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Shifted LegendreCollocationMethod for the
Flow and Heat Transfer due to a Stretching
Sheet Embedded in a Porous Medium with
Variable Thickness, Variable Thermal
Conductivity and Thermal Radiation

M. M. Khader

Abstract. This paper is devoted to introduce a numerical simulation
with a theoretical study for flow of a Newtonian fluid over an imperme-
able stretching sheet which embedded in a porous medium with a power
law surface velocity and variable thickness in the presence of thermal
radiation. The flow is caused by a non-linear stretching of a sheet. Ther-
mal conductivity of the fluid is assumed to vary linearly with temper-
ature. The governing PDEs are transformed into a system of coupled
non-linear ODEs which are using appropriate boundary conditions for
various physical parameters. The proposed method is based on replace-
ment of the unknown function by truncated series of well known shifted
Legendre expansion of functions. An approximate formula of the integer
derivative is introduced. Special attention is given to study the conver-
gence analysis and derive an upper bound of the error of the presented
approximate formula. The introduced method converts the proposed
equation by means of collocation points to a system of algebraic equa-
tions with shifted Legendre coefficients. Thus, by solving this system of
equations, the shifted Legendre coefficients are obtained. The effects of
the porous parameter, the wall thickness parameter, the radiation para-
meter, thermal conductivity parameter and the Prandtl number on the
flow and temperature profiles are presented. Moreover, the local skin-
friction and Nusselt numbers are presented. Comparison of obtained
numerical results is made with previously published results in some spe-
cial cases, and excellent agreement is noted. The results attained in this
paper confirm the idea that proposed method is powerful mathemati-
cal tool and it can be applied to a large class of linear and nonlinear
problems arising in different fields of science and engineering.
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1. Introduction

The study of flow and heat transfer of a Newtonian fluid over a stretching sur-
face issuing from slit has gained considerable attention of many researchers
due to its importance in many industrial applications, such as, extraction
of polymer sheet, wire drawing, paper production, glass-fiber production,
hot rolling, solidification of liquid crystals, petroleum production, continu-
ous cooling and fibers spinning, exotic lubricants and suspension solutions.
Much work on the boundary-layer Newtonian fluids has been carried out both
experimentally and theoretically. Crane [1] was the first one who studied the
stretching problem taking into account the fluid flow over a linearly stretched
surface. There has been a great deal of the work done on Newtonian fluid
flow and heat transfer over a stretching surface, but only a few recent studies
are cited here. Gupta and Gupta [2] analyzed the stretching problem with
a constant surface temperature, while Soundalgekar and Ramana [3] have
investigated the constant surface velocity case with a power-law temperature
variation. Grubka and Bobba [4] have analyzed the stretching problem for
a surface moving with a linear velocity and with a variable surface temper-
ature. Chen and Char [5] investigated the heat transfer characteristics over
a continuous stretching sheet with variable surface temperature. Using the
homotopy analysis method (HAM), series solutions were obtained by Hayat
et al. [6] for the stretching sheet problem with mixed convection.

Despite the practical importance of the flow in a porous medium, all the
above-mentioned works do not however consider the situations where the flow
in fluid-saturated porous media arise. The study of the flow in fluid-saturated
porous media due to a stretching sheet is important in engineering problems,
such as the design of building components for energy consideration, soil sci-
ence, mechanical engineering, control of pollutant spread in groundwater,
thermal insulation systems, compact heat exchangers, solar power collectors
and food industries. Because of such important practical applications, many
investigators have modeled the behavior of a boundary layer flow embedded
in a porous medium. Cheng and Minkowycz [7] studied the problem of free
convection about a vertical impermeable flat plate in a Darcy porous medium.
Elbashbeshy and Bazid [8] studied flow and heat transfer in a porous medium
over a stretching surface with internal heat generation and suction/blowing
when the surface is held at a constant temperature. Cortell [9] has presented
an analytical solution of the problem considered by Elbashbeshy and Bazid [8]
considering the constant surface temperature and prescribed surface temper-
ature. Recently, Hayat et al. [10] used HAM to give analytic solution for flow
through porous medium.

Radiative heat transfer flow is very important in manufacturing indus-
tries for the design of reliable equipments, nuclear plants, gas turbines and
various propulsion devices for aircraft, missiles, satellites and space vehi-
cles. Also, the effect of thermal radiation on the forced and free convection
flows are important in the context of space technology and processes involv-
ing high temperature. Based on these applications, Hossain et al. [11] and
Elbashbeshy and Demain [12] have studied the thermal radiation of a gray
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fluid which is emitting and absorbing radiation in non-scattering medium.
Abel and Mahesha [13] studied the effect of radiation in different situations.
Recently, Battaler [14] has studied the effect of thermal radiation on the
laminar boundary layer about a flat plate.

Historically, the study on boundary layer flows over a stretching sheet
with variable thickness was studied by Fang et al. [15]. However, so far no
attention has been given to the effects of the non-flatness on the stretching
sheet problems considering a variable sheet thickness. The purpose of the
present paper is to investigate the numerical solution for the variable ther-
mal conductivity effect on the flow and heat transfer of a Newtonian fluid-
saturated porous medium over a stretching sheet with variable thickness in
the presence of thermal radiation. For more details see ([16,17]).

Legendre polynomials are well known family of orthogonal polynomials
on the interval [−1, 1] that have many applications. They are widely used
because of their good properties in the approximation of functions [18–24].
Orthogonal polynomials have a great variety and wealth of properties. Some
of these properties take a very concise form in the case of the Legendre poly-
nomials, making Legendre polynomials of leading importance among orthog-
onal polynomials. The Legendre polynomials belong to an exclusive band of
orthogonal polynomials, known as Jacobi polynomials, which correspond to
weight functions of the form (1 − x)α(1 + x)β and which are solutions of
Sturm–Liouville equations [21].

The Legendre collocation method is used to solve many problems, in
more papers such as [18–24]. In this work, we use the properties of the
Legendre polynomials to derive an approximate formula of the integer deriv-
ative D(n)y(x) and estimate an error upper bound of this formula, then we
use this formula to solve numerically the proposed problem.

2. Formulation of the Problem

Consider a steady, two-dimensional boundary layer flow of an incompressible
Newtonian fluid over a continuously impermeable stretching sheet embedded
in a porous medium. The origin is located at a slit, through which the sheet
(see Fig. 1) is drawn through the fluid medium. The x-axis is chosen along
the sheet and y-axis is taken normal to it. The stretching surface has the
velocity Uw = U0(x + b)m, where U0 is the reference velocity. We assume
that the sheet is not flat in which it is specified as y = A(x + b)

1−m
2 , where

A is a very small constant so that the sheet is sufficiently thin and m is the
velocity power index. We must observe that our problem is valid only for
m �= 1, because for m = 1, the problem reduces to a flat sheet. Likewise, the
fluid properties are assumed to be constant except for thermal conductivity
variations in the temperature.

Making the usual boundary layer approximations for the Newtonian
fluid, the steady two-dimensional boundary-layer equations taking into
account the thermal radiation effect in the energy equation can be written as
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Figure 1. Schematic of a stretching sheet with variable sheet thickness
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where u and v are the velocity components in x and y directions, respectively.
ρ and κ are the fluid density and the thermal conductivity, respectively. T
is the temperature of the fluid, ν is the fluid kinematic viscosity, cp is the
specific heat at constant pressure, μ is the fluid viscosity, k is the permeability
of the porous medium and qr is the radiative heat flux.

The radiative heat flux qr is employed according to Rosseland approxi-
mation [25] such that

qr = −4σ∗

3k∗
∂T 4

∂y
, (4)

where σ∗ = 5.6697×10−8 Wm−2K−4 is the Stefan–Boltzmann constant and
k∗ is the mean absorption coefficient. Following Raptis [26], we assume that
the temperature differences within the flow are sufficiently small such that
T 4 may be expressed as a linear function of the temperature. Expanding T 4

in a Taylor series about T∞ and neglecting higher-order terms, we have

T 4 ∼= 4T 3
∞T − 3T 4

∞. (5)

The physical and mathematical advantage of the Rosseland formula (5) con-
sists of the fact that it can be combined with Fourier’s second law of conduc-
tion to an effective conduction-radiation flux qeff in the form

qeff = −
(

κ +
16σ∗T 3

∞
3k∗

)
∂T

∂y
= −κeff

∂T

∂y
, (6)
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where κeff = κ + 16σ∗T 3
∞

3k∗ is the effective thermal conductivity. So, the steady
energy balance equation including the net contribution of the radiation emit-
ted from the hot wall and absorbed in the colder fluid, takes the form

ρcp

(
u

∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y
(κeff

∂T

∂y
). (7)

To obtain similarity solutions, it is assumed that the permeability of the
porous medium k(x) is of the form

k(x) = k0(x + b)1−m, (8)

where k0 is the permeability parameter. The boundary conditions can be
written as

u
(
x,A(x + b)

1−m
2

)
= U0(x + b)m, v

(
x,A(x + b)

1−m
2

)
= 0,

T
(
x,A(x + b)

1−m
2

)
= Tw, (9)

u (x,∞) = 0, T (x,∞) = T∞. (10)
The mathematical analysis of the problem is simplified by introducing the
following dimensionless coordinates

ζ =y

√
U0(

m+1
2

)
(

(x + b)m−1

ν

)
, ψ(x, y)=

√
νU0(

2
m+1

)(x+b)m+1F (ζ),

Θ(ζ) =
(

T − T∞
Tw − T∞

)
, (11)

where ζ is the similarity variable, ψ(x, y) is the stream function which is
defined in the classical form as u = ∂ψ/∂y and v = −∂ψ/∂x and Θ(ζ) is the
dimensionless temperature.

In this study, the equation for the dimensionless thermal conductivity
κ is generalized for the temperature dependence as follows ([27–29])

κ = κ∞(1 + εΘ), (12)

where κ∞ is the ambient thermal conductivity and ε is the thermal conduc-
tivity parameter.

Upon using these variables, the boundary layer governing equations (1)–
(3) can be written in a non-dimensional following form

F
′′′

+ FF
′′ − 2m

m + 1
F

′2 − DF
′
= 0, (13)

(
1 + R

Pr

) (
(1 + εΘ)Θ

′′
+ εΘ

′2
)

+ FΘ
′
= 0, (14)

where D = 2ν
k0U0(m+1) is the porous parameter, Pr = μcp

κ∞
is the Prandtl num-

ber and R = 16σ∗T 3
∞

3k∗κ∞
is the radiation parameter. The transformed boundary

conditions are

F (α) = α

(
1 − m

1 + m

)
, F

′
(α) = 1, Θ(α) = 1, (15)

F ′(∞) = 0, Θ(∞) = 0, (16)
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where α = A
√

U0(m+1)
2ν is a parameter related to the thickness of the wall

and ζ = α = A
√

U0(m+1)
2ν indicates the plate surface. In order to facilitate the

computation, we define F (ζ) = F (η−α) = f(η) and Θ(ζ) = Θ(η−α) = θ(η).
The similarity equation and the associated boundary conditions become

f
′′′

+ ff
′′ − 2m

m + 1
f

′2 − Df
′
= 0, (17)

(
1 + R

Pr

)(
(1 + εθ)θ

′′
+ εθ

′2
)

+ fθ
′
= 0, (18)

f(0) = α

(
1 − m

1 + m

)
, f

′
(0) = 1, θ(0) = 1, (19)

f ′(∞) = 0, θ(∞) = 0, (20)
where the prime denotes differentiation with respect to η. Based on the vari-
able transformation, the solution domain will be fixed from 0 to ∞.

The physical quantities of primary interest are the local skin-friction
coefficient Cf and the local Nusselt number Nu which are defined as

Cf = −2

√
m + 1

2
Re

−1
2

x f
′′
(0), Nu = −

√
m + 1

2
Re

1
2
x θ′(0), (21)

where Rex = UwX
ν is the local Reynolds number and X = x + b.

3. An Approximate Formula of the Integer Derivative
for Legendre Polynomials Expansion

The well known Legendre polynomials are defined on the interval [−1, 1] and
can be determined with the aid of the following recurrence formula [21]

Lk+1(z) =
2k + 1
k + 1

z Lk(z) − k

k + 1
Lk−1(z), k = 1, 2, . . . ,

where L0(z) = 1 and L1(z) = z. In order to use these polynomials on the
interval [0, �] we define the so called shifted Legendre polynomials by intro-
ducing the change of variable z = (2/�)t − 1. Let the shifted Legendre poly-
nomials Lk((2/�)t − 1) be denoted by L∗

k(t). Then L∗
k(t) can be obtained as

follows:

L∗
k+1(t) =

(2k + 1)((2/�)t − 1)
(k + 1)

L∗
k(t) − k

k + 1
L∗

k−1(t), k = 1, 2, . . . ,

where L∗
0(t) = 1 and L∗

1(t) = (2/�)t − 1. The analytic form of the shifted
Legendre polynomials L∗

k(t) of degree k is given by

L∗
k(t) =

k∑
i=0

(−1)k+i (k + i)!
�i(k − i)!(i!)2

ti. (22)

Note that L∗
k(0) = (−1)k and L∗

k(�) = 1. The orthogonality condition is:∫
�

0

L∗
i (t)L

∗
j (t) dt =

{
�

2i+1 , i = j;
0, i �= j.
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The function y(t), which is square integrable in [0, 1], may be expressed
in terms of shifted Legendre polynomials as

y(t) =
∞∑

i=0

ciL
∗
i (t), (23)

where the coefficients ci are given by

ci =
2i + 1

�

∫
�

0

y(t)L∗
i (t) dt, i = 0, 1, . . . . (24)

In practice, only the first (M + 1)-terms of shifted Legendre polynomials are
considered. Then we have

yM (t) =
M∑
i=0

ciL
∗
i (t). (25)

The main approximate formula of the integer derivative is given in the fol-
lowing theorem.

In this section, special attention is given to study the convergence analy-
sis and evaluate an upper bound for the proposed approximate formula.

Theorem 1. The integer derivative of order n for the shifted Legendre polyno-
mials can be expressed in terms of the shifted Legendre polynomials themselves
in the following form

D(n)(L∗
i (t)) =

i∑
k=n

k−n∑
j=0

Θi,j,k L∗
j (t), (26)

where

Θi,j,k =
(−1)i+k(i + k)!(2j + 1)
�i(i − k)!(k)!(k − n)!

×
j∑

r=0

(−1)j+r(j + r)!
(j − r)! (r!)2(k − n + r + 1)

, j = 0, 1, . . . (27)

Proof. Since the differentiation is a linear operation, then from (25) we get

y
(n)
M (t) =

M∑
i=0

ciD
(n)(L∗

i (t)). (28)

From the formula (22) we can obtain D(n)L∗
i (t) = 0, i = 0, 1, . . . , n − 1.

Therefore, for i = n, n + 1, . . . , M and formula (22) we get

D(n)L∗
i (t) =

i∑
k=0

(−1)i+k(i + k)!
�i(i − k)!(k!)2

D(n)(tk) =
i∑

k=n
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�i(i − k)!k!(k − n)!

tk−n.

(29)
A combination of Eqs. (28) and (29) leads to the following result

y
(n)
M (t) =

M∑
i=n

i∑
k=n

ci γ
(n)
i,k tk−n, (30)
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where γ
(n)
i,k is given by γ

(n)
i,k = (−1)(i+k)(i+k)!

�i(i−k)!k!(k−n)! .

Using the properties of the shifted Legendre polynomials [21], then tk−n

in (29) can be expanded in the following form

tk−n =
k−n∑
j=0

ckjL
∗
j (t), (31)

where ckj can be obtained using (24) such that y(t) = tk−n, then we can
claim the following

ckj =
2j + 1

�

∫
�

0

tk−nL∗
j (t)dt, j = 0, 1, . . . .

But at j = 0 we have, ck0 =
1
�

∫
�

0

tk−ndt =
�

(k−n)

k − n + 1
,

also, for any j, and using the formula (22), we can claim

ckj = (2j + 1)
j∑

r=0

(−1)j+r (j + r)!
�j(j − r)!(r!)2(k − n + r + 1)

, j = 1, 2, . . . ,

employing Eqs. (29) and (31) gives

D(n)(L∗
i (t)) =

i∑
k=n

k−n∑
j=0

Θi,j,kL∗
j (t), i = n, n + 1, . . . ,

where Θi,j,k is given in (27) and this completes the proof of the theorem. �

Now, the combination of Eqs. (23), (25) and (26) and |L∗
j (t)| ≤ 1, with

subtracting the truncated series from the infinite series, bounding each term
in the difference, and summing we can prove the following lemma.

Lemma 1. The error |ET (M)| = |y(n)(t) − y
(n)
M (t)| in approximating y(n)(t)

by y
(n)
M (t) is bounded by

|ET (M)| ≤
∣∣∣

∞∑
i=M+1

ci

( i∑
k=n

k−n∑
j=0

Θi,j,k

)∣∣∣.

4. Procedure Solution

In this section, we present the proposed method to solve numerically the
system of ordinary differential equations of the form (17)–(18). The unknown
functions f(η) and θ(η) may be expanded by finite series of shifted Legendre
polynomials as the following approximation

fM (η) =
M∑
i=0

ciL
∗
i (η), θM (η) =

M∑
i=0

diL
∗
i (η). (32)
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Table 1. Comparison of the numerical value of −f ′′(0),
obtained by Legendre collocation method for α = 0.5, λ = 0
with Fang et al. [15]

m 10.00 9.00 7.00 5.00 3.00 2.00 1.00 0.50 0.00 -0.50
−f ′′(0) 1.0603 1.0589 1.0550 1.0486 1.0359 1.0234 1.0000 0.9799 0.9576 1.1667
Present
work

1.0603 1.0588 1.0551 1.0486 1.0358 1.0234 1.0000 0.9798 0.9577 1.1666

From Eqs. (17), (18), (32) and the formula (30) we have
M∑
i=3

i∑
k=3

ci γ
(3)
i, k ηk−3 +

M∑
i=0

ciL
∗
i (η)

(
M∑
i=2

i∑
k=2

ci γ
(2)
i, k ηk−2

)

−
(

2m

1 + m

) (
M∑
i=1

i∑
k=1

ci γ
(1)
i, k ηk−1

)2

− D

M∑
i=1

i∑
k=1

ci γ
(1)
i, k ηk−1 = 0, (33)

M∑
i=2

i∑
k=2

di γ
(2)
i, k ηk−2 + ε

M∑
i=0

diL
∗
i (η)

(
M∑
i=2

i∑
k=2

di γ
(2)
i, k ηk−2

)

+ ε

(
M∑
i=1

i∑
k=1

di γ
(1)
i, k ηk−1

)2

+
Pr

1 + R

(
M∑
i=0

ciL
∗
i (η)

)

×
(

M∑
i=1

i∑
k=1

di γ
(1)
i, k ηk−1

)2

= 0. (34)

We now collocate Eqs. (33) and (34) at (M − n + 1) points ηs, s =
0, 1, . . . , M − n as

M∑
i=3

i∑
k=3

ci γ
(3)
i, k ηk−3

s +
M∑
i=0

ciL
∗
i (ηs)

(
M∑
i=2

i∑
k=2

ci γ
(2)
i, k ηk−2

s

)

−
(

2m

1 + m

) (
M∑
i=1

i∑
k=1

ci γ
(1)
i, k ηk−1

s

)2

− D

M∑
i=1

i∑
k=1

ci γ
(1)
i, k ηk−1

s = 0, (35)

M∑
i=2

i∑
k=2

di γ
(2)
i, k ηk−2

s + ε

M∑
i=0

diL
∗
i (ηs)

(
M∑
i=2

i∑
k=2

di γ
(2)
i, k ηk−2

s

)

+ ε

(
M∑
i=1

i∑
k=1

di γ
(1)
i, k ηk−1

s

)2

+
Pr

1 + R

(
M∑
i=0

ciL
∗
i (ηs)

)

×
(

M∑
i=1

i∑
k=1

di γ
(1)
i, k ηk−1

s

)2

= 0. (36)

For suitable collocation points, we use roots of shifted Legendre poly-
nomial L∗

M−n+1(η). Also, by substituting formula (32) in the boundary con-
ditions (19) and (20) we can obtain five equations as follows
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Table 2. Comparison of the numerical value of −f ′′(0),
obtained by Legendre collocation method for α = 0.25, λ = 0
with Fang et al. [15]

m 10.00 9.00 7.00 5.00 3.00 1.00 0.50 0.00 -1/3 -0.50
−f ′′(0) 1.1433 1.1404 1.1323 1.1186 1.0905 1.0000 0.9338 0.78439 0.5000 0.0833
Present
work

1.1433 1.1404 1.1322 1.1186 1.0904 1.0000 0.9337 0.7843 0.5000 0.0832
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Figure 2. The behavior of the velocity distribution for vari-
ous values of D
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Figure 3. The behavior of the temperature distribution for
various values of D

M∑
i=0

(−1)ici = α

(
1 − m

1 + m

)
,

M∑
i=0

(−1)idi = 1,

M∑
i=0

di = 0,

M∑
i=0

rici = 1,

M∑
i=0

sici = 0, (37)

where ri = L∗′
i (0), si = L∗′

i (η∞).
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Eqs. (35) and (36), together with five equations of the boundary condi-
tions (37), give a system of (2M +2) algebraic equations which can be solved,
for the unknowns ci, di, i = 0, 1, . . . , M , using Newton iteration method. In
our numerical study we take M = 5, i.e., five terms of the truncated series
solution (32), at η∞ = � = 14.

5. Results and Discussion

Tables 1 and 2 clearly reveal that present solution namely Legendre collo-
cation method shows excellent agreement with the existing solutions in the
literature [15]. This analysis shows that the proposed method suits for the

2 4 6 8 10 12 14
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0.8

1.0
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1.0, 0.5, 0.25, 0.0

m 0.5, D 0.2
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0.4

0.6

0.8

1.0

a

b
F'

0.0, 0.25, 0.5, 1.0

m 5.0, D 0.2

Figure 4. a The behavior of the velocity distribution for var-
ious values of α with m = 0.5. b The behavior of the velocity
distribution for various values of α with m = 5
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Figure 5. a The behavior of the temperature distribution
for various values of α with m = 0.5. b The behavior of the
temperature distribution for various values of α with m = 5

problems of boundary layer flow in fluid-saturated porous medium. This sec-
tion provides the behavior of parameters involved in the expressions of heat
transfer characteristics for the stretching sheet. Numerical evaluation for the
solutions of this problem is performed and the results are illustrated graph-
ically in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 10. The study of flow in porous
media is very important in approximating the shape of spherical particles
or cylindrical fibers which better fit the model of permeability assumed for
the analysis. Effects of the porous parameter D on velocity and tempera-
ture profiles are shown in Figs. 2 and 3, respectively. It is observed that the
velocity decreases for increasing values of porous parameter. Furthermore,
the momentum boundary layer thickness decreases as porous parameter D
increases. Figure 3 elucidates that the fluid temperature enhance with an
increase in the porous parameter.
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Figure 7. The behavior of the temperature distribution for
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The effects of wall thickness parameter on the fluid flow and the tem-
perature distribution have been analyzed and the results are presented in
Figs. 4 and 5. From Fig. 4 it is clear that the velocity at any point near to
the plate decreases as the wall thickness parameter increases for m < 1 and
the reverse is true for m > 1. Also, it is obvious from these figures that the
thickness of the boundary layer becomes thinner for a higher value of α when
m < 1 and becomes thicker for a higher value of α when m > 1.

Figure 5 display that the wall thickness parameter decreased the thick-
ness of the thermal boundary layer and enhanced the rate of heat transfer
for m < 1 whereas reverse trend is observed as m > 1. Physically, increasing
the value of α when m < 1 will decrease the flow velocity because under the
variable wall thickness, not all the pulling force of the stretching sheet can
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Figure 8. The behavior of the temperature distribution for
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Figure 9. The behavior of the temperature distribution for
various values of R

be transmitted to the fluid causing a decrease for both friction between the
fluid layers and temperature distribution for the fluid. But, when m > 1 the
velocity of the flow layers will increase causing an enhance for the friction
force between this layers and thus increasing its temperature. Likewise, for a
higher value of α, the thermal boundary layer becomes thinner when m < 1
compared with the case of m > 1.

Figure 6 shows that the velocity rises with a decrease in the values of
the velocity power index m. This implies the momentum boundary thickness
becomes thinner as the m increases along the sheet and the reverse is true
away from it.

Figure 7 displays the influence of the velocity power index parameter m
on the temperature profiles. It is clearly seen from this figure that increasing
the value of m produces an increase in the temperature profiles. It further
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shows that the larger the value of m, the higher the magnitude of the thermal
boundary thickness will be.

In Fig. 8 we have varied the thermal conductivity parameter ε keeping
the values of all other parameters fixed. Figure 8 reveals that the temperature
profile as well as the thickness of the thermal boundary layer increase when
ε increases.

Figure 9 illustrates the effects of radiation parameter R on the temper-
ature profiles when other parameters held constant. It is depicted that the
temperature field and the thermal boundary layer thickness increase with the
increase in R.

It is observed from Fig. 10 that an increase in the Prandtl number
results in decreases the heat transfer profiles. The reason is that increasing
values of Prandtl number equivalent to decreasing the thermal conductivities
and therefore heat is able to diffuse away from the heated sheet more rapidly.
Hence in the case of increasing Prandtl number, the boundary layer is thinner
and the heat transfer is reduced.

Table 3 shows the influence of the porous parameter D, wall thickness
parameter α, the velocity power index parameter m, the radiation parame-
ter R, the Prandtl number Pr and thermal conductivity parameters ε on
the local skin friction coefficient and the local Nusselt number. It is noticed
that increases in the wall thickness parameter leads to an increase in both the
local skin-friction coefficient and the local Nusselt number. Likewise, the local
Nusselt number is reduced but the skin-friction coefficient is increased with
increasing for both values of porous parameter and velocity power index para-
meter. Also, an increase in the Prandtl number causes an increase in the local
Nusselt number. This is because a fluid with larger Prandtl number possesses
larger heat capacity, and hence intensifies the heat transfer. Moreover, it is
observed that the values of the local Nusselt number decreases with increase
in both the thermal conductivity parameter and the radiation parameter.
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Table 3. Values of −f ′′(0) and −θ′(0) for various values of
D,α,m, ε,R and Pr

D α m ε R Pr −f ′′(0) −θ′(0)
0.0 0.2 0.5 0.1 0.5 1.0 0.92482 0.441838
0.5 0.2 0.5 0.1 0.5 1.0 1.16858 0.401882
1.0 0.2 0.5 0.1 0.5 1.0 1.36982 0.372258
0.5 0.0 0.5 0.1 0.5 1.0 1.13387 0.375148
0.5 0.25 0.5 0.1 0.5 1.0 1.17740 0.408670
0.5 0.5 0.5 0.1 0.5 1.0 1.22242 0.443211
0.5 1.0 0.5 0.1 0.5 1.0 1.31682 0.515101
0.5 0.2 0.0 0.1 0.5 1.0 1.04487 0.472745
0.5 0.2 0.5 0.1 0.5 1.0 1.16858 0.401882
0.5 0.2 5.0 0.1 0.5 1.0 1.32780 0.303396
0.5 0.2 0.5 0.0 0.5 1.0 1.16858 0.434823
0.5 0.2 0.5 0.2 0.5 1.0 1.16858 0.373956
0.5 0.2 0.5 0.5 0.5 1.0 1.16858 0.310624
0.5 0.2 0.5 0.1 0.0 1.0 1.16858 0.547732
0.5 0.2 0.5 0.1 0.5 1.0 1.16858 0.401882
0.5 0.2 0.5 0.1 1.0 1.0 1.16858 0.319550
0.5 0.2 0.5 0.1 0.5 0.7 1.16858 0.302207
0.5 0.2 0.5 0.1 0.5 1.0 1.16858 0.401882
0.5 0.2 0.5 0.1 0.5 3.0 1.16858 0.896313

6. Conclusions

In this paper, the Legendre collocation method is used to investigate the
approximate solution of the resulting non-linear system of ODEs for the
problem of flow and heat transfer in a quiescent Newtonian fluid flow caused
solely by a stretching sheet which embedded in a porous medium with vari-
able thickness, variable thermal conductivity and thermal radiation. The fluid
thermal conductivity is assumed to vary as a linear function of temperature.
Comparison with previously published work was performed and the results
were found to be in excellent agreement. Asystematic study on the effects
of the various parameters on flow and heat transfer characteristics is carried
out. It was found that the effect of increasing values of the porous para-
meter, the velocity power index parameter, thermal conductivity parameter
and the radiation parameter reduce the local Nusselt number. On the other
hand it was observed that the local Nusselt number increases as the Prandtl
number and wall thickness parameter increases. Moreover, it is interesting to
find that as the porous parameter, wall thickness parameter and the veloc-
ity power index parameter increases in magnitude, causes the fluid to slow
down past the stretching sheet, the skin-friction coefficient increases in mag-
nitude. From the presented results, we can see that the numerical solution is
in excellent agreement with those obtained by other methods.
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