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1. Introduction

In recent years, much work has been done on the existence and uniqueness of
solutions of boundary value problems for differential equations. Some theory
and methods of nonlinear functional analysis, for example, fixed-point the-
orems, the continuation method of topological degree, the upper and lower
solutions method, variational method and critical point theory, have been
applied to those problems. Impulsive problems describe processes which ex-
perience a sudden change in their states at certain moments. Impulsive dif-
ferential equations have been developed in modeling impulsive problems in
physics, chemical technology, population dynamics, ecology, biological sys-
tems, biotechnology, industrial robotics, optimal control, economics, and so
forth. For the introduction of the theory of impulsive differential equations,
we refer to the books [1–3]. Especially, the study of impulsive dynamic equa-
tions on time scales has also attracted much attention since it provides an
unifying structure for differential equations in the continuous cases and finite
difference equations in the discrete cases, see [4–9] and references therein.
Some basic definitions and theorems on time scales can be found in the books
[10,11].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-015-0591-6&domain=pdf
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In 2008, Yaslan [12] studied nonlinear second-order three-point bound-
ary value problem on time scales:{

uΔ∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, t3] ⊂ T

uΔ(t3) = 0, αu(t1) − βuΔ(t1) = uΔ(t2).

By using fixed-point theorems in cones, conditions for the existence of at least
one, two and three positive solutions of the problem is obtained.

In 2010, Li et al. [13] studied the existence of at least one and three
positive solutions of the following impulsive boundary value problem on time
scales⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
φp

(
yΔ(t)

)]∇ + ω(t)f(t, y(t)) = 0, t ∈ [0, T ]T, t �= tk, k=1, 2, . . . ,m

y(t+k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, . . . ,m

y(0) =
n−2∑
i=1

aiy(ξi), yΔ(T ) = 0.

In 2014, Karaca et al, [14] discussed the following impulsive boundary
value problem on time scales⎧⎪⎪⎪⎨

⎪⎪⎪⎩

− (
φp

(
uΔ

))∇ (t) = f(t, u(t)), t ∈ [0, 1]T, t �= tk, k = 1, 2, . . . , m

u(t+k ) − u(t−k ) = Ik(u(tk)), k = 1, 2, . . . ,m

αu(0) − βuΔ(0) =
1∫
0

u(s)Δs, uΔ(1) = 0

and established criteria for the existence of at least two or many positive
solutions to the problem.

In 2014, Xu and Wang [15] considered the general second-order nonlin-
ear m-point singular impulsive boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uΔ∇(t) + a(t)uΔ(t) + b(t)u(t) + q(t)f(t, u(t)) = 0, t ∈ (0, 1), t �= tk

uΔ(t+k ) = uΔ(tk − Ik(u(tk)), k = 1, 2, . . . , n

u(ρ(0)) = 0, u(σ1) =
m−2∑
i=1

αiu(ηi).

The existence and uniqueness of positive solutions are established by using
fixed-point theorems in cones.

In this paper, motivated by the above results, we consider the following
boundary value problem (BVP) on time scales:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yΔ∇(t) + h(t)f(t, y(t)) = 0, t ∈ [a, b] ⊂ T
∗, t �= tk, k = 1, 2, . . . ,m

y(t+k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, . . . , m

yΔ(b) = 0, αy(a) − βyΔ(a) =
n−2∑
i=1

yΔ(μi), n ≥ 3,

(1.1)

where T
∗ := T

κ ∩ Tκ, 0 ≤ a < t1 < · · · < tm < ρ(b), μi ∈ (a, b) ∩ T (i =
1, 2, . . . , n − 2) with a < μ1 < · · · < μn−2 < ρ(b). Let us define the set

D =
{
x : [a, b] → R;xΔ : [a, b] ∩ T

κ → R is continuous such that

xΔ∇ : [a, b] ∩ T
∗ → R is ld − continuous

}
.
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A function y : [a, b] → R is said to be a solution of the problem (1.1) provided
y ∈ D and the BVP (1.1) holds for all t ∈ [a, b].

We will assume that the following conditions are satisfied.

(H1) h ∈ Cld ([a, b], [0,∞)) and does not vanish identically on any closed
subinterval of [a, b];

(H2) f ∈ C ([a, b] × [0,∞), [0,∞));
(H3) Ik ∈ C (R,R+), tk ∈ [a, b] and y(t+k ) = limh→0 y(tk + h), y(t−k ) =

limh→0 y(tk − h) represent the right and left limits of y(t) at t = tk,
k = 1, . . . ,m.

The rest of paper is arranged as follows. In Sect. 2, we give several lemmas to
prove the main results in this paper. In Sect. 3, existence results of at least
one positive solutions of the BVP (1.1) are first established as a result of
Leray–Schauder fixed-point theorem. Second, we apply the Avery–Henderson
fixed-point theorem to prove the existence of at least two positive solutions
to the BVP (1.1). Finally, we use Leggett–Williams fixed-point theorem to
show that the existence of at least three positive solutions for the BVP (1.1).

2. Preliminaries

We now state and prove several lemmas which are needed later.

Lemma 2.1. Assume (H3) holds and α > 0, β ≥ 0. If ω(t) ∈ Cld[a, b] and
ω(t) ≥ 0 for t ∈ [a, b], then y(t) is a solution of the following BVP⎧⎪⎪⎨

⎪⎪⎩

yΔ∇(t) + ω(t) = 0, t ∈ [a, b] ⊂ T
∗, t �= tk, k = 1, 2, . . . ,m

y(t+k ) − y(t−k ) = Ik(y(tk)), k = 1, 2, . . . ,m

yΔ(b) = 0, αy(a) − βyΔ(a) =
n−2∑
i=1

yΔ(μi), n ≥ 3
(2.1)

if and only if y(t) is a solution of the following integral equation

y(t) =

b∫
a

(
β

α
+ r − a

)
ω(r)∇r +

b∫
t

(t − r)ω(r)∇r +
1
α

n−2∑
i=1

b∫
μi

ω(r)∇r

+
∑

a<tk<t

Ik (y(tk)) (2.2)

and y(t) ≥ 0 for t ∈ [a, b].

Proof. Let y be a solution of the problem (2.1). Then

yΔ∇(t) = −ω(t), t ∈ [a, b].

A nabla integration from t to b of both sides of the above equality yields

yΔ(b) − yΔ(t) = −
b∫

t

ω(r)∇r, i.e., yΔ(t) =

b∫
t

ω(r)∇r.
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Integrating above equality from a to t, we have

y(t) − y(a) =

t∫
a

b∫
s

ω(r)∇rΔs +
∑

a<tk<t

Ik(y(tk)).

Then we get

y(t) = y(a) +

t∫
a

r∫
a

ω(r)Δs∇r +

b∫
t

t∫
a

ω(r)Δs∇r +
∑

a<tk<t

Ik(y(tk))

= y(a) +

b∫
a

(r − a)ω(r)∇r +

b∫
t

(t − r)ω(r)∇r +
∑

a<tk<t

Ik(y(tk)). (2.3)

By using the second boundary condition, we obtain

αy(a) − β

b∫
a

ω(r)∇r =
n−2∑
i=1

b∫
μi

ω(r)∇r. (2.4)

From (2.3) and (2.4), we find

y(t) =

b∫
a

(
β

α
+ r − a

)
ω(r)∇r +

b∫
t

(t − r)ω(r)∇r +
1
α

n−2∑
i=1

b∫
μi

ω(r)∇r

+
∑

a<tk<t

Ik (y(tk)) .

Since α > 0, β ≥ 0 and ω(t) ≥ 0 for t ∈ [a, b], y(t) ≥ 0 for t ∈ [a, b].
Conversely, it is very easy to show that y(t) in (2.2) satisfies (2.1). �

By Lemma 2.1, the solutions of the BVP (1.1) are the fixed-points of
the operator A defined by

Ay(t) =

b∫
a

(
β

α
+ r − a

)
h(r)f(r, y(r))∇r +

b∫
t

(t − r)h(r)f(r, y(r))∇r

+
1
α

n−2∑
i=1

b∫
μi

h(r)f(r, y(r))∇r +
∑

a<tk<t

Ik(y(tk)).

Let

E =
{

y : [a, b] → R is continuous at t �= tk, left continuous at the points

tk, for which y(t−k ) and y(t+k ) existwith y(t−k ) = y(tk),

k = 1, . . . , m.

}
,
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which is a Banach space with the norm ‖y‖ = supt∈[a,b] |y(t)|. Define the cone
P ⊂ E by

P =
{

y ∈ E : y is concave,nondecreasing and nonnegative on [a, b],

yΔ(b) = 0
}

. (2.5)

Lemma 2.2. Let α > 0 and β ≥ 0. If y ∈ P , then y(t) in (2.2) satisfies

y(t) ≥ t − a

b − a
‖y‖, t ∈ [a, b] ⊂ T. (2.6)

Proof. Since y ∈ P , y(t) is nondecreasing on [a, b]. Then, we have ‖y‖ = y(b).
If

g(t) = y(t) − t − a

b − a
‖y‖, t ∈ [a, b] ⊂ T,

we obtain g(a) = y(a) ≥ 0 and g(b) = 0. Since g is concave on [a, b], we get
g(t) ≥ 0 for t ∈ [a, b]. Then we find

y(t) ≥ t − a

b − a
‖y‖, t ∈ [a, b] ⊂ T.

�

3. Existence of Solutions

Let us introduce the following hypotheses, which are assumed hereafter:
(H4) There exist constants ck such that |Ik(y)| ≤ ck, for k = 1, . . . ,m and

for all y ∈ P.

To prove the existence of at least one positive solution for the BVP (1.1), we
will apply the following Leray–Schauder fixed-point theorem.

Theorem 3.1. Let E be a Banach space, A : E → E is a completely continuous
operator. If the set {x ∈ E : x = λAx, 0 < λ < 1} is bounded, then A has at
least one fixed point in the closed T ⊂ E, where

T = {x ∈ E : ‖x‖ ≤ R}, R = sup {‖x‖ : x = λAx, 0 < λ < 1} .

Theorem 3.2. Assume (H1)–(H4) hold and α > 0, β ≥ 0. Then the BVP
(1.1) has at least one positive solution.

Proof. For all y ∈ P , from (H1), (H2), the definition of A and the proof of
Lemma 2.1, we know that

(Ay)(t) ≥ 0, (Ay)Δ(t) ≥ 0, (Ay)Δ∇(t) ≤ 0, (Ay)Δ(b) = 0.

So A is an operator from P to P . Standard arguments show that A : P → P
is completely continuous.

We denote

N(A) := {y ∈ P : y = λAy, 0 < λ < 1} .
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Now we show that the set N(A) is bounded. Let T = {y ∈ P : ‖y‖ ≤ R} and
R = sup {‖y‖ : y = λAy, 0 < λ < 1} . Then for all y ∈ N(A), we have

|y(t)| = λ|Ay(t)|

≤ λ sup
t∈[a,b], y∈T

f(t, y(t))
{ (

β + n − 2
α

+ 2b − 2a

) b∫
a

h(r)∇r

}

+λ
m∑

k=1

ck.

From (H1), (H2) and (H4), we obtain N(A) is bounded. By Theorem
3.1, the BVP (1.1) has at least one positive solution. �

We will need also the following (Avery–Henderson) fixed-point theorem
[16] to prove the existence of at least one positive solution for the BVP (1.1).

Theorem 3.3 [16]. Let P be a cone in a real Banach space E. Set

P (φ, r) = {u ∈ P : φ(u) < r}.

If η and φ are increasing, nonnegative continuous functionals on P , let θ be
a nonnegative continuous functional on P with θ(0) = 0 such that, for some
positive constants r and M ,

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤ Mφ(u)

for all u ∈ P (φ, r). Suppose that there exist positive numbers p < q < r such
that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, q).

If A : P (φ, r) → P is a completely continuous operator satisfying
(i) φ(Au) > r for all u ∈ ∂P (φ, r),
(ii) θ(Au) < q for all u ∈ ∂P (θ, q),
(iii) P (η, p) �= ∅ and η(Au) > p for all u ∈ ∂P (η, p),
then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Define the constants

M :=

⎛
⎝

b∫
μn−2

(
β + n − 2

α
+ μn−2 − a

)
h(s)∇s

⎞
⎠

−1

(3.1)

and

N :=

⎛
⎝

b∫
a

(
β + n − 2

α
+ s − a

)
h(s)∇s

⎞
⎠

−1

. (3.2)

Theorem 3.4. Assume (H1)–(H4) hold and α > 0, β ≥ 0. Suppose there
exist numbers 0 < p < q < r such that the function f satisfies the following
conditions:
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(i) f(s, y) > rM for (s, y) ∈ [μn−2, b] ×
[
r, r(b−a)

μn−2−a

]
,

(ii) f(s, y)< qN
2 for (s, y) ∈ [a, b]×

[
0, q(b−a)

μn−2−a

]
and

∑
a<tk<μn−2

Ik(y(tk))≤ q
2 ,

(iii) f(s, y) > pM for (s, y) ∈ [μn−2, b] ×
[

p(μn−2−a)
b−a , p

]
,

where N and M are defined in (3.1) and (3.2), respectively. Then the BVP
(1.1) has at least two positive solutions y1 and y2 such that

y1(b) > p with y1(μn−2) < q and y2(μn−2) > q with y2(μn−2) < r.

Proof. Define the cone P as in (2.6). We know that AP ⊂ P is completely
continuous. Let the nonnegative increasing continuous functionals φ, θ and η
be defined on the cone P by

φ(y) := y(μn−2), θ(y) := y(μn−2), η(y) := y(b).

For each y ∈ P , we have

φ(y) = θ(y) ≤ η(y)

and from Lemma (2.2) we have

‖y‖ ≤ b − a

μn−2 − a
φ(y). (3.3)

In addition, θ(0) = 0 and for all y ∈ P , λ ∈ [0, 1] we get θ(λy) = λθ(y). We
now verify that all of the conditions of Theorem 3.3 are satisfied.

If y ∈ ∂P (φ, r), from (3.3) we have r = y(μn−2) ≤ y(s) ≤ ‖y‖ ≤ (b−a)r
μn−2−a

for s ∈ [μn−2, b]. Then, from the hypothesis (i) and (3.1), we find

φ(Ay) =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s

+

b∫
μn−2

(μn−2 − s)h(s)f(s, y(s))∇s +
∑

a<tk<μn−2

Ik(y(tk))

≥
b∫

μn−2

(
β + n − 2

α
+ μn−2 − a

)
h(s)f(s, y(s))∇s

>

b∫
μn−2

(
β + n − 2

α
+ μn−2 − a

)
h(s)rM∇s

= r.

Thus the condition (i) of Theorem 3.3 holds.
If y ∈ ∂P (θ, q), from (3.3) we have 0 ≤ y(s) ≤ ‖u‖ ≤ (b−a)q

μn−2−a for
s ∈ [a, b]. Then, we obtain
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θ(Ay) =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s

+

b∫
μn−2

(μn−2 − s)h(s)f(s, y(s))∇s +
∑

a<tk<μn−2

Ik(y(tk))

≤
b∫

a

(
β + n − 2

α
+ s − a

)
h(s)f(s, y(s))∇s +

∑
a<tk<μn−2

Ik(y(tk))

<

b∫
a

(
β + n − 2

α
+ s − a

)
h(s)

qN

2
∇s +

q

2

= q

by hypothesis (ii) and (3.2). Hence the condition (ii) of Theorem 3.3 is sat-
isfied.

Since 0 ∈ P and p > 0, P (η, p) �= ∅. If y ∈ ∂P (η, p), from Lemma (2.2)
we have p(μn−2−a)

b−a ≤ y(s) ≤ ‖y‖ = p for s ∈ [μn−2, b]. Then, we get

η(Ay) =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s

+
∑

a<tk<b

Ik(y(tk))

>

b∫
μn−2

(
β + n − 2

α
+ μn−2 − a

)
h(s)pM∇s

= p

using hypothesis (iii) and (3.1). Since all the conditions of Theorem 3.3 are
fulfilled, the BVP (1.1) has at least two positive solutions y1 and y2 such that

y1(b) > p with y1(μn−2) < q and y2(μn−2) > q with y2(μn−2) < r.

�

Now, we will use the following (Leggett–Williams) fixed-point theorem
[17] to prove the existence of at least three positive solutions to the nonlinear
BVP (1.1).

Theorem 3.5 [17]. Let P be a cone in the real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r}

P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b} .

Suppose A : Pr → Pr be a completely continuous operator and ψ be a non-
negative continuous concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr.
If there exists 0 < p < q < l ≤ r such that the following condition hold,



Vol. 13 (2016) Positive Solutions for Impulsive BVP 1621

(i) {u ∈ P (ψ, q, l) : ψ(u) > q} �= ∅ and ψ(Au) > q for all u ∈ P (ψ, q, l);
(ii) ‖Au‖ < p for ‖u‖ ≤ p;
(iii) ψ(Au) > q for u ∈ P (ψ, q, r) with ‖Au‖ > l,

then A has at least three fixed points u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

Theorem 3.6. Assume (H1)–(H4) hold and α > 0, β ≥ 0. Suppose that there
exist constants 0 < p < q < q(b−a)

μn−2−a ≤ r such that the function f satisfies the
following conditions:

(i) f(s, y) ≤ rN
2 for (s, y) ∈ [a, b] × [0, r] and Ik(y(tk)) ≤ r

2m for k =
1, 2, . . . ,m,

(ii) f(s, y) > qM for (s, y) ∈ [μn−2, b] ×
[
q, q(b−a)

μn−2−a

]
,

(iii) f(s, y) < pN
2 for (s, y) ∈ [a, b] × [0, p].

Then the BVP (1.1) has at least three positive solutions y1, y2 and y3 satis-
fying

y1(b) < p, y2(μn−2) > q, y3(b) > p with y3(μn−2) < q.

Proof. The conditions of Theorem 3.5 will be shown to be satisfied. For this
purpose we first define the nonnegative continuous concave functional ψ :
P → [0,∞) to be ψ(y) := y(μn−2), the cone P as in (2.6), M as in (3.1) and
N as in (3.2). For all y ∈ P , we have ψ(y) ≤ ‖y‖. If y ∈ Pr, then 0 ≤ y ≤ r
and from the hypothesis (i) and (3.2), we get

‖Ay‖ =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s

+
∑

a<tk<b

Ik(y(tk))

≤
b∫

a

(
β + n − 2

α
+ s − a

)
h(s)

rN

2
∇s +

r

2

= r.

This proves that A : Pr → Pr.

Since q(b−a)
μn−2−a ∈ P

(
ψ, q, q(b−a)

μn−2−a

)
and ψ

(
q(b−a)

μn−2−a

)
> q, {y ∈ P (ψ, q,

q(b−a)
μn−2−a ) : ψ(y) > q

}
�= ∅. For y ∈ P

(
ψ, q, q(b−a)

μn−2−a

)
, we have q ≤ y(μn−2) ≤

y(s) ≤ ‖y‖ ≤ q(b−a)
μn−2−a for s ∈ [μn−2, b]. Using the hypothesis (ii) and (3.1),
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we obtain

ψ(Ay) =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s

+

b∫
μn−2

(μn−2 − s)h(s)f(s, y(s))∇s +
∑

a<tk<μn−2

Ik(y(tk))

≥
b∫

μn−2

(
β + n − 2

α
+ μn−2 − a

)
h(s)f(s, y(s))∇s

> q.

Hence, the condition (i) of Theorem 3.5 holds.
If ‖y‖ ≤ p, we find

‖Ay‖ =

b∫
a

(
β

α
+ s − a

)
h(s)f(s, y(s))∇s +

+
1
α

n−2∑
i=1

b∫
μi

h(s)f(s, y(s))∇s +
∑

a<tk<b

Ik(y(tk))

≤
b∫

a

(
β + n − 2

α
+ s − a

)
h(s)f(s, y(s))∇s +

∑
a<tk<b

Ik(y(tk))

< p.

by hypothesis (iii) and (3.2). Thus, the condition (ii) of Theorem 3.5 is sat-
isfied.

For the condition (iii) of Theorem 3.5, we suppose that y ∈ P (ψ, q, r)
with ‖Ay‖ > q(b−a)

μn−2−a . Then, from Lemma (2.2) we get

ψ(Ay) = Ay(μn−2) ≥ μn−2 − a

b − a
‖Ay‖ > q.

Because all of the hypotheses of the Leggett–Williams fixed-point theorem
are satisfied, the BVP (1.1) has at least three positive solutions y1, y2 and y3

such that

y1(b) < p, y2(μn−2) > q, y3(b) > p with y3(μn−2) < q.

�

Example. Let T =
{
( 2
3 )n : n ∈ N

} ∪ {0} ∪ [3, 10]. Consider the following
boundary value problem:⎧⎪⎨

⎪⎩
yΔ∇(t) + t 2013y5

y5+1 = 0, t �= 2
3 , t ∈ [

2
9 , 10

] ⊂ T
∗

yΔ(10) = 0, 2y
(

2
9

) − yΔ
(

2
9

)
= yΔ(3) + yΔ(5),

y
(

2
3

+
)

− y
(

2
3

−)
= 5.
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If we take p = 5, q = 11 and r = 473.893, then all the conditions in
Theorem 3.4 are satisfied. Thus, by Theorem 3.4, the BVP has at least two
positive solutions y1 and y2 such that

y1(10) > 5 with y1(5) < 11 and y2(5) > 11 with y2(5) < 473893.

If we take p = 0.68, q = 1 and r = 11, then all the conditions in Theorem
3.6 are satisfied. Thus, the BVP has at least three positive solutions y1, y2

and y3 satisfying

y1(10) < 0.68, y2(5) > 1, y3(5) < 1 with y3(10) > 0.68.
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