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Abstract. We obtained useful identities via Fink’s identity, by which the
inequality of Popoviciu for convex functions is generalized for higher
order convex functions. We investigate the bounds for the identities
related to the generalization of the Popoviciu inequality using inequali-
ties for the Čebyšev functional. Some results relating to the Grüss- and
Ostrowski-type inequalities are constructed. Further, we also construct
new families of exponentially convex functions and Cauchy-type means
by looking at linear functional associated with the obtained inequalities.
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Čebyšev functional, Grüss inequality, Ostrowski inequality,
exponential convexity.

1. Introduction

The theory developed in the study of convex functions, arising from intuitive
geometrical observations, may be readily applied to topics in real analysis and
economics. Convexity is a simple and natural notion which can be traced back
to Archimedes (circa 250 B.C.), in connection with his famous estimate of
the value of π (using inscribed and circumscribed regular polygons). He no-
ticed the important fact that the perimeter of a convex figure is smaller than
the perimeter of any other convex figure, surrounding it. The theory of con-
vex functions has experienced a rapid development. This can be attributed
to several causes: first, so many areas in modern analysis directly or indi-
rectly involve the application of convex functions; second, convex functions
are closely related to the theory of inequalities and many important inequal-
ities are consequences of the applications of convex functions (see [12]).

Definition 1. A function f : I → R is convex on I if

(x3 − x2) f (x1) + (x1 − x3) f (x2) + (x2 − x1) f (x3) ≥ 0 (1)

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.
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An important characterization of convex function is stated in [12, p. 2].

Theorem 1.1. If f is a convex function defined on I and if x1 ≤ y1, x2 ≤
y2, x1 �= x2, y1 �= y2, then the following inequality is valid

f (x2) − f (x1)
x2 − x1

≤ f (y2) − f (y1)
y2 − y1

. (2)

If the function f is concave, then the inequality reverses.

Divided differences are fairly ascribed to Newton, and the term divided
difference was used by Augustus de Morgan in 1842. Divided differences are
found to be very helpful when we are dealing with functions having different
degrees of smoothness. One of the important references on divided difference
is the book by de Boor [2].

Definition 2. The nth order divided difference of a function f : [a, b] → R at
mutually distinct points x0, . . . , xn ∈ [a, b] is defined recursively by

[xi; f ] = f (xi) , i = 0, . . . , n,

[x0, . . . , xn; f ] =
[x1, . . . , xn; f ] − [x0, . . . , xn−1; f ]

xn − x0
. (3)

It is easy to see that (3) is equivalent to

[x0, . . . , xn; f ] =
n∑

i=0

f (xi)
q′ (xi)

, where q (x) =
n∏

j=0

(x − xj) .

The following definition of a real valued convex function is characterized by
nth order divided difference (see [12, p.15]).

Definition 3. A function f : [a, b] → R is said to be n-convex (n ≥ 0) if and
only if for all choices of (n + 1) distinct points x0, . . . , xn ∈ [a, b], [x0, . . . , xn;
f ] ≥ 0 holds.

If this inequality is reversed, then f is said to be n-concave. If the in-
equality is strict, then f is said to be a strictly n-convex (n-concave) function.

Remark 1.2. Note that 0−convex functions are non-negative functions,
1−convex functions are increasing functions and 2−convex functions are sim-
ply the convex functions.

The following theorem gives an important criteria to examine the n-
convexity of a function f (see [12, p. 16]).

Theorem 1.3. If f (n) exists, then f is n-convex if and only if f (n) ≥ 0.

In 1965, Popoviciu introduced a characterization of convex function [13].
In 1976, the inequality of Popoviciu as given by Vasić and Stanković in [14]
can be written in the following form (see [12, p. 173]):

Theorem 1.4. Let m, k ∈ N, m ≥ 3, 2 ≤ k ≤ m − 1, [α, β] ⊂ R, x =
(x1, . . . , xm) ∈ [α, β]m, p = (p1, . . . , pm) be a positive m-tuple such that∑m

i=1 pi = 1. Also let f : [α, β] → R be a convex function. Then

pk,m(x,p; f) ≤ m − k

m − 1
p1, m(x,p; f) +

k − 1
m − 1

pm,m(x,p; f), (4)
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where

pk,m(x,p; f) = pk,m(x,p; f(x))

:=
1

Cm−1
k−1

∑

1≤i1<···<ik≤m

⎛

⎝
k∑

j=1

pij

⎞

⎠ f

⎛

⎜⎜⎜⎝

k∑
j=1

pijxij

k∑
j=1

pij

⎞

⎟⎟⎟⎠

is the linear functional with respect to f .

By inequality (4), we write

Υ(x,p; f) :=
m − k

m − 1
p1,m(x,p; f) +

k − 1
m − 1

pm,m(x,p; f) − pk,m(x,p; f). (5)

Remark 1.5. It is important to note that under the assumptions of Theorem
1.4, if the function f is convex then Υ(x,p; f) ≥ 0 and Υ(x,p; f) = 0 for
f(x) = x or f is a constant function.

The mean value theorems and exponential convexity of the linear func-
tional Υ(x,p; f) are given in [9] for a positive m-tuple p. Some special classes
of convex functions are considered to construct the exponential convexity of
Υ(x,p; f) in [9]. In [10] (see also [6]), the results related to Υ(x,p; f) are gen-
eralized with help of Green function and n-exponential convexity is proved
instead of exponential convexity.

In the present paper, we use A. M. Fink’s identity and prove many
interesting results. The following theorem is proved by Fink in [5].

Theorem 1.6. Let a, b ∈ R, φ : [a, b] → R, n ≥ 1 and φ(n−1) is absolutely
continuous on [a, b]. Then

φ (x) =
n

b − a

∫ b

a

φ (t) dt

−
n−1∑

w=1

(
n − w

w!

)(
φ(w−1) (a) (x − a)w − φ(w−1) (b) (x − b)w

b − a

)

+
1

(n − 1)! (b − a)

∫ b

a

(x − t)n−1
w[a,b] (t, x) φ(n) (t) dt, (6)

where

w[a,b] (t, x) =
{

t − a, a ≤ t ≤ x ≤ b,
t − b, a ≤ x < t ≤ b.

(7)

The organization of the paper is the following: in Sect. 2, we present
the generalization of the Popoviciu’s inequality using A. M. Fink’s identity
combined together with the n-convexity of the function φ. In Sect. 3, we
present some interesting results using Čebyšev functional and Grüss-type
inequalities along with some results relating to the Ostrowski-type inequality.
In Sect. 4, we study the functional defined as the difference between the
R.H.S. and the L.H.S. of the generalized inequality and our objective is to
investigate the properties of functional, such as n-exponential and logarithmic
convexity. Furthermore, we prove monotonicity property of the generalized
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Cauchy means obtained via this functional. Finally, in Sect. 5 we give several
examples of the families of functions for which the obtained results can be
applied.

2. Generalization of Popoviciu’s Inequality for n-convex
Functions Via A. M. Fink’s Identity

Motivated by identity (5), we construct the following identity with help of
Fink identity.

Theorem 2.1. Let φ : [α, β] → R be such that for n ≥ 1, φ(n−1) is ab-
solutely continuous and let m, k ∈ N, m ≥ 3, 2 ≤ k ≤ m − 1, [α, β] ⊂ R,
x = (x1, . . . , xm) ∈ [α, β]m, p = (p1, . . . , pm) be a real m-tuple such that∑k

j=1 pij �= 0 for any 1 ≤ i1 < · · · < ik ≤ m and
∑m

i=1 pi = 1. Also let
∑k

j=1 pij
xij∑k

j=1 pij

∈ [α, β] for any 1 ≤ i1 < · · · < ik ≤ m with w[α,β](t, x) be the same

as defined in (7). Then we have the following identity:

Υ(x,p;φ(x)) =
n−l∑

w=2

(
n − w

w!(β − α)

)

×
(
φ(w−1) (β) Υ(x,p; (x−β)w)−φ(w−1) (α) Υ(x,p; (x−α)w)

)

+
1

(n−1)! (β−α)

∫ β

α

Υ(x,p; (x−t)n−1
w[α,β](t, x))φ(n)(t)dt. (8)

Proof. Using (6) in (5) and using linearity of the functional Υ(·), we have

Υ(x,p;φ(x)) = Υ

(
x,p;

n

β − α

∫ β

α

φ(t)dt

)

+
n−l∑

w=1

(
n − w

w!(β − α)

)
φ(w−1) (β) Υ(x,p; (x − β)w)

−
n−l∑

w=1

(
n − w

w!(β − α)

)
φ(w−1) (α) Υ(x,p; (x − α)w)

+
1

(n−1)! (β−α)

∫ β

α

Υ(x,p; (x−t)n−1
w[α,β](t, x))φ(n)(t)dt.

(9)

After simplification and following Remark 1.5, we get (8). �

In the following theorem we obtain generalizations of Popoviciu’s in-
equality for n-convex functions.

Theorem 2.2. Let all the assumptions of Theorem 2.1 be satisfied and let for
n ≥ 1

Υ(x,p; (x − t)n−1
w[α,β](t, x)) ≥ 0, t ∈ [α, β]. (10)
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If φ is n-convex, then we have

Υ(x,p;φ(x)) ≥
n−l∑

w=2

(
n − w

w!(β − α)

)

×
(
φ(w−1) (β) Υ(x,p; (x−β)w)−φ(w−1) (α) Υ(x,p; (x−α)w)

)
.

(11)

Proof. Since φ(n−1) is absolutely continuous on [α, β], φ(n) exists almost
everywhere. As φ is n-convex, applying Theorem 1.3, we have, φ(n) ≥ 0
for all x ∈ [α, β]. Hence, we can apply Theorem 2.1 to obtain (11). �

Now we will give generalization of Popoviciu’s inequality for m−tuples.

Theorem 2.3. Let all the assumptions of Theorem 2.1 be satisfied in addi-
tion with the condition that p = (p1, . . . , pm) be a positive m-tuple such that∑m

i=1 pi = 1 and consider φ : [α, β] → R is n-convex function.

(i) If n be even and n > 3, then (11) holds.
(ii) Let the inequality (11) be satisfied. If for even w: φ(w−1) (β) ≥ 0 and

φ(w−1) (α) ≤ 0 and for odd w: φ(w−1) (β) ≤ 0 and φ(w−1) (α) ≤ 0, the
R.H.S. of (11) is non-negative and we have inequality

Υ(x,p;φ(x)) ≥ 0 (12)

Proof. (i) For

ϑ (x) := (x − t)n−1
w[α,β] (t, x) =

{
(x − t)n−1 (t − α) , α ≤ t ≤ x ≤ β,

(x − t)n−1 (t − β) , α ≤ x < t ≤ β,

we have,

ϑ
′′

(x) :=
{

(n − 1) (n − 2) (x − t)n−3 (t − α) , α ≤ t ≤ x ≤ β,

(n − 1) (n − 2) (x − t)n−3 (t − β) , α ≤ x < t ≤ β,

showing that ϑ is convex for even n, where n > 3. Hence, by virtue of
Remark 1.5, (10) holds for even n, where n > 3. Therefore, following
Theorem 2.2, we can obtain (11).

(ii) It is easy to see that the function (x − α)w is convex for w = 2, . . . , n−1
and (x − β)w is convex for even w and concave for odd w, where x ∈
[α, β]. Therefore using the given conditions and by following Remark
1.5, the non negativity of the R.H.S. of (11) is immediate and we have
(12). �

3. Bounds for Identities Related to Generalization
of Popoviciu’s Inequality

In this section, we present some interesting results using Čebyšev functional
and Grüss-type inequalities. For two Lebesgue integrable functions f, h : [α, β]
→ R, we consider the Čebyšev functional
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Δ(f, h) =
1

β − α

∫ β

α

f(t)h(t)dt − 1
β − α

∫ β

α

f(t)dt · 1
β − α

∫ β

α

h(t)dt.

The following Grüss-type inequalities are given in [4].

Theorem 3.1. Let f : [α, β]→R be a Lebesgue integrable function and h : [α, β]
→ R be an absolutely continuous function with (· − α)(β − ·)[h′]2 ∈ L[α, β].
Then we have the inequality

|Δ(f, h)| ≤ 1√
2
[Δ(f, f)]

1
2

1√
β − α

(∫ β

α

(x − α)(β − x)[h′(x)]2dx

) 1
2

. (13)

The constant 1√
2

in (13) is the best possible.

Theorem 3.2. Assume that h : [α, β] → R is monotonic nondecreasing on
[α, β] and f : [α, β] → R be absolutely continuous with f ′ ∈ L∞[α, β]. Then
we have the inequality

|Δ(f, h)| ≤ 1
2(β − α)

||f ′||∞
∫ β

α

(x − α)(β − x)[h′(x)]2dh(x). (14)

The constant 1
2 in (14) is the best possible.

In the sequel, we consider above theorems to derive generalizations of
the results proved in the previous section. To avoid many notions let us denote

R(t) = Υ(x,p; (x − t)n−1
w[α,β](t, x), t ∈ [α, β], (15)

Consider the Čebyšev functional Δ(R,R) given as:

Δ(R,R) =
1

β − α

∫ β

α

R2(t)dt −
(

1
β − α

∫ β

α

R(t)dt

)2

, (16)

Theorem 3.3. Let φ : [α, β] → R be such that for n ≥ 1, φ(n) is absolutely
continuous with (· − α)(β − ·)[φ(n+1)]2 ∈ L[α, β]. Let m, k ∈ N, m ≥ 3,
2 ≤ k ≤ m − 1, [α, β] ⊂ R, x = (x1, . . . , xm) ∈ [α, β]m, p = (p1, . . . , pm)
be a real m-tuple such that

∑k
j=1 pij �= 0 for any 1 ≤ i1 < · · · < ik ≤ m and

∑m
i=1 pi = 1. Also let

∑k
j=1 pij

xij∑k
j=1 pij

∈ [α, β] for any 1 ≤ i1 < · · · < ik ≤ m with

R defined in (15).
Then

Υ(x,p;φ(x))=
n−l∑

w=2

(
n − w

w!(β − α)

)

×
(

φ(w−1) (β) Υ(x,p; (x−β)w)−φ(w−1) (α) Υ(x,p; (x−α)w)
)

+
φ(n−1)(β) − φ(n−1)(α)

(β − α)2 (n − 1)!

∫ β

α

R(t)dt + Kn(α, β;φ), (17)

where the remainder Kn(α, β;φ) satisfies the bound

|Kn(α, β; φ)|≤ 1√
2 (n−1)!

[Δ(R,R)]
1
2

1√
β−α

∣∣∣∣
∫ β

α

(t−α)(β−t)[φ(n+1)(t)]2dt

∣∣∣∣

1
2

.

(18)
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Proof. (i) If we apply Theorem 3.1 for f → R and h → φ(n), we get
∣∣∣∣

1
β − α

∫ β

α

R(t)φ(n)(t)dt − 1
β − α

∫ β

α

R(t)dt · 1
β − α

∫ β

α

φ(n)(t)dt

∣∣∣∣

≤ 1√
2
[Δ(R,R)]

1
2

1√
β − α

∣∣∣∣
∫ β

α

(t − α)(β − t)[φ(n+1)(t)]2dt

∣∣∣∣

1
2

. (19)

Divide both sides of (19) by (n − 1), we have
∣∣∣∣

1
(n − 1)!β − α

∫ β

α

R(t)φ(n)(t)dt

− 1
(n − 1)!β − α

∫ β

α

R(t)dt · φ(n−1)(β) − φ(n−1)(α)
(β − α)

∣∣∣∣

≤ 1√
2 (n − 1)!

[Δ(R,R)]
1
2

1√
β − α

∣∣∣∣
∫ β

α

(t − α)(β − t)[φ(n+1)(t)]2dt

∣∣∣∣

1
2

.

(20)

By denoting

Kn(α, β;φ) =
1

(n − 1)!β − α

∫ β

α

R(t)φ(n)(t)dt

− 1
(n − 1)!β − α

∫ β

α

R(t)dt · φ(n−1)(β) − φ(n−1)(α)
(β − α)

. (21)

In (20), we have (18). Hence, we have

1
(n − 1)!β − α

∫ β

α

R(t)φ(n)(t)dt

=
φ(n−1)(β) − φ(n−1)(α)

(β − α)2 (n − 1)!

∫ β

α

R(t)dt + Kn(α, β;φ),

where the remainder Kn(α, β;φ) satisfies the estimation (18). Now from iden-
tity (8), we obtain (17). �

The following Grüss-type inequalities can be obtained using Theorem
3.2.

Theorem 3.4. Let φ : [α, β] → R be such that for n ≥ 1, φ(n) is absolutely
continuous and let φ(n+1) ≥ 0 on [α, β] with R defined in (15), respectively.
Then the representation (17) and the remainder Kn(α, β;φ) satisfies the es-
timation

|Kn(α, β;φ)| ≤ ||R′||∞
(n − 1)!

[
φ(n−1)(β) + φ(n−1)(α)

2
− φ(n−2)(β) − φ(n−2)(α)

β − α

]
.

(22)
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Proof. Applying Theorem 3.2 for f → R and h → φ(n), we get
∣∣∣∣

1
β − α

∫ β

α

R(t)φ(n)(t)dt − 1
β − α

∫ β

α

R(t)dt · 1
β − α

∫ β

α

φ(n)(t)dt

∣∣∣∣

≤ 1
2(β − α)

||R′||∞
∫ β

α

(t − α)(β − t)φ(n+1)(t)dt. (23)

Since
∫ β

α

(t − α)(β − t)φ(n+1)(t)dt =
∫ β

α

[2t − (α + β)]φ(n)(t)dt

= (β − α)
[
φ(n−1)(β) + φ(n−1)(α)

]

− 2
(
φ(n−2)(β) − φ(n−2)(α)

)
.

Therefore, using identity (8) and the inequality (23), we deduce (22). �

Now we intend to give the Ostrowski-type inequalities related to gener-
alizations of Popoviciu’s inequality.

Theorem 3.5. Suppose all the assumptions of Theorem 2.1 be satisfied. More-
over, assume (p, q) is a pair of conjugate exponents, that is p, q ∈ [1,∞] such
that 1/p + 1/q = 1. Let |φ(n)|p : [α, β] → R be an R-integrable function for
some n ≥ 2. Then, we have

∣∣∣∣∣∣∣

Υ(x,p;φ(x)) − ∑n−l
w=2

(
n−w

w!(β−α)

)

×
(

φ(w−1) (β) Υ(x,p; (x − β)w) − φ(w−1) (α) Υ(x,p; (x − α)w)
)

∣∣∣∣∣∣∣

≤ 1
(n − 1)!β − α

||φ(n)||p
(∫ β

α

∣∣∣∣Υ(x,p; (x − t)n−1
w[α,β](t, x))

∣∣∣∣
q

dt

)1/q

.(24)

The constant on the R.H.S. of (24) is sharp for 1 < p ≤ ∞ and the best
possible for p = 1.

Proof. Let us denote

I =
1

(n − 1)!β − α

(
Υ(x,p; (x − t)n−1

w[α,β](t, x))
)

, t ∈ [α, β].

Using identity (8), we obtain
∣∣∣∣∣∣∣

Υ(x,p;φ(x)) − ∑n−l
w=2

(
n−w

w!(β−α)

)

×
(

φ(w−1) (β) Υ(x,p; (x − β)w) − φ(w−1) (α) Υ(x,p; (x − α)w)
)

∣∣∣∣∣∣∣

=

∣∣∣∣∣

∫ β

α

I(t)φ(n)(t)dt

∣∣∣∣∣ . (25)

Apply Hölder’s inequality for integrals on the right-hand side of (25), we have

∣∣∣∣
∫ β

α

I(t)φ(n)(t)dt

∣∣∣∣ ≤
(∫ β

α

∣∣∣φ(n) (t)
∣∣∣
p

dt

) 1
p
(∫ β

α

|I (t)|q dt

) 1
q

,



Vol. 13 (2016) Generalization of Popoviciu-Type Inequalities 1503

which combine together with (25) gives (24).

For the proof of the sharpness of the constant
(∫ β

α

∣∣I(t)
∣∣qdt

)1/q

, let us define

the function φ for which the equality in (24) is obtained.
For 1 < p ≤ ∞ take φ to be such that

φ(n)(t) = sgnI(t)|I(t)| 1
p−1 .

For p = ∞ take φ(n)(t) = sgnI(t).
For p = 1, we prove that

∣∣∣∣
∫ β

α

I(t)φ(n)(t)dt

∣∣∣∣ ≤ max
t∈[α,β]

|I(t)|
(∫ β

α

φ(n)(t)dt

)
(26)

is the best possible inequality. Suppose that |I(t)| attains its maximum at
t0 ∈ [α, β]. To start with first we assume that I(t0) > 0. For δ small enough
we define φδ(t) by

φδ(t) =

⎧
⎪⎨

⎪⎩

0, α ≤ t ≤ t0,
1

δn! (t − t0)n, to ≤ t ≤ t0 + δ,
1
n! (t − t0)n−1, t0 + δ ≤ t ≤ β.

Then for δ small enough
∣∣∣∣
∫ β

α

I(t)φ(n)(t)dt

∣∣∣∣ =
∣∣∣∣
∫ t0+δ

t0

I(t)
1
δ
dt

∣∣∣∣ =
1
δ

∫ t0+δ

t0

I(t)dt.

Now from inequality (26), we have

1
δ

∫ t0+δ

t0

I(t)dt ≤ I(t0)
∫ t0+δ

t0

1
δ
dt = I(t0).

Since

lim
δ→0

1
δ

∫ t0+δ

t0

I(t)dt = I(t0),

the statement follows. The case when I(t0) < 0, we define φδ(t) by

φδ(t) =

⎧
⎪⎨

⎪⎩

1
n! (t − t0 − δ)n−1, α ≤ t ≤ t0,
−1
δn! (t − t0 − δ)n, to ≤ t ≤ t0 + δ,

0, t0 + δ ≤ t ≤ β,

and rest of the proof is the same as above. �

4. Mean Value Theorems and n-exponential Convexity

We recall some definitions and basic results from [1,7,11] which are required
in sequel.

Definition 4. A function φ : I → R is n-exponentially convex in the Jensen
sense on I if

n∑

i,j=1

ξiξj φ

(
xi + xj

2

)
≥ 0,
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hold for all choices ξ1, . . . , ξn ∈ R and all choices x1, . . . , xn ∈ I. A function
φ : I → R is n-exponentially convex if it is n-exponentially convex in the
Jensen sense and continuous on I.

Definition 5. A function φ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function φ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Proposition 4.1. If φ : I → R is an n-exponentially convex in the Jensen
sense, then the matrix

[
φ
(

xi+xj

2

) ]m

i,j=1
is a positive semi-definite matrix for

all m ∈ N,m ≤ n. Particularly,

det
[
φ

(
xi + xj

2

)]m

i,j=1

≥ 0

for all m ∈ N, m = 1, 2, . . . , n.

Remark 4.2. It is known that φ : I → R is a log-convex in the Jensen sense
if and only if

α2φ(x) + 2αβφ

(
x + y

2

)
+ β2φ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ I. It follows that a positive function is
log-convex in the Jensen sense if and only if it is 2−exponentially convex in
the Jensen sense.

A positive function is log-convex if and only if it is 2−exponentially
convex.

Remark 4.3. By the virtue of Theorem 2.2, we define the positive linear
functional with respect to n-convex function φ as follows

Λ(φ) := Υ(x,p;φ(x)) −
n−l∑

w=2

(
n − w

w!(β − α)

)

×
(
φ(w−1) (β) Υ(x,p; (x−β)w)−φ(w−1) (α) Υ(x,p; (x − α)w)

)
≥ 0.

(27)

Lagrange- and Cauchy-type mean value theorems related to defined
functional are given in the following theorems.

Theorem 4.4. Let φ : [α, β] → R be such that φ ∈ Cn[α, β]. If the inequality
in (10) holds, then there exist ξ ∈ [α, β] such that

Λ(φ) = φ(n)(ξ)Λ(ϕ), (28)

where ϕ(x) = xn

n! and Λ(·) is defined by (27).

Proof. Similar to the proof of Theorem 4.1 in [8] (see also [3]). �
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Theorem 4.5. Let φ, ψ : [α, β] → R be such that φ, ψ ∈ Cn[α, β]. If the
inequality in (10) holds, then there exist ξ ∈ [α, β] such that

Λ(φ)
Λ(ψ)

=
φ(n)(ξ)
ψ(n)(ξ)

, (29)

provided that the denominators are non-zero and Λ(·) is defined by (27).

Proof. Similar to the proof of Corollary 4.2 in [8] (see also [3]). �
Theorem 4.5 enables us to define Cauchy means, because if

ξ =
(

φ(n)

ψ(n)

)−1 (
Λ(φ)
Λ(ψ)

)
,

which means that ξ is mean of α, β for given functions φ and ψ.
Next we construct the non-trivial examples of n-exponentially and ex-

ponentially convex functions from positive linear functional Λ(·). We use the
idea given in [11]. In the sequel I and J are intervals in R.

Theorem 4.6. Let Γ = {φt : t ∈ J}, where J is an interval in R, be a
family of functions defined on an interval I in R such that the function
t 
→ [x0, . . . , xn;φt] is n-exponentially convex in the Jensen sense on J for
every (n + 1) mutually different points x0, . . . , xn ∈ I. Then for the linear
functional Λ(φt) as defined by (27), the following statements are valid:
(i) The function t → Λ(φt) is n-exponentially convex in the Jensen sense

on J and the matrix [Λ(φ tj+tl
2

)]mj,l=1 is a positive semi-definite for all
m ∈ N,m ≤ n, t1, . . . , tm ∈ J . Particularly,

det[Λ(φ tj+tl
2

)]mj,l=1 ≥ 0 for all m ∈ N, m = 1, 2, . . . , n.

(ii) If the function t → Λ(φt) is continuous on J , then it is n-exponentially
convex on J .

Proof. (i) For ξj ∈ R and tj ∈ J , j = 1, . . . , n, we define the function

h(x) =
n∑

j,l=1

ξjξlφ tj+tl
2

(x).

Using the assumption that the function t 
→ [x0, . . . , xn;φt] is n-exponentially
convex in the Jensen sense, we have

[x0, . . . , xn, h] =
n∑

j,l=1

ξjξl

[
x0, . . . , xn;φ tj+tl

2

]
≥ 0,

which in turn implies that h is a n-convex function on J , therefore, from
Remark 4.3 we have Λ(h) ≥ 0. The linearity of Λ(·) gives

n∑

j,l=1

ξjξlΛ
(
φ tj+tl

2

)
≥ 0.

We conclude that the function t 
→ Λ(φt) is n-exponentially convex on J in
the Jensen sense.

The remaining part follows from Proposition 4.1.
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(ii) If the function t→Λ(φt) is continuous on J , then it is n-exponentially
convex on J by definition. �

The following corollary is an immediate consequence of the above
theorem.

Corollary 4.7. Let Γ = {φt : t ∈ J}, where J is an interval in R, be a
family of functions defined on an interval I in R, such that the function
t 
→ [x0, . . . , xn;φt] is exponentially convex in the Jensen sense on J for
every (n + 1) mutually different points x0, . . . , xn ∈ I. Then for the linear
functional Λ(φt) as defined by (27), the following statements hold:

(i) The function t → Λ(φt) is exponentially convex in the Jensen sense

on J and the matrix
[
Λ
(
φ tj+tl

2

)]m

j,l=1
is a positive semi-definite for all

m ∈ N,m ≤ n, t1, . . . , tm ∈ J . Particularly,

det
[
Λ
(
φ tj+tl

2

)]m

j,l=1
≥ 0 for all m ∈ N, m = 1, 2, . . . , n.

(ii) If the function t → Λ(φt) is continuous on J , then it is exponentially
convex on J .

Corollary 4.8. Let Γ = {φt : t ∈ J}, where J is an interval in R, be a
family of functions defined on an interval I in R, such that the function
t 
→ [x0, . . . , xn;φt] is 2−exponentially convex in the Jensen sense on J for
every (n + 1) mutually different points x0, . . . , xn ∈ I. Let Λ(·) be linear
functional defined by (27). Then the following statements hold:

(i) If the function t 
→ Λ(φt) is continuous on J , then it is 2−exponentially
convex function on J . If t 
→ Λ(φt) is additionally strictly positive, then
it is also log-convex on J . Furthermore, the following inequality holds
true:

[Λ(φs)]t−r ≤ [Λ(φr)]
t−s [Λ(φt)]

s−r
,

for every choice r, s, t ∈ J , such that r < s < t.
(ii) If the function t 
→ Λ(φt) is strictly positive and differentiable on J, then

for every p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

μp,q(Λ,Γ) ≤ μu,v(Λ,Γ), (30)

where

μp,q(Λ,Γ) =

⎧
⎪⎪⎨

⎪⎪⎩

(
Λ(φp)
Λ(φq)

) 1
p−q

, p �= q,

exp
(

d
dpΛ(φp)

Λ(φp)

)
, p = q,

(31)

for φp, φq ∈ Γ.

Proof. (i) This is an immediate consequence of Theorem 4.6 and Remark
4.2.

(ii) Since p 
→ Λ(φt) is positive and continuous, by (i) we have that t 
→
Λ(φt) is log-convex on J , that is, the function t 
→ log Λ(φt) is convex
on J . Hence, we get
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log Λ(φp) − log Λ(φq)
p − q

≤ log Λ(φu) − log Λ(φv)
u − v

, (32)

for p ≤ u, q ≤ v, p �= q, u �= v. So, we conclude that

μp,q(Λ,Γ) ≤ μu,v(Λ,Γ).

Cases p = q and u = v follow from (32) as limit cases. �

5. Applications to Cauchy Means

In this section, we present some families of functions which fulfil the condi-
tions of Theorem 4.6, Corollaries 4.7 and 4.8. This enables us to construct
large families of functions which are exponentially convex. Explicit form of
this functions is obtained after we calculate explicit action of functionals on
a given family.

Example 5.1. Let us consider a family of functions

Γ1 = {φt : R → R : t ∈ R}
defined by

φt(x) =

{
etx

tn , t �= 0,
xn

n! , t = 0.

Since dnφt

dxn (x) = etx > 0, the function φt is n-convex on R for every t ∈ R and
t 
→ dnφt

dxn (x) is exponentially convex by definition. Using analogous arguing
as in the proof of Theorem 4.6 we also have that t 
→ [x0, . . . , xn;φt] is
exponentially convex (and so exponentially convex in the Jensen sense). Now,
using Corollary 4.7 we conclude that t 
→ Λ(φt) is exponentially convex in the
Jensen sense. It is easy to verify that this mapping is continuous (although
the mapping t 
→ φt is not continuous for t = 0), so it is exponentially convex.
For this family of functions, μt,q(Λ,Γ1), from (31), becomes

μt,q(Λ,Γ1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Λ(φt)
Λ(φq)

) 1
t−q

, t �= q,

exp
(

Λ(id·φt)
Λ(φt)

− n
t

)
, t = q �= 0,

exp
(

1
n+1

Λ(id·φ0)
Λ(φ0)

)
, t = q = 0,

where “id” is the identity function. By Corollary 4.8 μt,q(Λ,Γ1) is a monotone
function in parameters t and q.

Since
(

dnft

dxn

dnfq

dxn

) 1
t−q

(log x) = x,

using Theorem 4.5 it follows that:

Mt,q(Λ,Γ1) = log μt,q(Λ,Γ1),

satisfies

α ≤ Mt,q(Λ,Γ1) ≤ β.
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Hence, Mt,q(Λ,Γ1) is a monotonic mean.

Example 5.2. Let us consider a family of functions

Γ2 = {gt : (0,∞) → R : t ∈ R}
defined by

gt(x) =

⎧
⎨

⎩

xt

t(t−1)···(t−n+1) , t /∈ {0, 1, . . . , n − 1},

xj log x
(−1)n−1−jj!(n−1−j)! , t = j ∈ {0, 1, . . . , n − 1}.

Since dngt

dxn (x) = xt−n > 0, the function gt is n-convex for x > 0 and t 
→
dngt

dxn (x) is exponentially convex by definition. Arguing as in Example 5.1 we
get that the mappings t 
→ Λ(gt) is exponentially convex. Hence, for this
family of functions μp,q(Λ,Γ2), from (31), are equal to

μt,q(Λ,Γ2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Λ(gt)
Λ(gq)

) 1
t−q

, t �= q,

exp
(

(−1)n−1(n − 1)!Λ(g0gt)
Λ(gt)

+
n−1∑
k=0

1
k−t

)
, t = q /∈ {0, 1, . . . , n − 1},

exp

⎛

⎝(−1)n−1(n − 1)!Λ(g0gt)
2Λ(gt)

+
n−1∑
k=0
k �=t

1
k−t

⎞

⎠ , t = q ∈ {0, 1, . . . , n − 1}.

Again, using Theorem 4.5 we conclude that

α ≤
(

Λ(gt)
Λ(gq)

) 1
t−q

≤ β. (33)

Hence, μt,q(Λ,Γ2) is a mean and its monotonicity is followed by (30).

Example 5.3. Let

Γ3 = {ζt : (0,∞) → R : t ∈ (0,∞)}
be a family of functions defined by

ζt(x) =

⎧
⎨

⎩

t−x

(− log t)n , t �= 1;
xn

(n)! , t = 1.

Since dnζt
dxn (x) = t−x is the Laplace transform of a non-negative function (see

[15]) it is exponentially convex. Obviously ζt are n-convex functions for every
t > 0.

For this family of functions, μt,q (Λ,Γ3), in this case for [α, β] ⊂ R
+,

from (31) becomes

μt,q (Λ,Γ3) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
Λ(ζt)
Λ(ζq)

) 1
t−q

, t �= q;

exp
(
−Λ(id·ζt)

tΛ(ζt)
− n

t log t

)
, t = q �= 1;

exp
(
− 1

n+1
Λ(id·ζ1)
Λ(ζ1)

)
, t = q = 1,
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where id is the identity function. By Corollary 4.8 μp,q(Λ,Γ3) is a monotone
function in parameters t and q.

Using Theorem 4.5 it follows that

Mt,q (Λ,Γ3) = −L(t, q)logμt,q (Λ,Γ3),

satisfies

α ≤ Mt,q (Λ,Γ3) ≤ β.

This shows that Mt,q (Λ,Γ3) is a mean. Because of the inequality (30), this
mean is monotonic. Furthermore, L(t, q) is logarithmic mean defined by

L(t, q) =

⎧
⎨

⎩

t−q
log t−log q , t �= q;

t, t = q.

Example 5.4. Let

Γ4 = {Λt : (0,∞) → R : t ∈ (0,∞)}
be a family of functions defined by

Λt(x) =
e−x

√
t

(−√
t
)n .

Since dnΛt

dxn (x) = e−x
√

t is the Laplace transform of a non-negative function
(see [15]) it is exponentially convex. Obviously Λt are n-convex function for
every t > 0.

For this family of functions, μt,q (Λ,Γ4), in this case for [α, β] ⊂ R
+,

from (31) becomes

μt,q (Λ,Γ4) =

⎧
⎪⎨

⎪⎩

(
Λ(Λt)
Λ(Λq)

) 1
t−q

, t �= q;

exp
(
− Λ(id·Λt)

2
√

tΛ(Λt)
− n

2t

)
, t = q;

i = 1, 2.

By Corollary 4.8, it is a monotone function in parameters t and q.
Using Theorem 4.5 it follows that

Mt,q (Λ,Γ4) = −
(√

t +
√

q
)

ln μt,q (Λ,Γ4) ,

satisfies

α ≤ Mt,q (Λ,Γ4) ≤ β.

This shows that Mt,q (Λ,Γ4) is a mean. Because of the above inequality (30),
this mean is monotonic.
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functional and applications. J. Math. Inequal. 8(1), 159–170 (2014)

[5] Fink, A.M.: Bounds of the deviation of a function from its avereges. Czechoslo-
vak Math. J 42(117), 289–310 (1992)
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