Mediterr. J. Math. 13 (2016), 1907–1920 DOI 10.1007/s00009-015-0567-6 1660-5446/16/041907-14 *published online* May 15, 2015 -c Springer Basel 2015

Mediterranean Journal **I** of Mathematics

CrossMark

Approximately *n***-Multiplicative Functionals on Banach Algebras**

H. Shayanpour, E. Ansari-Piri, Z. Heidarpour and A. Zohri

Abstract. Let A be a normed algebra, $\varphi : A \to \mathbb{C}$ be a linear functional. Then, the functional $(\varphi, n)^\vee$ is defined as $(\varphi, n)^\vee (a_1, \ldots, a_n) =$ $\varphi(a_1 \ldots a_n) - \varphi(a_1) \ldots \varphi(a_n)$ for all elements $a_1, \ldots, a_n \in A$. If the norm of (φ, n) ^{\vee} is small, then φ is approximately *n*-multiplicative linear functional and it is of interest whether or not $\|(\varphi, n)^{\vee}\|$ being small implies that φ is near to an *n*-multiplicative linear functional. If this property holds for a Banach algebra A, then A is an n -AMNM algebra (approximately *n*-multiplicative linear functionals are near *n*-multiplicative linear functionals). We show that some properties of $AMNM$ (2- $AMNM$) algebras are also valid for n - $AMNM$ algebras. For example, we give some alternative definitions of n - $AMNM$. We also prove some theorems on the hereditary properties of n - $AMNM$ condition and we use an equivalent condition for the n-AMNM property on certain Banach algebras when the Gelfand and norm topologies coincide on the character space of the algebra. We also give some examples which are $n-AMNM$ and finally, exhibit an example which is not n-AMNM.

Mathematics Subject Classification. Primary 46H99, 39B72; Secondary 46T99.

Keywords. Approximately n-multiplicative linear functional, Banach algebra, (ε, n) -multiplicative linear functional, n -AMNM property.

1. Introduction

Let A and B be two complex algebras and $n \geq 2$ be an integer. A map φ : $A \to B$ is called an *n*-multiplicative if $\varphi(a_1 a_2 \ldots a_n) = \varphi(a_1) \varphi(a_2) \ldots \varphi(a_n)$ for all elements $a_1, a_2, \ldots, a_n \in A$. Moreover, if φ is a linear mapping, then it is called an *n*-homomorphism. If $\varphi : A \to \mathbb{C}$ is a nonzero *n*-homomorphism, then φ is called a complex *n*-character, or in brief, an *n*-character of A. If A is a complex topological algebra, then the set of all continuous n-characters

H. Shayanpour was partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

of A is denoted by $M_{(A,n)}$. As usual, the set of all continuous characters of A is denoted by M_A . The notion of *n*-homomorphism between Banach algebras was first introduced by Hejazian et al. and some of their significant properties were discussed in [\[7](#page-12-0)]. For further details on the above concepts and properties one can refer, for example, to $[5,6,9-11,13]$ $[5,6,9-11,13]$ $[5,6,9-11,13]$ $[5,6,9-11,13]$ $[5,6,9-11,13]$ $[5,6,9-11,13]$ and $[14]$ $[14]$.

Let A and B be normed algebras and $\varepsilon > 0$. A linear map $\varphi : A \to B$ is called an ε -multiplicative if for all $x, y \in A$,

$$
\|\varphi(xy)-\varphi(x)\varphi(y)\|\leq \varepsilon ||x|| ||y||.
$$

The dual of a Banach algebra A is denoted by A^* and the set of all nmultiplicative (multiplicative) linear functionals on A is thus $M_{(A,n)} \cup \{0\}$ $(M_A \cup \{0\}).$

For each $\varphi \in A^*$, define

$$
d(\varphi) = \inf \{ ||\varphi - \psi|| : \psi \in M_A \cup \{0\} \}.
$$

An algebra A is called an algebra in which approximately multiplicative linear functionals are near multiplicative linear functionals, or A is AMNM for short, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $d(\varphi) < \varepsilon$, where φ is a δ-multiplicative linear functional. The notion of AMNM algebras was first introduced by Johnson and some significant properties of this algebras were discussed in [\[1](#page-12-7)].

Let A and B be normed algebras and let $\varphi : A \to B$ be a linear map. We define the map $(\varphi, n)^\vee$ as follows:

$$
(\varphi, n)^{\vee}(a_1, \cdots, a_n) = \varphi(a_1 \cdots a_n) - \varphi(a_1) \cdots \varphi(a_n)
$$

for all elements $a_1, \ldots, a_n \in A$ with

$$
\|(\varphi, n)^{\vee}\| = \sup\{\|(\varphi, n)^{\vee}(a_1, \dots, a_n)\| : \|a_i\| \leq 1, 1 \leq i \leq n\}.
$$

If $\|(\varphi, n)^{\vee}\| < \varepsilon$, then we say that φ is an (ε, n) -multiplicative linear map. Clearly, every $(\varepsilon, 2)$ -multiplicative linear map is just an ε -multiplicative linear map, in the usual sense. We also say that φ is approximately *n*-multiplicative linear map, if there exists an $\varepsilon > 0$ such that φ is (ε, n) -multiplicative linear map. For some properties of approximately n -multiplicative linear map, one may refer to $[2,3]$ $[2,3]$ $[2,3]$. The following example shows that the class of approximately n-multiplicative linear mappings is essentially wider than the class of approximately multiplicative linear mappings.

Example 1.1. Let X be an infinite-dimensional Banach algebra and f be a linear discontinuous functional on X . Now, consider the following two sets A and B,

$$
A = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} : x \in X \right\}, \qquad B = \left\{ \begin{pmatrix} 0 & 0 & x \\ y & 0 & z \\ 0 & 0 & 0 \end{pmatrix} : x, y, z \in \mathbb{C} \right\}.
$$

It is easy to see that A and B are two Banach algebras with the usual matrix operations for addition, scalar multiplication and product if they are equipped with the maximum norm. Define $\varphi: A \to B$ with

$$
\varphi\left(\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 & f(x) \\ f(x) & 0 & f(x) \\ 0 & 0 & 0 \end{pmatrix} \qquad (x \in X).
$$

Since for all $P \in A$ and $Q \in B$, $P^2 = Q^3 = 0$, then φ is a 3-homomorphism and so it is an $(\varepsilon, 3)$ -multiplicative linear map for all $\varepsilon > 0$. On the other hand, φ is not an approximately multiplicative linear map because f is an unbounded linear functional on X.

This paper is concerned with approximately *n*-multiplicative linear functionals on Banach algebras, where $n \geq 2$ is an integer. We say that A is an n -AMNM (algebras in which approximately n-multiplicative linear functionals are near n-multiplicative linear functionals) if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d_n(\varphi) < \varepsilon$ whenever φ is (δ, n) -multiplicative linear functional, and $d_n(\varphi) = \inf \{ \|\varphi - \psi\| : \psi \in M_{(A,n)} \cup \{0\} \}.$ Clearly, every $2-AMNM$ algebra is just an $AMNM$ algebra, in the usual sense.

In this paper, we show that some properties of AMNM algebras are also valid for n -AMNM algebras. We prove that every (ε, n) -multiplicative linear functional φ on a Banach algebra is bounded by $1 + \varepsilon$. We also give some alternative definitions of n - $AMNM$ and prove some theorems on the hereditary properties of n - $AMNM$ condition. Moreover, we show that if A is a commutative separable unital Banach algebra where the Gelfand and norm topologies on $M_{(A,n)}$ are the same, then A is n-AMNM if and only if for all sequences (φ_m) in A^* with $\|(\varphi_m, n)^\vee\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, $\varphi \neq 0$, then $\|\varphi_m - \varphi\| \to 0$.

Furthermore, we prove that if A is a commutative separable unital Banach algebra where the Gelfand and norm topologies on M_A are the same, then A is $AMNM$ if and only if A is n - $AMNM$. Finally, we give some examples of n-AMNM Banach algebras and an example of a Banach algebra which is not n - $AMNM$.

2. Approximately *n***-Multiplicative Linear Functionals**

Throughout this section, *n* is an integer with $n \geq 2$. We first state and prove the following result, that will be needed later [\[3,](#page-12-9) 2.4].

Theorem 2.1. Let A be a normed algebra, and $p \geq 0$. If $\varphi : A \to \mathbb{C}$ satisfies $|\varphi(x_1 \cdots x_n) - \varphi(x_1) \cdots \varphi(x_n)| \leq \varepsilon ||x_1||^p \cdots ||x_n||^p$ for all $x_1 \cdots x_n \in A$, then φ *is n-multiplicative or there exists a constant* k *such that* $|\varphi(x)| \leq k||x||^p$ *for all* $x \in A$ *.*

Proof. Suppose that φ is not *n*-multiplicative, that is, there exist $a_1, \ldots, a_n \in$ A such that

$$
\varphi(a_1\cdots a_n)\neq \varphi(a_1)\cdots \varphi(a_n).
$$

Then, for every nonzero element $x \in A$, we have

$$
\begin{split}\n&|\varphi(x)|^{(n-1)}|\varphi(a_1 \cdots a_n) - \varphi(a_1) \cdots \varphi(a_n)| \\
&= |\varphi(x)^{(n-1)}\varphi(a_1 \cdots a_n) - \varphi(x)^{(n-1)}\varphi(a_1) \cdots \varphi(a_n) \\
&\pm \varphi(x^{(n-1)}a_1 \cdots a_n) \pm \varphi(x^{(n-1)}a_1)\varphi(a_2) \cdots \varphi(a_n)| \\
&\leq |\varphi(x)^{(n-1)}\varphi(a_1 \cdots a_n) - \varphi(x^{(n-1)}a_1 \cdots a_n)| \\
&+ |\varphi(x^{(n-1)}a_1 \cdots a_n) - \varphi(x^{(n-1)}a_1)\varphi(a_2) \cdots \varphi(a_n)| \\
&+ |\varphi(x^{(n-1)}a_1)\varphi(a_2) \cdots \varphi(a_n) - \varphi(x)^{(n-1)}\varphi(a_1) \cdots \varphi(a_n)| \\
&\leq 2\varepsilon ||x||^{p(n-1)} ||a_1||^p \cdots ||a_n||^p + |\varphi(a_2) \cdots \varphi(a_n)|\varepsilon ||x||^{p(n-1)} ||a_1||^p \\
&= \varepsilon ||x||^{p(n-1)} ||a_1||^p [2||a_2||^p \cdots ||a_n||^p + |\varphi(a_2) \cdots \varphi(a_n)|].\n\end{split}
$$

Therefore, if

$$
k = \left(\frac{\varepsilon ||a_1||^p [2||a_2||^p \cdots ||a_n||^p + |\varphi(a_2) \cdots \varphi(a_n)||}{|\varphi(a_1 \cdots a_n) - \varphi(a_1) \cdots \varphi(a_n)|}\right)^{\frac{1}{(n-1)}},
$$

then we have $|\varphi(x)| \leq k||x||^p$.

Corollary 2.2. *With the same hypotheses as in the theorem, if* A *is Banach algebra and* φ *is linear, then it is continuous.*

Proof. If φ is n-multiplicative linear functional, then as in the proof of [\[14,](#page-12-6) Lemma 2.1] we can see that $\|\varphi\| \leq 1$. Otherwise, by Theorem [2.1,](#page-2-0) the result follows. \Box follows.

The following theorem has been proved by Jarosz in [\[12,](#page-12-10) 5.5] which shows that approximately multiplicative linear functionals are continuous.

Theorem 2.3. Let A be a Banach algebra and φ be an ε -multiplicative linear *functional. Then,* $\|\varphi\| \leq 1 + \varepsilon$.

Here, we extend the above theorem for (ε, n) -multiplicative linear functionals.

Theorem 2.4. Let A be a Banach algebra and φ be an (ε, n) -multiplicative *linear functional. Then,* $\|\varphi\| \leq 1 + \varepsilon$.

Proof. If φ is n-multiplicative linear functional, then as in the proof of [\[14,](#page-12-6) Lemma 2.1, we can see that $\|\varphi\| \leq 1$, so the result follows. Otherwise, by Corollary [2.2](#page-3-0) φ is bounded. Assume towards a contradiction that $\|\varphi\| > 1+\varepsilon$, then there exists $a \in A$ with $||a|| = 1$ and $|\varphi(a)| > 1 + \varepsilon$, so $|\varphi(a)| = 1 + \varepsilon + p$ for some $p > 0$. By induction on m, we shall prove that

$$
|\varphi(a^{n^m})| \ge 1 + \varepsilon + mp. \tag{1}
$$

By the hypothesis, we have

$$
|\varphi(a^n)| \ge |\varphi^n(a)| - |\varphi^n(a) - \varphi(a^n)| \ge (1 + \varepsilon + p)^n - \varepsilon \ge 1 + \varepsilon + 2p,
$$

so [\(1\)](#page-3-1) is true, if $m = 1$. Assume that (1) is true for m. Then, we have

$$
\left| \varphi(a^{n^{m+1}}) \right| \ge \left| \varphi^n \left(a^{n^m} \right) \right| - \left| \varphi \left(a^{n^{m+1}} \right) - \varphi^n \left(a^{n^m} \right) \right|
$$

\n
$$
\ge (1 + \varepsilon + mp)^n - \varepsilon
$$

\n
$$
\ge 1 + \varepsilon + (m+1)p.
$$

This completes the proof of [\(1\)](#page-3-1). Also, we have

$$
|\varphi(x_1 \cdots x_n) - \varphi(x_1) \cdots \varphi(x_n)| |\varphi(x_{n+1})| \le \varepsilon ||\varphi|| ||x_1|| \cdots ||x_{n+1}|| \qquad (2)
$$

for all $x_1, \ldots, x_n, x_{n+1} \in A$. In particular, if $x_{n+1} = a^{n^m}$, then by [\(1\)](#page-3-1) and [\(2\)](#page-4-0) we have

$$
|\varphi(x_1 \cdots x_n) - \varphi(x_1) \cdots \varphi(x_n)| \le \frac{\|\varphi\| \varepsilon \|x_1\| \cdots \|x_n\|}{1 + \varepsilon + mp}
$$

for all $x_1, \ldots, x_n \in A$ and all $m \in \mathbb{N}$. Letting $m \to \infty$ shows that φ is *n*-multiplicative linear functional so this is a contradiction. n -multiplicative linear functional so this is a contradiction.

In the following theorem, we prove a result similar to that of [\[1,](#page-12-7) Proposition 3.2 for n -AMNM algebras, which gives us some alternative definitions of n-AMNM.

Proposition 2.5. *Let* A *be a Banach algebra. Then, the following are equivalent:*

- (i) A *is* n -AMNM;
- (ii) *for any sequence* (φ_m) *in* A^* *with* $\|(\varphi_m, n)^{\vee}\| \to 0$ *, there is a sequence* (ψ_m) *in* $M_{(A,n)} \cup \{0\}$ *with* $\|\varphi_m - \psi_m\| \to 0$;
- (iii) *for any sequence* (φ_m) *in* A^* *with* $\|(\varphi_m, n)^{\vee}\| \to 0$, *there is a subsequence* (φ_{m_i}) *and a sequence* (ψ_i) *in* $M_{(A,n)} \cup \{0\}$ *with* $\|\varphi_{m_i} - \psi_i\| \to 0$;
- (iv) *for any sequence* (φ_m) *in* A^* *with* $\|(\varphi_m, n)^{\vee}\| \to 0$ *and* $\inf_m \|\varphi_m\| > 0$, *there is a sequence* (ψ_m) *in* $M_{(A,n)}$ *with* $\|\varphi_m - \psi_m\| \to 0$ *.*

Proof. (i) \Rightarrow (ii) Let (φ_m) be a sequence in A^* with $\|(\varphi_m, n)^\vee\| \to 0$. By the hypothesis, we have $d_n(\varphi_m) \to 0$. So, it is easy to see that, there exists a sequence (ψ_m) in $M_{(A,n)} \cup \{0\}$ such that $\|\varphi_m - \psi_m\| \to 0$.

 $(ii) \Rightarrow (iii)$ This is trivial.

(iii) \Rightarrow (i) Suppose (i) is not true. Then, there is $\varepsilon > 0$ such that for any $m \in \mathbb{N}$, there exists $(\frac{1}{m}, n)$ -multiplicative linear functional φ_m such that $d_n(\varphi_m) \geq \varepsilon$. By the hypothesis, there exists a subsequence (φ_{m_i}) of sequence (φ_m) such that $d_n(\varphi_{m_i}) \to 0$, so we get a contradiction.

 $(i) \Rightarrow (iv)$ This is similar to $(i) \Rightarrow (ii)$.

(iv) \Rightarrow (iii) If there exists a subsequence (φ_{m_i}) such that $\inf_i ||\varphi_{m_i}|| > 0$, then (iv) implies (iii). Otherwise, there exists a subsequence (φ_{m_k}) such that $\|\varphi_{m_k}\| \to 0$, so the result follows. \Box

Corollary 2.6. *Every finite-dimensional Banach algebra* A *is* n*-*AMNM*.*

Proof. Let (φ_m) be a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$. Then, by Theo-rem [2.4,](#page-3-2) the sequence (φ_m) is bounded and so has a convergent subsequence (φ_{m_i}) with limit ψ . Since for any $x_1, \ldots, x_n \in A$,

$$
|\varphi_{m_i}(x_1 \cdots x_n) - \varphi_{m_i}(x_1) \cdots \varphi_{m_i}(x_n)| \leq ||(\varphi_{m_i}, n)^{\vee}|| ||x_1|| \cdots ||x_n||,
$$

by passing to the limit as $i \to \infty$, we see that $\psi \in M_{(A,n)} \cup \{0\}$. So, by the condition (iii) of Proposition 2.5 for $\psi_i = \psi$, the result follows. condition (iii) of Proposition [2.5](#page-4-1) for $\psi_i = \psi$, the result follows.

Theorem 2.7. [\[1,](#page-12-7) 2.3] *Let* A *be a Banach algebra with a bounded approximate identity* (e_{α}) *of bound* $k > 0$ *. If* $0 < \varepsilon < \frac{1}{4k^2}$ *and* φ *is an* ε *-multiplicative linear functional, then either* $\|\varphi\| \leq 2\varepsilon k$ *or* $\|\varphi\| \geq \frac{1}{k} - 2\varepsilon k$ *.*

Corollary 2.8. *Let* A *be a Banach algebra with a bounded approximate identity of bound* k *. If* φ *is an n-character on* A *, then* $\|\varphi\| > \frac{1}{k}$ *.*

Proof. By the proof of [\[14,](#page-12-6) Lemma 2.1] and Theorem [2.7,](#page-5-0) the result follows. \Box

Theorem 2.9. *Let* A *be a commutative Banach algebra and let* J *be a closed ideal in* A*. If* J *and* A/J *are* n*-*AMNM*, then* A *is* n*-*AMNM*.*

Proof. If (φ_m) is a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$, then $\|(\varphi_m, n)^{\vee}\|_J \| \to 0$ 0. Now, we can assume that there exists a subsequence of (φ_m) , again denoted by (φ_m) , such that $\inf_m ||\varphi_m|_J || > \eta$ for some $\eta > 0$ or $||\varphi_m|_J || \to 0$. If there is an $\eta > 0$ such that $\inf_m ||\varphi_m|_J || > \eta$, then by the hypothesis and Proposition [2.5,](#page-4-1) there is a sequence $(\psi'_m) \subseteq M_{(J,n)}$ such that

$$
\|\varphi_m|_J - \psi'_m\| \to 0.
$$

Since each ψ'_m is nonzero for all $m \in \mathbb{N}$, there exists $j_m \in J$ which $\psi'_m(j_m) =$ 1. We now define $\psi_m(a) = \psi'_m(a_j^{(n-1)})$ for all $a \in A$, so that $\psi_m \in A^*$ and we also have

$$
\psi_m(a_1 \cdots a_n) = \psi'_m(a_1 \cdots a_n j_m^{(n-1)}) \frac{\psi'_m(j_m^{(n-1)})^{(n-1)}}{\psi'_m(j_m^{(n-1)})^{(n-1)}}
$$

$$
= \frac{\psi_m(a_1) \cdots \psi_m(a_n)}{\psi'_m(j_m^{(n-1)})^{(n-1)}}
$$

for all $a_1, \ldots, a_n \in A$. On the other hand, $\psi_{\,\,\,m}'\left(j_m^{(n-1)}\right)^{(n-1)} = \psi_{\,\,\,m}'\left(j_m^{(n-1)}\right)^{(n-1)}\psi_{\,\,\,m}'(j_m)$ $=\psi'_{m}\left(j_{m}^{(n-1)(n-1)}j_{m}\right)=\psi'_{m}(j_{m})^{(n-1)}\psi'_{m}\left(j_{m}^{(n-1)(n-2)}j_{m}\right)$ $= \psi'_{m} \left(j_{m}^{(n-1)(n-2)} j_{m} \right) = \psi'_{m} \left(j_{m}^{(n-1)(n-3)} j_{m} \right)^{(n-1)} = \cdots$ $=\psi'_{m}\left(j_{m}^{(n-1)}j_{m}\right)=\psi'_{m}(j_{m})^{n}=1,$

therefore, ψ_m is *n*-character and so $\psi_m \in M_{(A,n)}$. By the Hahn–Banach theorem, $(\varphi_m - \psi_m)|_J$ can be extended to an element θ_m of A^* with $\|\theta_m\|$ = $\|(\varphi_m - \psi_m)|_J \| = \|\varphi_m|_J - \psi_m' \|$, so $\|\theta_m\| \to 0$. Since

$$
\|(\varphi_m - \theta_m, n)^{\vee}(a_1, ..., a_n)\| \leq (\|(\varphi_m, n)^{\vee}\| + \|\theta_m\| + \sum_{k=1}^n {n \choose k} \|\theta_m\|^k \|\varphi_m\|^{n-k} \|a_1\| \cdots \|a_n\|,
$$

then $\|(\varphi_m - \theta_m, n)^\vee\| \to 0$. For all $a \in A$,

$$
(\varphi_m - \theta_m)(a) = (\varphi_m - \theta_m)(aj_m^{(n-1)}) - (\varphi_m - \theta_m, n)^{\vee}(a, j_m, \dots, j_m)
$$

= $\psi_m(a) - (\varphi_m - \theta_m, n)^{\vee}(a, j_m, \dots, j_m),$

so $\|\varphi_m - \theta_m - \psi_m\| \to 0$ and hence

$$
\|\varphi_m - \psi_m\| \le \|\varphi_m - \psi_m - \theta_m\| + \|\theta_m\| \to 0,
$$

thus the result follows by Proposition [2.5.](#page-4-1)

Now, consider the case where $\|\varphi_m\|_J \|\to 0$. Let θ_m be an extension of $\varphi_m|_J$ to A with $\|\theta_m\| = \|\varphi_m|_J\|$. Set $\phi_m = \varphi_m - \theta_m$, then by a similar argument, $\|(\phi_m, n)^{\vee}\| \to 0$. Since $\phi_m = 0$ on J, we can consider (ϕ_m) as a sequence in $(A/J)^*$, and so, there is a sequence $(\psi_m) \subseteq M_{(A/J,n)} \cup \{0\} \subseteq$ $M_{(A,n)} \cup \{0\}$ such that $\|\phi_m - \psi_m\| \to 0$. Then

$$
\|\varphi_m - \psi_m\| \le \|\varphi_m - \theta_m - \psi_m\| + \|\theta_m\| \to 0,
$$

and by Proposition [2.5,](#page-4-1) the theorem is proved. \Box

Theorem 2.10. *Let* A *be a commutative Banach algebra and let* J *be a closed ideal in* A*. If* A *is* n*-*AMNM*, then* J *is* n*-*AMNM*. Moreover, if* A *is* n*-* $AMNM$ and *J* has a bounded approximate identity of bound $k > 0$, then A/J *is* n - $AMNM$.

Proof. Suppose that (φ_m) is a sequence in J^* with $\|(\varphi_m, n)^{\vee}\| \to 0$ and $k = \inf \|\varphi_m\| > 0$. Then, there exists a sequence (j_m) in J with $\|j_m\| < \frac{2}{k}$ and $\varphi_m(j_m) = 1$. Set $\phi_m(a) = \varphi_m(a j_m^{(n-1)})$ for all $a \in A$ and $m \in \mathbb{N}$. Then, $\phi_m \in A^*$ and for $a_1, \ldots, a_n \in A$ we have

$$
|(\phi_m, n)^{\vee}(a_1, \dots, a_n)| \leq |\varphi_m\left(a_1 \cdots a_n j_m^{(n-1)}\right) - \varphi_m\left(a_1 \cdots a_n j_m^{2(n-1)}\right)|
$$

+
$$
|\varphi_m\left(a_1 \cdots a_n j_m^{2(n-1)}\right) - \varphi_m\left(a_1 \cdots a_n j_m^{3(n-1)}\right)|
$$

+
$$
\cdots + |\varphi_m\left(a_1 \cdots a_n j_m^{n(n-1)}\right) - \varphi_m\left(a_1 j_m^{(n-1)}\right) \cdots \varphi_m\left(a_n j_m^{(n-1)}\right)|,
$$

so $\|(\phi_m, n)^\vee\| \to 0$. By the hypothesis and Proposition [2.5,](#page-4-1) there is a sequence (ψ_m) in $M_{(A,n)} \cup \{0\}$ with $\|\phi_m - \psi_m\| \to 0$. We now have

$$
|\phi_m(a) - \varphi_m(a)| = |(\varphi_m, n)^\vee(a, j_m, \dots, j_m)| \to 0
$$

for any $a \in J$. If $\theta_m = \psi_m|_J$, then it is easy to see that, $\theta_m \in M_{(J,n)} \cup \{0\}$ and

$$
\|\varphi_m - \theta_m\| \le \|\varphi_m - \phi_m\| + \|\phi_m - \theta_m\| \to 0.
$$

Now, the result follows by Proposition [2.5.](#page-4-1)

For the proof of the second part of the theorem, let (φ_m) be a sequence in $(A/J)^*$ ⊂ A^* with $\|(\varphi_m, n)^\vee\| \to 0$. Then, by Proposition [2.5,](#page-4-1) there is a sequence $(\psi_m) \subset M_{(A,n)} \cup \{0\}$ such that $\|\varphi_m - \psi_m\| \to 0$. By Corollary [2.8,](#page-5-1) either $\|\psi_m|_J\| = 0$ or $\|\psi_m|_J\| \geq \frac{1}{k}$. Since $\|\varphi_m - \psi_m\| \to 0$ and $\varphi_m|_J = 0$, then $\psi_m|_J = 0$ and hence each $\psi_m \in M_{(A/J,n)} \cup \{0\}$. So, by Proposition [2.5,](#page-4-1) the result follows. the result follows.

Corollary 2.11. *Let* A *be a commutative Banach algebra and* J *be a closed ideal in* A *such that* A/J *is finite dimensional. Then,* A *is* n*-*AMNM *if and only if* J *is. In particular* A *is* n*-*AMNM *if and only if the unitization of* A*,* A^+ *is.*

Proof. It is an immediate consequence of Corollary [2.6,](#page-4-2) Theorem [2.9](#page-5-2) and Theorem [2.10.](#page-6-0) \Box

In the next result, $\hat{A} \hat{\otimes} B$ is the completion of $A \otimes B$ in the projective tensor norm [\[4](#page-12-11)].

Theorem 2.12. *Let* A *and* B *be commutative* n*-*AMNM *Banach algebras. Then,* $A\hat{\otimes}B$ *is* n - $AMNM$.

Proof. Suppose that (φ_m) is a sequence in $(A\hat{\otimes} B)^*$ with $k = \inf_m ||\varphi_m|| > 0$ and $\|(\varphi_m, n)^{\vee}\| \to 0$. Using the canonical isometric identification between $(A\hat{\otimes}B)^*$ and the set of bounded bilinear forms on $A \times B$, there exist sequences (a_m) and (b_m) in A and B, respectively such that $||a_m|| ||b_m|| < \frac{2}{k}$ and $\varphi_m(a_m \otimes b_m) = 1$. Now, define the functions $\theta_m : A \to \mathbb{C}$ and $\psi_m : B \to \tilde{\mathbb{C}}$ by

$$
\theta_m(x)=\varphi_m(xa_m\otimes b_m),\ \psi_m(y)=\varphi_m(a_m^{(n-1)}\otimes y b_m^{(n-1)}),\ x\in A,\ y\in B.
$$

So for any $x_1, \ldots, x_n \in A$, we have

$$
|\theta_m(x_1 \cdots x_n) - \theta_m(x_1) \cdots \theta_m(x_n)| = |\varphi_m(x_1 \cdots x_n a_m \otimes b_m)|
$$

$$
- \varphi_m(x_1 a_m \otimes b_m) \cdots \varphi_m(x_n a_m \otimes b_m)|
$$

$$
\leq |\varphi_m(x_1 \cdots x_n a_m \otimes b_m) \varphi_m(a_m \otimes b_m)^{(n-1)} - \varphi_m(x_1 \cdots x_n a_m^m \otimes b_m^m)|
$$

$$
+ |\varphi_m(x_1 \cdots x_n a_m^m \otimes b_m^m) - \varphi_m(x_1 a_m \otimes b_m)|.
$$

Since $\|(\varphi_m, n)^\vee\| \to 0$, then $\|(\theta_m, n)^\vee\| \to 0$. By the hypothesis and Propo-sition [2.5](#page-4-1) there is a sequence $(\hat{\theta_m})$ in $M_{(A,n)} \cup \{0\}$ with $\|\theta_m - \hat{\theta}_m\| \longrightarrow 0$. Also for any $y_1, \ldots, y_n \in B$, we have

$$
\begin{aligned}\n|\psi_m(y_1 \cdots y_n) - \psi_m(y_1) \cdots \psi_m(y_n)| &= \left| \varphi_m \left(a_m^{(n-1)} \otimes y_1 \cdots y_n b_m^{(n-1)} \right) \right. \\
&\left. - \varphi_m \left(a_m^{(n-1)} \otimes y_1 b_m^{(n-1)} \right) \cdots \varphi_m \left(a_m^{(n-1)} \otimes y_n b_m^{(n-1)} \right) \right| \\
&\leq \left| \varphi_m \left(a_m^{(n-1)} \otimes y_1 \cdots y_n b_m^{(n-1)} \right) \varphi_m(a_m \otimes b_m)^{(n-1)} \right. \\
&\left. - \varphi_m \left(a_m^{2(n-1)} \otimes y_1 \cdots y_n b_m^{2(n-1)} \right) \right| \\
&+ \left| \varphi_m \left(a_m^{2(n-1)} \otimes y_1 \cdots y_n b_m^{2(n-1)} \right) \varphi_m(a_m \otimes b_m)^{(n-1)} \right. \\
&\left. - \varphi_m \left(a_m^{3(n-1)} \otimes y_1 \cdots y_n b_m^{3(n-1)} \right) \right| \\
&\vdots \\
&+ \left| \varphi_m \left(a_m^{n(n-1)} \otimes y_1 \cdots y_n b_m^{n(n-1)} \right) \right.\n\end{aligned}
$$

$$
-\varphi_m\left(a_m^{(n-1)} \otimes y_1 b_m^{(n-1)}\right) \cdots
$$

$$
\varphi_m\left(a_m^{(n-1)} \otimes y_n b_m^{(n-1)}\right)\Big|,
$$

therefore, $\|(\psi_m, n)^\vee\| \longrightarrow 0$. By the hypothesis and Proposition [2.5,](#page-4-1) there is a sequence (ψ_m) in $M_{(B,n)} \cup \{0\}$ with $\|\psi_m - \psi_m\| \longrightarrow 0$. Now, consider the function $\phi_m : A \hat{\otimes} B \to \mathbb{C}$ defined by $\phi_m(x \otimes y) = \hat{\theta}_m(x)\hat{\psi}_m(y)$ for every $x \otimes y \in A \otimes B$. It is easy to see that $\phi_m \in M_{(A \hat{\otimes} B,n)} \cup \{0\}$. On the other hand, we have

$$
\left|\varphi_m(x \otimes y) - \phi_m(x \otimes y)\right| \leq \left|\varphi_m(x \otimes y)\varphi_m(a_m \otimes b_m)^{(n-1)}\right|
$$

\n
$$
-\varphi_m\left(xa_m^{(n-1)} \otimes y b_m^{(n-1)}\right)\right|
$$

\n
$$
+\left|\varphi_m\left(xa_m^{(n-1)} \otimes y b_m^{(n-1)}\right)\varphi_m(a_m \otimes b_m)^{(n-1)}\right|
$$

\n
$$
-\varphi_m\left(xa_m^{2(n-1)} \otimes y b_m^{2(n-1)}\right)\right|
$$

\n
$$
+\left|\varphi_m\left(xa_m^{2(n-1)} \otimes y b_m^{2(n-1)}\right)\right|
$$

\n
$$
-\varphi_m(xa_m \otimes b_m)\varphi_m\left(a_m^{(n-1)} \otimes y b_m^{(n-1)}\right)\varphi_m(a_m \otimes b_m)^{n-2}\right|
$$

\n
$$
+\left|\theta_m(x)\psi_m(y) - \phi_m(x \otimes y)\right|.
$$

Since for any $x \in A$, $y \in B$, $|\theta_m(x)\psi_m(y) - \phi_m(x \otimes y)| \longrightarrow 0$, then $-\phi_m || \longrightarrow 0$ and so by Proposition 2.5, the result follows. $\|\varphi_m - \varphi_m\| \longrightarrow 0$ and so by Proposition [2.5,](#page-4-1) the result follows.

Theorem 2.13. *Let* B *be a unital commutative Banach algebra and let* A *be a commutative Banach algebra. If* $\hat{A} \hat{\otimes} B$ *is* n-AMNM, then A *is* n-AMNM.

Proof. Let (φ_m) be a sequence in A^* with $k = \inf_m ||\varphi_m|| > 0$ and $||(\varphi_m, n)^{\vee}||$ \rightarrow 0. Now, by the universal property of projective tensor product, we define $\phi_m \in (A\hat{\otimes}B)^*$ by $\phi_m(a\otimes b) = \varphi_m(a)\psi(b)$, where $\psi \in M_B$. It is easy to see that $\|(\phi_m, n)^\vee\| = \|(\varphi_m, n)^\vee\|$ and $\|\phi_m\| = \|\varphi_m\|$, so $\|\phi_m\| \geq k$. By the hypothesis and Proposition [2.5,](#page-4-1) there is a sequence (ϕ'_m) in $M_{(A\hat{\otimes}B,n)}$ with $\|\phi_m - \phi_m\| \longrightarrow 0$. Now, consider the function $\theta_m : A \to \mathbb{C}$ defined by $\theta_m(a) = \phi'_m(a\otimes 1)$ for every $a \in A$. It is easy to see that $\theta_m \in M_{(A,n)} \cup \{0\}$ and $\|\varphi_m-\theta_m\|\leq \|\phi_m-\phi_m'\|$. Therefore, $\|\varphi_m-\theta_m\|\longrightarrow 0$ and by Proposition [2.5](#page-4-1) the result follows. \Box

Corollary 2.14. *Let* ^A *and* ^B *be unital commutative Banach algebras. If* ^A⊗ˆ^B *is* n*-*AMNM*, then* A *and* B *are* n*-*AMNM*.*

Proposition 2.15. *Let* A *be a unital* AMNM *Banach algebra and* n > 2 *be an integer. Then, for every* $\varepsilon > 0$ *, there exists* $\delta > 0$ *such that for any* (δ, n) *-multiplicative linear functional* φ *, either* $d(\varphi) < \varepsilon$ *or* $d(\varphi(1)^{n-2}\varphi) < \varepsilon$ *.*

Proof. Suppose that $\varepsilon > 0$. Then, by the hypothesis there exists a $\gamma > 0$ such that for any γ -multiplicative linear functional θ , $d(\theta) < \varepsilon$. Set $\delta =$ $\min\{1, \frac{\gamma}{2^n}, \varepsilon\}$, and let φ be a (δ, n) -multiplicative linear functional. If $\varphi(1)$ = 0, then it is easy to see that $\|\varphi\| \leq \delta \leq \varepsilon$ and so $d(\varphi) < \varepsilon$. Otherwise, we

define $\phi : A \to \mathbb{C}$ by $\phi = \varphi(1)^{n-2}\varphi$. Since $|\varphi(1) - \varphi(1)^n| < 1$ so it is easy to see that $|\varphi(1)| < 2$ and for every $a, b \in A$, we have

$$
|\phi(ab) - \phi(a)\phi(b)| = |\varphi(1)|^{n-2} |\varphi(ab) - \varphi(1)^{n-2} \varphi(a)\varphi(b)|
$$

$$
\leq 2^{n-2} \delta ||a|| ||b||
$$

$$
< 2^n \delta ||a|| ||b||.
$$

Hence, ϕ is a 2ⁿδ-multiplicative linear functional and then $d(\varphi(1)^{n-2}\varphi)$ < ε .

Lemma 2.16. *Let* A *be a Banach algebra and let* φ *be an* (ε, n) *-multiplicative linear functional on* A *such that* $\varphi(a) = 1$ *. If* $\psi : A \to \mathbb{C}$ *is defined by* $\psi(x) = \varphi(ax)$, then ψ is approximately multiplicative linear functional.

Proof. By the hypothesis for every $x, y \in A$, we have

$$
|\psi(xy) - \psi(x)\psi(y)| = |\varphi(axy) - \varphi(ax)\varphi(ay)|
$$

\n
$$
= |\varphi(axy) \pm \varphi(a^{n-1}xya) \pm \varphi(ax)\varphi(ya) \pm \varphi(axaya^{n-2})|
$$

\n
$$
\leq |\varphi(a)^{n-2}\varphi(axy)\varphi(a) - \varphi(a^{n-1}xya)|
$$

\n
$$
+ |\varphi(a^{n-1}xya) - \varphi(a)^{n-2}\varphi(ax)\varphi(ya)|
$$

\n
$$
+ |\varphi(ax)\varphi(a)\varphi(ya)\varphi(a)^{n-3} - \varphi(axaya^{n-2})|
$$

\n
$$
+ |\varphi(axaya^{n-2}) - \varphi(ax)\varphi(ay)\varphi(a)^{n-2}|
$$

\n
$$
\leq 4\varepsilon ||a||^n ||x|| ||y||.
$$

Therefore, ψ is 4δ-multiplicative linear functional, such that $\delta = 4\varepsilon ||a||^n$. \Box

Theorem 2.17. Let X be a locally compact Hausdorff space and $n > 2$ be an *integer. Then, for every* $\varepsilon > 0$ *, there exists* $\delta > 0$ *such that for any* (δ, n) *multiplicative linear functional* φ *on* $C_0(X)$ *, either* $d(\varphi) < \varepsilon$ *or there exists* $f_0 \in C_0(X)$ with $\varphi(f_0) \neq 0$ and $d(\psi) < \varepsilon$, where $\psi(f) = \varphi(f_0 f)$ for all $f \in C_0(X)$.

Proof. Let $\varepsilon > 0$. By [\[1](#page-12-7), Theorem 4.1] there exists a $\gamma > 0$ such that for any γ -multiplicative linear functional θ , $d(\theta) < \varepsilon$. Suppose that $(e_{\alpha})_{\alpha \in \wedge}$ is an approximate identity for $C_0(X)$ with $||e_\alpha|| \leq 1$, $\delta = \min\{\varepsilon, \frac{\gamma}{4}\}\$ and φ is a (δ, n) -multiplicative linear functional on $C_0(X)$. Since φ is a (δ, n) multiplicative linear functional, we have

$$
|\varphi(f e_{\alpha}^{n-1}) - \varphi(f)\varphi(e_{\alpha})^{n-1}| \leq \delta ||f|| \quad f \in C_0(X).
$$

If for all $\alpha \in \wedge$, $\varphi(e_{\alpha}) = 0$, then it is easy to see that $\|\varphi\| \leq \delta$ and so $d(\varphi) < \varepsilon$. If there exists $\alpha_0 \in \wedge$ such that $\varphi(e_{\alpha_0}) \neq 0$, then we define $\psi : C_0(X) \to \mathbb{C}$ by $\psi(f) = \varphi(e_{\alpha_0}f)$. By Lemma [2.16,](#page-9-0) ψ is 4 δ -multiplicative linear functional and so $d(\psi) < \varepsilon$.

The following theorem has been proved by Howey in [\[8,](#page-12-12) Theorem 3.1].

Theorem 2.18. *Let* A *be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on* M^A *. Then,* A *is* AMNM *if and only if for all sequences* (φ_m) *in* A^* *with* $\|(\varphi_m, 2)^{\vee}\| \to 0$ *and* $\varphi_m \to \varphi$ *in the weak* topology,* $\varphi \neq 0$ *, then* $\|\varphi_m - \varphi\| \to 0$ *.*

Lemma 2.19. *Let* A *be a commutative unital Banach algebra. Then, the Gelfand and norm topologies coincide on* M^A *if and only if they are the same on* $M_{(A,n)}$.

Proof. Let (φ_m) be a sequence in $M_{(A,n)}$ weak^{*} converges to φ in $M_{(A,n)}$. Then, (φ_m) is bounded and $\varphi_m(1) \to \varphi(1)$. Define $\phi_m, \phi : A \to \mathbb{C}$ by $\phi_m =$ $\varphi_m(1)^{n-2}\varphi_m$ and $\phi = \varphi(1)^{n-2}\varphi$. By [\[7,](#page-12-0) Theorem 2.2] ϕ_m , $\phi \in M_A$ for each $m \in \mathbb{N}$. Now by the hypothesis, we have $\phi_m \to \phi$ in the weak^{*} topology, and hence $\|\phi_m - \phi\| \to 0$. Since $\varphi_m = \varphi_m(1)\phi_m$ and $\varphi = \varphi(1)\phi$, then $\|\varphi_m - \varphi\| \to 0$, so the result follows.

The following theorem is an extension of Theorem [2.18](#page-9-1) for $n > 2$.

Theorem 2.20. *Let* A *be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on* MA*. Then,* A *is* n*-*AMNM *if and only if for all sequences* (φ_m) *in* A^* *with* $\|(\varphi_m, n)^\vee\| \to 0$ *and* $\varphi_m \to \varphi$ *in the weak* topology,* $\varphi \neq 0$ *, then* $\|\varphi_m - \varphi\| \to 0$ *.*

Proof. By Lemma [2.19](#page-10-0) and a modification of the proof of Theorem [2.18](#page-9-1) the result follows.

Theorem 2.21. *Let* A *be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on* MA. *Then,* A *is* AMNM *if and only if* A *is* n*-*AMNM*.*

Proof. Suppose that A is $AMNM$, (φ_m) is a sequence in A^* with $\|(\varphi_m, n)^{\vee}\|$ $\rightarrow 0$ and $\varphi_m \rightarrow \varphi$ in the weak^{*} topology, where φ is a nonzero element of A^* . Then, φ is *n*-character so by the proof of [\[14](#page-12-6), Lemma 2.1] we can see that $|\varphi(1)| = ||\varphi|| = 1$. Since $\varphi_m(1) \to \varphi(1)$, there exists $M \in \mathbb{N}$ such that $|\varphi_m(1)| > \frac{1}{2}$ for each $m \geq M$. Now define $\phi_m, \phi : A \to \mathbb{C}$ for all $m \geq M$ by $\phi_m = \varphi_m/\varphi_m(1)$ and $\phi = \varphi/\varphi(1)$. By Lemma [2.19,](#page-10-0) for all $x, y \in A$, we have

$$
\left|\frac{\varphi_m(xy)}{\varphi_m(1)} - \frac{\varphi_m(x)\varphi_m(y)}{\varphi_m(1)^2}\right| \le \frac{4}{|\varphi_m(1)|^n} \|(\varphi_m, n)^\vee\| \|x\| \|y\|,
$$

then $\|(\phi_m, 2)^\vee\| \to 0$, and for all $x \in A$,

$$
\left|\frac{\varphi_m(x)}{\varphi_m(1)}-\frac{\varphi(x)}{\varphi(1)}\right|\leq \frac{|\varphi_m(x)||\varphi(1)-\varphi_m(1)||+|\varphi_m(1)||\varphi_m(x)-\varphi(x)|}{|\varphi_m(1)||\varphi(1)|},
$$

so $\phi_m \to \phi$ in the weak^{*} topology. Now by the hypothesis, we have $\|\phi_m - \phi\|$ $\|\phi\| \to 0$ and thus it is easy to see that $\|\varphi_m-\varphi\| \to 0$. Then by Theorem [2.20](#page-10-1) A is n-AMNM. Conversely, let (φ_m) be a sequence in A^* with $\|(\varphi_m, 2)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, where φ is a nonzero element of A^* . It is easy to see that $\|(\varphi_m, n)^{\vee}\| \to 0$ and by the hypothesis, we have $\|\varphi_m - \varphi\| \to$ 0. Then, by Theorem [2.18,](#page-9-1) A is $AMNM$.

Remark 2.22. Howey in [\[8](#page-12-12)] proved that the Gelfand and norm topologies are the same on $M(c^N[0,1]^{\tilde{M}})$ where $c^N[0,1]^M$ is the algebra of complex-valued functions defined on $[0, 1]^M$ with all Nth order partial derivatives continuous. In fact, he proved that it is $AMNM$ and so by Theorem [2.21,](#page-10-2) it is $n-AMNM$.

Example 2.23. Let $L^1 = L^1(\mathbb{Z})$ be the space of all functions $f : \mathbb{Z} \to \mathbb{C}$ such that $||f|| = \sum_{k \in \mathbb{Z}} |f(k)| < \infty$. Clearly, L^1 is a separable commutative unital Banach algebra with usual convolution. Johnson in [\[1,](#page-12-7) Theorem 5.2] proved that L^1 is AMNM. It is easy to see that the character space of L^1 is homeomorphic to $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Also, let z_m converges to z_0 in the weak[∗] topology of $\mathbb T$ (that is in the standard topology of $\mathbb T$) and let P be the set of all polynomials of z and z^{-1} . For any f with norm 1 take p in P close to f, then z_m at p is close to z_0 at p for large m, so it is convergent in norm. Therefore, the Gelfand and norm topologies are the same on $\mathbb{T} = M_{L^1}$. Now by Theorem [2.21,](#page-10-2) L^1 is n-AMNM.

Johnson [\[1\]](#page-12-7) gave the following example to show that not all the classical commutative Banach algebras are $AMNM$. We show that the Banach algebra obtained in this example is not n-AMNM.

Example 2.24. For each positive integer m, let A_m be the algebra \mathbb{C}^m with multiplication $(ab)_i = a_i b_i$. The standard basis of A_m will be denoted by e_1,\ldots,e_m and the unit by 1_m . We set $S_m = \{0,e_1,\ldots,e_m,1_m\}$ and let U_m be the absolutely convex cover of S_m , that is,

$$
U_m = \left\{ \sum_{i=1}^{k-1} \lambda_i e_i + \lambda_k 1_m : \sum_{i=1}^k |\lambda_i| \le 1 , k \in N \right\}.
$$

We take the norm on A_m for which the unit ball is U_m . As S_m is closed under multiplication so is U_m and A_m is a Banach algebra. We define A to be the set of all sequences (a_j) with $a_j \in A_j$ and $||a|| = \left(\sum_i ||a_j||^2\right)^{\frac{1}{2}} < \infty$. Then, A is a Banach algebra. Let $f_m \in A_m^*$ such that $f_m(e_j) = \frac{1}{m}$ for all $j = 1, \ldots, m$, and p_m be the projection of A to A_m and $g_m = p_m^* f_m$. We show that $||(g_m, n)^{\vee}|| \leq \frac{1}{m}$. For all $x_1, \ldots, x_n \in S_m$, we have

$$
f_m(x_1 \dots x_n) - f_m(x_1) \dots f_m(x_n)
$$

=
$$
\begin{cases} 0 & \text{if } x_1 = \dots = x_n = 1_m \text{ or } \exists x_j = 0, \\ -\frac{1}{m^{n-r}} & \text{if } x_{k_1} = \dots = x_{k_r} = 1_m \text{ and } \exists i, j, x_{n_i} \neq x_{n_j}, \\ \frac{1}{m} - \frac{1}{m^{n-r}} & \text{if } x_{k_1} = \dots = x_{k_r} = 1_m \text{ and } \exists i, x_{k_{r+1}} = \dots = x_{k_n} = e_i. \end{cases}
$$

Thus, for all $x_1, ..., x_n \in S_m$, $|f_m(x_1, ..., x_n) - f_m(x_1) ... f_m(x_n)| \leq \frac{1}{m}$ and so, as U_m is the absolutely convex cover of S_m , we get the same inequality for all $x_1, \ldots, x_n \in U_m$, showing that $||(f_m, n)^{\vee}|| \leq \frac{1}{m}$. Since p_m is a norm decreasing algebra homomorphism, we get $(g_m, n)^{\vee}(x_1,\ldots,x_n)$ = $(f_m, n)^{\vee}(p(x_1), \ldots, p(x_n))$. Therefore, $||(g_m, n)^{\vee}|| \leq \frac{1}{m}$. Let $\phi \in M_{(A,n)} \cup \{0\}$. If $\phi(1_m) = 0$, then

$$
\|\phi - g_m\| \ge |\phi(1_m) - g(1_m)| = 1,
$$

because $||1_m|| \leq 1$ and $g_m(1_m) = 1$. If $\phi(1_m) \neq 0$, then $\psi_m = \phi_{|A_m}$ $M_{(A_m,n)}$. Hence, there exists $0 \le \theta \le 2\pi$ such that $\psi_m(1_m) = \cos \theta + i \sin \theta$. Define $\phi_m : A_m \to \mathbb{C}$ by $\phi_m = \psi_m(1)^{n-2} \psi_m$. Then, by [\[7,](#page-12-0) Theorem 2.2], $\phi_m \in M_A$ and $\psi_m = \psi_m(1_m)\phi_m$. Since ϕ_m is a character on A_m , we have it is of the form $x \mapsto x_k$ for some $k \in \{1,\ldots,m\}$. Therefore, $\psi_m(e_k) =$ $\psi_m(1_m)\phi_m(e_k) = \psi_m(1_m) = \cos\theta + i\sin\theta$. We have

$$
||f_m - \psi_m|| \ge |f_m(e_k) - \psi_m(e_k)| = \sqrt{1 + \frac{1}{m^2} - \frac{2}{m} \cos \theta} \ge 1 - \frac{1}{m},
$$

thus

$$
||g_m - \phi|| \ge ||(g_m - \phi)|_{A_m}| = ||f_m - \psi_m|| \ge 1 - \frac{1}{m}.
$$

So by Proposition [2.5](#page-4-1) A is not n -AMNM.

Acknowledgments

The authors would like to thank Professor Krzysztof Jarosz for providing Example [2.23.](#page-10-3)

References

- [1] Johnson, B.E.: Approximately multiplicative functionals. J. Lond. Math. Soc. **2**(34), 489–510 (1986)
- [2] Ansari-piri, E., Eghbali, N.: Almost n-multiplicative maps. Afr. J. Math. Comput. Sci. Res. **5**(12), 200–203 (2012)
- [3] Ansari-piri, E., Shayanpour, H., Heidarpour, Z.: A class of certain properties of almost *n*-multiplicative maps on normed algebras $(2015, \text{ submitted})$
- [4] Bonsall, F., Duncan, J.: Complete Normed Algebras. Springer, New York (1973)
- [5] Bračič, J., Moslehian, S.: On automatic continuity of 3-homomorphisms on Banach algebras. Bull. Malays. Math. Sci. Soc. (2) **30**(2), 195–200 (2007)
- [6] Dales, H.G.: Banach Algebras and Automatic Continuity, London Mathematical, Society Monograph, vol. 24. Clarendon Press, Oxford (2000)
- [7] Hejazian, M., Mirzavaziri, M., Moslehian, M.S.: n-Homomorphisms. Bull. Iranian Math. Soc. **31**(1), 13–23 (2005)
- [8] Howey, R.A.J.: Approximately multiplicative functionals on algebras of smooth functions. J. Lond. Math. Soc. (2) **68**, 739–752 (2003)
- [9] Honary, T.G., Shayanpour, H.: Automatic continuity of n-homomorphisms between Banach algebras. Quaest. Math. **33**(2), 189–196 (2010)
- [10] Honary, T.G., Shayanpour, H.: Automatic continuity of n-homomorphisms between topological algebras. Bull. Aust. Math. Soc. **83**(3), 389–400 (2011)
- [11] Honary, T.G., Najafi Tavani, M., Shayanpour, H.: Automatic continuity of n-homomorphisms between Fréchet algebras. Quaest. Math. **34**(2), 265–274 (2011)
- [12] Jarosz, K.: Perturbations of Banach algebras, Lecture Notes in Mathematics, vol. 1120. Springer, Berlin (1985)
- [13] Park, E., Trout, J.: On the nonexistence of nontrivial involutive nhomomorphisms of C*-algebras. Trans. Am. Math. Soc. **361**, 1949–1961 (2009)
- [14] Shayanpour, H., Honary, T.G., Hashemi, M.S.: Certain properties of n-characters and n-homomorphisms on topological algebras. Bull. Malays. Math. Sci. Soc. (2015). doi[:10.1007/s40840-014-0062-4](http://dx.doi.org/10.1007/s40840-014-0062-4)

H. Shayanpour Faculty of Mathematical Sciences Department of Pure Mathematics University of Shahrekord P. O. Box 88186-34141 Shahrekord, Iran e-mail: h.shayanpour@sci.sku.ac.ir

E. Ansari-Piri Faculty of Mathematical Science University of Guilan Rasht, Iran e-mail: eansaripiri@gmail.com

Z. Heidarpour Payame Noor University Tehran, Iran e-mail: heidarpor86@yahoo.com

A. Zohri Payame Noor University Tehran, Iran e-mail: alizohri@gmail.com

Received: January 27, 2015. Revised: April 16, 2015. Accepted: April 19, 2015.