) and (5), yields

the following equations:

∇Ψt
Ψt = −r sinh

(z

r

)
cosh

(z

r

)
Ψz − rkV (t) sinh

(z

r

)
N, (7)

∇Ψz
Ψt = ∇Ψt

Ψz =
1
r

coth
(z

r

)
Ψt, (8)

∇Ψz
Ψz = 0, (9)

where kV is the geodesic curvature of V as a curve in S
2(1).

From (6), we can compute the shape operator S of the conical surface
M as follows:

S(Ψt) = −∇Ψt
N =

−kV (t)
r sinh( z

r )
Ψt, S(Ψz) = −∇Ψz

N = 0.

Hence, the Gaussian and mean curvatures of the conical surface are given,
respectively, by

K = − 1
r2

+ det(S) = − 1
r2

and H =
1
2
tr(S) =

−kV (t)
2r sinh( z

r )
.

Let ∇ denote the Levi-Civita connection on the conical surface Mp,V .
A unit speed curve β = β(t) in Mp,V is called a geodesic if ∇β′β′ = 0. This
condition is equivalent to the property that the acceleration of β in H

3(−r),
∇β′β′, is a vector field orthogonal to Mp,V along β.

Our first characterization of rectifying curves in the hyperbolic space
H

3(−r) is given in the next result. It can be proved similarly to [13, Theorem
1].

Theorem 1. Let γ = γ(s) be a unit speed curve in H
3(−r). Then, γ is a

rectifying curve if and only if there exists a point p ∈ H
3(−r), with p �∈

Im(γ), and a unit speed curve V = V (t) in the two-dimensional unit sphere
S

2(1) ⊂ TpH
3(−r) such that γ is a geodesic of the conical surface Mp,V with

vertex p and director curve V .



Vol. 13 (2016) Rectifying Curves in the Three-Dimensional 2203

4. Helices Versus Rectifying Curves

A nice relation between generalized helices (or Lancret curves) and rectifying
curves in R

3 is found by Chen [2]. In fact, both families of curves are char-
acterized by the condition that the ratio of torsion and curvature is a linear
function in arclength s, i.e., (τ/κ)(s) = c1s + c2, for some constants c1 and
c2. If c1 = 0, we obtain generalized helices; otherwise, we obtain rectifying
curves.

For curves in the three-dimensional hyperbolic space H
3(−r), a classi-

cal result by Barros [1] states that ordinary helices are the only generalized
helices. Hence, the following geometric question arises naturally: Is there any
relation between helices and rectifying curves in H

3(−r)? More precisely:

Question. What shape are the rectifying curves in the hyperbolic space?

The goal of this section is to find a very simple and nice characterization
for rectifying curves in H

3(−r) in terms of the ratio of torsion and curvature.
Let γ be a unit speed curve in a conical surface M parametrized by (3).

Then, we have γ(s) = Ψ(t(s), z(s)), for some functions t(s) and z(s), and so
Tγ = t′Ψt + z′Ψz. From (4) and (5), it is easy to see that

1 = 〈Tγ , Tγ〉 = r2(t′)2 sinh2
(z

r

)
+ (z′)2. (10)

If γ is a geodesic in M (and so a rectifying curve in H
3(−r)), then the func-

tions t and z satisfy the following system of ordinary differential equations:

t′′ +
2
r
t′z′ coth

(z

r

)
= 0, (11)

z′′ − r(t′)2 sinh
(z

r

)
cosh

(z

r

)
= 0, (12)

−r(t′)2kV sinh
(z

r

)
= ±κγ �= 0. (13)

Write y(s) = r cosh
( z(s)

r

)
. Then, using Eqs. (10) and (12), it is not difficult

to see that

y′′(s) − 1
r2

y(s) = 0,

and then we deduce

z(s) = r arg cosh
(

A

r
sinh

(
s + s0

r

)
+

B

r
cosh

(
s + s0

r

))
, (14)

for some constants A, B and s0. Since Nγ(s) is parallel to N(t(s), z(s)), we
can write without loss of generality that

Bγ(s) = a(s)Ψt(t(s), z(s)) + b(s)Ψz(t(s), z(s)),

where the functions a and b are given by −z′/
√

E and t′
√

E, respectively. A
direct computation yields

∇Tγ
Bγ = a′Ψt + b′Ψz + at′∇Ψt

Ψt + (az′ + bt′)∇Ψt
Ψz.



2204 P. Lucas and J. A. Ortega-Yagües MJOM

Now, using the Frenet–Serret equations (2), jointly with (7) and (8), we get
that, up to the sign, the torsion is given by

τγ(s) = −t′(s)z′(s)kV (t(s)).

This equation and (13) lead to

τγ

κγ
(s) =

z′(s)

rt′(s) sinh( z(s)
r )

. (15)

Now, from (11), we get

rt′′ sinh
(z

r

)
+ 2t′z′ cosh

(z

r

)
= 0,

and then

t′(s) sinh2

(
z(s)
r

)
= λ, (16)

for a nonzero real constant λ. Bearing this equation in mind, jointly with
(10) and (14), we obtain the following relation between the constants A, B
and λ:

A2 − B2 + λ2r4 = −r2. (17)
Finally, a straightforward computation, bearing in mind (14)–(16), leads

to
τγ

κγ
(s) = c1 sinh

(
s + s0

r

)
+ c2 cosh

(
s + s0

r

)
, (18)

for some constants c1 and c2 given by

c1 =
B

λr2
and c2 =

A

λr2
.

Note that Eq. (17) implies 1 − c2
1 + c2

2 < 0.
Conversely, let γ = γ(s) be a unit speed curve in H

3(−r) with curvature
and torsion satisfying (18), for some constants c1 and c2 with 1− c2

1 + c2
2 < 0.

Let λ be a nonzero constant such that

λ2 =
−1

r2(1 − c2
1 + c2

2)
,

and define two constants A = λr2c2 and B = λr2c1. Let z(s) be the function
given by (14) and consider a solution t(s) of Eq. (16), which is given by

t(s) = arctan

[
1

λr3

(
AB + (A2 + r2) tanh

(
s + s0

r

))]
.

Now, define the function kV by the Eq. (13). Let p be a point in H
3(−r) such

that p �∈ Im(γ), and take V = V (t) a unit speed curve in the unit sphere
S

2(1) ⊂ TpH
3(−r) whose geodesic curvature is given by kV . Let M be the

conical surface determined by p and V , which is parametrized by (3), and
consider the curve γ̃ defined by γ̃(s) = Ψ(t(s), z(s)). It is a straightforward
computation to show that γ̃ is a geodesic of M , with curvature κγ̃ = κγ and
torsion τγ̃ = τγ . Hence, γ is congruent to a geodesic in a conical surface.

Summarizing, we have proved that Eq. (18) characterizes the curves in
H

3(−r) that are geodesics in a conical surface, which are parametrized by
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Ψ(t(s), z(s)). Therefore, bearing Theorem 1 in mind, we have the following
characterization for rectifying curves.

Theorem 2. Let γ = γ(s) be a unit speed curve in H
3(−r). Then, γ is a

rectifying curve if and only if the ratio of torsion and curvature of the curve
is given by

τγ

κγ
(s) = c1 sinh

(
s + s0

r

)
+ c2 cosh

(
s + s0

r

)
,

for some constants c1, c2 and s0, with 1 − c2
1 + c2

2 < 0.

Let us compare this result with [2, Theorem 2] for curves in R
3 and [13,

Theorem 2] for curves in the three-dimensional sphere. Denote by M̄3(c),
c ∈ R, the Euclidean space R

3 if c = 0, the sphere S
3(r) if c = 1/r2 > 0, or

the hyperbolic space H
3(−r) if c = −1/r2 < 0. Let f and g be the following

functions:

c = 0 c = 1
r2 c = − 1

r2

f(s) s r sin
(

s
r

)
r sinh

(
s
r

)

g(s) 1 cos
(

s
r

)
cosh

(
s
r

)

The functions f and g determine the geodesic flow of the manifold: given
a point q ∈ M̄3(c) and a unit vector v ∈ TqM̄

3(c), the unit speed geodesic
γ(q,v)(s) with initial condition (q, v) is given by γ(q,v)(s) = g(s)q + f(s)v. In
the following result, we put together our Theorem 2 [2, Theorem 2] and [13,
Theorem 2].

Theorem 3. Let γ = γ(s) be a unit speed twisted curve in M̄3(c). Then, γ
is a rectifying curve if and only if the ratio of torsion and curvature of the
curve is given by

τγ

κγ
(s) = c1 f(s + s0) + c2 g(s + s0),

for some constants c1, c2 and s0, with c2
1 + c (1 + c2

2) > 0.

5. Rectifying Curves and Developable Surfaces

For any unit speed curve x in R
3 with curvature κ �= 0, the vector field

defined by D = τT +κB is called the Darboux vector field of x. The direction
of the Darboux vector is that of the instantaneous axis of rotation, and its
length

√
κ2 + τ2 is called the angular speed (see, e.g., [12, p. 12]). In terms of

the Darboux vector, the Frenet–Serret equations can be expressed as follows

T ′ = D × T, N ′ = D × N, B′ = D × B.

In [11], the authors define a vector field D̃ = (τ/κ)T + B = (1/κ)D and
call it the modified Darboux vector field along x. The ruled surface with base
curve x and director curve D̃ is called the rectifying developable of x, and
it is parametrized as F(x,D̃)(s, u) = x(s) + uD̃(s); F(x,D̃) is the envelope of
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rectifying planes of the curve x. The authors show (see [11, Proposition 3.1])
that F(x,D̃) is a conical surface if and only if x is a conical geodesic curve
(that we know is a rectifying curve).

The goal of this section is to extend, if possible, the above result by
Izumiya and Takeuchi to curves in the three-dimensional hyperbolic space
H

3(−r).
Let γ = γ(s) be a unit speed curve in H

3(−r), with κγ > 0, and consider
the ruled surface generated by γ and D̃γ = (τγ/κγ)Tγ + Bγ :

Ψ(s, u) = expγ(s)(uD̃γ(s)) = cosh

(
u|D̃γ(s)|

r

)
γ(s)

+
r

|D̃γ(s)| sinh

(
u|D̃γ(s)|

r

)
D̃γ(s).

This surface will be called as in R
3, the rectifying developable of the curve γ.

To simplify the following computations, write λ = τγ/κγ and ρ = |D̃γ | =√
λ2 + 1. The vector fields tangent to the surface are given by

Ψs =
1
r

[
uρ′ +

λ

ρ

]
sinh

(
uρ

r

)
γ +

[
cosh

(
uρ

r

)
+

rλ′

ρ
sinh

(
uρ

r

)]
Tγ

+
ρ′

ρ

[
u cosh

(
uρ

r

)
− r

ρ
sinh

(
uρ

r

)]
D̃γ , (19)

Ψu =
ρ

r
sinh

(
uρ

r

)
γ + cosh

(
uρ

r

)
D̃γ . (20)

From here, and after a long and straightforward computation, we obtain the
following expression for the determinant Δ of the induced metric:

Δ(s, u) =

[
cosh

(
uρ

r

)
+

rλ′

ρ
sinh

(
uρ

r

)]2

.

As a consequence, we have the following result, which can be proved in a
similar way as [13, Proposition 6].

Proposition 4. Let γ = γ(s) be a unit speed curve in H
3(−r), κγ > 0. Then,

(s0, u0) is a singular point of the rectifying developable of γ if and only if

λ′(s0) �= 0 and u0 =
r

ρ(s0)
arg tanh

(
− ρ(s0)

rλ′(s0)

)
.

Let σ be the singular locus of the rectifying developable of γ, which
is given by σ(s) = Ψ(s, u(s)) = expγ(s)(u(s)D̃(s)), where the function u(s)
satisfies the following equation:

cosh

(
uρ

r

)
+

rλ′

ρ
sinh

(
uρ

r

)
= 0. (21)
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Note that sinh(uρ
r ) �= 0; otherwise, the above equation implies that

cosh(uρ
r ) = 0, which is a contradiction.

The rectifying developable is a conical surface if there exists a point
p that belongs to every geodesic with initial condition (γ(s), D̃γ(s)). Hence,
σ(s) ≡ p. In this case, define W (s) = exp−1

p (u(s)D̃γ(s)), z(s) = |W (s)| and
V (s) = W (s)/z(s). Then, we have γ(s) = expp(z(s)V (s)), and the rectifying
developable can be parametrized as F (s, z) = expp(zV (s)), so it is a conical
surface with vertex at p.

By taking derivative in (21) and using that sinh(uρ
r ) �= 0, and (21) again,

we deduce

(uρ)′ =
−r2ρ2

ρ2 − r2(λ′)2

(
λ′

ρ

)′
. (22)

Observe that (21) implies ρ2 − r2(λ′)2 < 0.
On the other hand, from (21), we can rewrite Eqs. (19) and (20) as

follows

Ψs =
1
r

(
uρ′ +

λ

ρ

)
sinh

(
uρ

r

)
γ − rρ′

ρ2
(1 + uλ′) sinh

(
uρ

r

)
D̃γ ,

Ψu =
ρ

r
sinh

(
uρ

r

)
γ − rλ′

ρ
sinh

(
uρ

r

)
D̃γ .

Bearing this in mind, we deduce that σ′(s) = Ψs(s, u(s))+u′(s)Ψu(s, u(s)) ≡
0 if and only if (uρ)′ = −λ/ρ. This equation, jointly with (22), yields r2λ′′(s)−
λ(s) = 0, and then we deduce that

λ(s) =
τγ

κγ
(s) = c1 sinh

(
s + s0

r

)
+ c2 cosh

(
s + s0

r

)
,

for some constants c1, c2 and s0. Observe that 1− c2
1 + c2

2 = ρ2 − r2(λ′)2 < 0.
Hence, bearing Theorem 2 in mind, we have proved the following result.

Theorem 5. Let γ = γ(s) be a unit speed curve in H
3(−r), κγ > 0. Then the

rectifying developable of γ is a conical surface if and only if γ is a rectifying
curve.

6. Classification of Rectifying Curves

The following result provides some simple characterizations for twisted rec-
tifying curves in the three-dimensional hyperbolic space. It can be proved
similarly to [13, Theorem 4].

Theorem 6. Let γ = γ(s) be a unit speed twisted curve in H
3(−r). The

following conditions are equivalent:
(i) γ is a rectifying curve.
(ii) There exists a point p ∈ H

3(−r), with p �∈ Im(γ), such that

〈p, Tγ(s)〉 = b1 sinh

(
s + s0

r

)
+ b2 cosh

(
s + s0

r

)
and |p⊥|2 = b2,
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for some constants b1, b2, b and s0, with −b2
1 + b2

2 + b2 = −r2. Here, p⊥

denotes the component of p orthogonal to Tγ in H
3(−r).

(iii) There exists a point p ∈ H
3(−r), with p �∈ Im(γ), such that 〈p,Nγ(s)〉 =

0.
(iv) There exists a point p ∈ H

3(−r), with p �∈ Im(γ), such that 〈p,Bγ(s)〉 =
a, for some constant a.

(v) There exists a point p ∈ H
3(−r), with p �∈ Im(γ), such that

〈p, γ(s)〉 = a1 sinh

(
s + s0

r

)
+ a2 cosh

(
s + s0

r

)
,

for some constants a1, a2 and s0, with −a2
1 + a2

2 ≥ r4.
(vi) There exists a point p ∈ H

3(−r), with p �∈ Im(γ), such that the distance
function in H

3(−r) between p and γ(s), ρ(s) = d(p, γ(s)), satisfies

cosh

(
ρ(s)
r

)
= d1 sinh

(
s + s0

r

)
+ d2 cosh

(
s + s0

r

)
,

for some constants d1, d2 and s0, with −d2
1 + d2

2 ≥ 1.

Now, we present the main result of this section, which determines all
the rectifying curves in the three-dimensional hyperbolic space.

Theorem 7. Let γ be a twisted curve in H
3(−r). Then, γ is a rectifying curve

if and only if, up to reparametrization, it is given by

γ(t) = expp(ρ(t)V (t)) = cosh

(
ρ(t)
r

)
p + r sinh

(
ρ(t)
r

)
V (t), (23)

where p ∈ H
3(−r) is a point such that p �∈ Im(γ), V = V (t) is a unit speed

curve in S
2(1) ⊂ TpH

3(−r), and ρ(t) = r arg tanh(a sec(t + t0)), for some
constants a and t0, with 0 < a2 < 1.

Proof. Take a point p ∈ H
3(−r), and consider a unit speed curve V = V (t)

in S
2(1) ⊂ TpH

3(−r) and a positive function ρ = ρ(t). Put γ(t) =
expp(ρ(t)V (t)). Then, we have

γ′ =
ρ′

r
sinh

(
ρ

r

)
p + ρ′ cosh

(
ρ

r

)
V + r sinh

(
ρ

r

)
V ′,

and

v2 = 〈γ′, γ′〉 = (ρ′)2 + r2 sinh2

(
ρ

r

)
. (24)

Then, the unit tangent vector field Tγ is given by

Tγ =
1
v
γ′ =

ρ′

rv
sinh

(
ρ

r

)
p +

ρ′

v
cosh

(
ρ

r

)
V +

r

v
sinh

(
ρ

r

)
V ′. (25)

Let s = s(t) denote the arclength parameter of γ, so v(t) = s′(t). From the
Frenet–Serret equations, we have (κγNγ)(s) = ( 1

v T ′
γ − 1

r2 γ)(t) and so the
principal normal vector field Nγ of γ is parallel to the vector field given by
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1
v T ′

γ − 1
r2 γ. Here, the prime (′) on a vector field X along the curve γ denotes

the covariant derivative in R
4
1, i.e., X ′ = ∇0

Tγ
X.

On the other hand, for the unit speed curve V , we have

V ′′ = −V + kV NV , (26)

where NV = V × V ′ is tangent to S
2(1), but normal to V and p, and kV is

the geodesic curvature of V .
From (25) and (26), we have

〈
p,

1
v
T ′

γ − 1
r2

γ

〉
= − r

v

[
ρ′

v
sinh

(
ρ

r

)]′
+ cosh

(
ρ

r

)
.

From Theorem 6, we know that γ is a rectifying curve if and only if 〈p,Nγ〉 =
0, which is equivalent, since Nγ is parallel to 1

v T ′
γ − 1

r2 γ, to the following
equation:

− r

v

[
ρ′

v
sinh

(
ρ

r

)]′
+ cosh

(
ρ

r

)
= 0.

A straightforward computation shows that this equation is equivalent to

r sinh

(
ρ

r

)
ρ′′ − 2 cosh

(
ρ

r

)
(ρ′)2 − r2 cosh

(
ρ

r

)
sinh2

(
ρ

r

)
= 0.

Similar to [13, Theorem 7], we deduce that the nontrivial solutions of the
above ODE are given by ρ(t) = r arg tanh(a sec(t + t0)). Hence, we con-
clude that γ(t) = expp(ρ(t)V (t)) is a rectifying curve if and only if ρ(t) =
r arg tanh(a sec(t + t0)), for some constants a and t0, with 0 < a2 < 1. �

7. Rectifying Curves as Extremal Curves

If a curve γ in H
3(−r) is given by γ(t) = expp(ρ(t)V (t)), p ∈ H

3(−r),
where ρ(t) �= 0 is an arbitrary function and V (t) is a curve lying in
S

2(1) ∈ TpH
3(−r), then V is called the spherical projection of γ (see [3]).

In the following result, we show that a rectifying curve γ in H
3(−r) is char-

acterized by the property that a certain function (depending on v, κγ and
ρ) takes its minimum value, equal to k2

V , among the curves with the same
spherical projection V . A similar result for curves in R

3 was obtained by
Chen and Dillen [3].

Theorem 8. Let p ∈ H
3(−r) and consider a unit speed curve V (t) in S

2(1) ⊂
TpH

3(−r). Then, for any nonzero function ρ(t), the curvature κγ and the
speed v of the curve γ(t) = expp(ρ(t)V (t)), and the geodesic curvature kV of
V satisfy the inequality

k2
V ≤ v4κ2

γ

r2 sinh2(ρ
r )

, (27)

with the equality sign holding identically if and only if γ is a rectifying curve.
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Proof. Suppose that a curve γ is given by γ(t) = expp(ρ(t)V (t)), where ρ is
a nonzero function and V is a unit speed curve in S

2(1) ⊂ TpH
3(−r). From

the definition of expp and (25), and bearing in mind that NV is a vector
orthogonal to span{p, V, V ′}, we deduce that NV is orthogonal to both γ and
Tγ , and then

NV = V × V ′ = cos α Nγ + sin α Bγ , (28)

where α = α(t) is an arbitrary function.
By differentiating (28) with respect to t, and by applying (26) and the

Frenet equations (2), we obtain

kV V ′ = vκγ cos α Tγ + (α′ + vτγ)[sin α Nγ − cos α Bγ ], (29)

where v = ||γ′|| is the speed of γ, which is given by (24). Then, using that
〈V ′, V ′〉 = 1, we have

k2
V = (vκγ cos α)2 + (α′ + vτγ)2. (30)

Now, we are going to express the point p in terms of the orthogonal
frame {γ, Tγ , Nγ , Bγ}. Some computations are needed. From (23), we get

〈p, γ〉 = −r2 cosh

(
ρ

r

)
, (31)

and by taking derivative here we obtain

〈p, Tγ〉 = −rρ′

v
sinh

(
ρ

r

)
. (32)

To simplify next computations, write

V ′ = a Tγ + b[sin α Nγ − cos α Bγ ],

where

a =
vκγ cos α

kV
and b =

α′ + vτγ

kV
.

From the conditions 〈p,NV 〉 = 0 and 〈p, V ′〉 = 0, we get a system of two
linear equations in 〈p,Nγ〉 and 〈p,Bγ〉 whose solution, bearing (32) in mind,
is given by

〈p,Nγ〉 =
arρ′ sin α

bv
sinh

(
ρ

r

)
, (33)

〈p,Bγ〉 = −arρ′ cos α

bv
sinh

(
ρ

r

)
. (34)

Putting together (31)–(34), we obtain

p = cosh

(
ρ

r

)
γ − rρ′

v
sinh

(
ρ

r

)
Tγ +

arρ′

bv
sinh

(
ρ

r

)
[sin α Nγ − cos α Bγ ],



Vol. 13 (2016) Rectifying Curves in the Three-Dimensional 2211

and then

−r2 = 〈p, p〉 = −r2 cosh2

(
ρ

r

)
+ r2 (ρ′)2

v2

⎛
⎝1 +

(
a

b

)2
⎞
⎠ sinh2

(
ρ

r

)
.

But this equation implies necessarily that

(ρ′)2

v2

⎛
⎝1 +

(
a

b

)2
⎞
⎠ = 1,

which leads to

(α′ + vτγ)2 =
(ρ′)2

v2 − (ρ′)2
(vκγ cos α)2. (35)

By substituting (35) into (30), and bearing (24) in mind, we obtain

k2
V =

v4κ2
γ cos2 α

r2 sinh2(ρ
r )

, (36)

which implies inequality (27). Obviously, the equality sign of (27) holds if and
only if sinα = 0. This condition, bearing (28) in mind, is equivalent to the
condition NV = ±Nγ . But NV is parallel to Nγ if and only if γ is a geodesic
of the conical surface Ψ(t, z) = expp(zV (t)), i.e., γ is a rectifying curve (see
Theorem 1). Consequently, the equality sign of (27) holds identically if and
only if γ is a rectifying curve. �

As a consequence of Theorem 8, we obtain the following classification
of hyperbolic curves with nonzero constant curvature and linear hyperbolic
trigonometric torsion in terms of spiral type rectifying curves. This result
extends [3, Corollary 1].

Corollary 9. A curve γ(s) = expp(ρ(s)V (s)) in H
3(−r) has nonzero constant

curvature k0 and torsion τ(s) = d1 sinh((s + s0)/r) + d2 cosh((s + s0)/r),
for some constants d1, d2 and s0, with k2

0 − d2
1 + d2

2 < 0, if and only if it
is congruent to a rectifying curve over a unit speed spiral type curve V (t) in
S

2(1) ⊂ TpH
3(−r) with geodesic curvature kV (t) = c (cos2(t + t0) − a2)−3/2

for some constants c �= 0, 0 < a2 < 1, and t0.

Proof. If a curve γ = expp(ρV ) in H
3(−r) has nonzero constant curvature

k0 and linear hyperbolic trigonometric torsion in arclength s, with k2
0 − d2

1 +
d2
2 < 0, then Theorem 2 implies that γ is (congruent to) a rectifying curve.

Then, by Theorem 7, we can assume that ρ(t) = r arg tanh(a sec(t + t0)),
for some constants a and t0, with 0 < a2 < 1. From Theorem 8, we have
kV (t) = c (cos2(t + t0) − a2)−3/2, where the nonzero constant c is either
c = a (1 − a2) k0 r or c = −a (1 − a2) k0 r.

Conversely, if γ = expp(ρV ) is a rectifying curve in H
3(−r) over a

unit speed curve V = V (t) in S
2(1) ⊂ TpH

3(−r) with geodesic curvature
kV (t) = c (cos2(t + t0) − a2)−3/2, c �= 0, then by Theorem 7 we have ρ(t) =
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r arg tanh(a sec(t + t0)), for some constants a and t0, with 0 < a2 < 1. From
this, we find

v4

r2 sinh2(ρ
r )

= a2(1 − a2)2r2(cos2(t + t0) − a2)−3.

Since γ is a rectifying curve, Theorem 8 implies

k2
V =

v4κ2
γ

r2 sinh2(ρ
r )

.

Hence, we get

κ2
γ =

c2

a2(1 − a2)2r2
,

which is a nonzero constant. Therefore, bearing Theorem 2 in mind, the proof
is finished. �

In the case of rectifying curves in the three-dimensional sphere S
3(r),

see [13], we can obtain a similar result. The proof is analogous to the one of
Theorem 8, and it is left to the reader.

Theorem 10. Let p ∈ S
3(r) and consider a unit speed curve V (t) in S

2(1) ⊂
TpS

3(r). Then, for any nonzero function ρ(t), the curvature κγ and the speed
v of the curve γ(t) = expp(ρ(t)V (t)), and the geodesic curvature kV of V
satisfy the inequality

k2
V ≤ v4κ2

γ

r2 sin2(ρ
r )

, (37)

with the equality sign holding identically if and only if γ is a rectifying curve.

As in the hyperbolic case, as a consequence of Theorem 10, we obtain the
following classification of spherical curves with nonzero constant curvature
and linear trigonometric torsion in terms of spiral type rectifying curves. The
proof uses Theorem 10 and several results of [13].

Corollary 11. A curve γ(s) = expp(ρ(s)V (s)) in S
3(r) has nonzero constant

curvature and torsion τ(s) = d1 sin((s + s0)/r) + d2 cos((s + s0)/r), for some
constants d1, d2 and s0, if and only if it is congruent to a rectifying curve
over a unit speed curve V (t) in S

2(1) ⊂ TpS
3(r) with geodesic curvature

kV (t) = c (cos2(t + t0) + a2)−3/2 for some constants c �= 0, a �= 0 and t0.

To illustrate Corollaries 9 and 11, we put in Figs. 1 and 2 the graphs
of several spherical projections in S

2(1) of rectifying curves in H
3(−1) and

S
3(1), respectively.

Finally, using the function f defined in Sect. 4, we can put together
Theorems 8 and 10, and Theorem 3 of [3], as follows.

Theorem 12. Let p ∈ M̄3(c) and consider a unit speed curve V (t) in S
2(1) ⊂

TpM̄
3(c) (we can take p = 0 in the case c = 0). Then, for any nonzero func-

tion ρ(t), the curvature κγ and the speed v of the curve γ(t) = expp(ρ(t)V (t)),
and the geodesic curvature kV of V satisfy the inequality
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Figure 1. Spherical projections V of rectifying curves in
H

3(−1) with geodesic curvature kV (t) = c (cos2(t)−a2)−3/2

Figure 2. Spherical projections V of rectifying curves in
S

3(1) with geodesic curvature kV (t) = c (cos2(t) + a2)−3/2

k2
V ≤ v4κ2

γ

f2(ρ)
, (38)

with the equality sign holding identically if and only if γ is a rectifying curve.
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