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Approximately n-Multiplicative Functionals
on Banach Algebras

H. Shayanpour, E. Ansari-Piri, Z. Heidarpour and A. Zohri

Abstract. Let A be a normed algebra, ϕ : A → C be a linear func-
tional. Then, the functional (ϕ, n)∨ is defined as (ϕ, n)∨(a1, . . . , an) =
ϕ(a1 . . . an)−ϕ(a1) . . . ϕ(an) for all elements a1, . . . , an ∈ A. If the norm
of (ϕ, n)∨ is small, then ϕ is approximately n-multiplicative linear func-
tional and it is of interest whether or not ‖(ϕ, n)∨‖ being small implies
that ϕ is near to an n-multiplicative linear functional. If this property
holds for a Banach algebra A, then A is an n-AMNM algebra (approx-
imately n-multiplicative linear functionals are near n-multiplicative lin-
ear functionals). We show that some properties of AMNM (2-AMNM)
algebras are also valid for n-AMNM algebras. For example, we give
some alternative definitions of n-AMNM . We also prove some theo-
rems on the hereditary properties of n-AMNM condition and we use an
equivalent condition for the n-AMNM property on certain Banach al-
gebras when the Gelfand and norm topologies coincide on the character
space of the algebra. We also give some examples which are n-AMNM
and finally, exhibit an example which is not n-AMNM .
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Secondary 46T99.

Keywords. Approximately n-multiplicative linear functional, Banach
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1. Introduction

Let A and B be two complex algebras and n ≥ 2 be an integer. A map ϕ :
A → B is called an n-multiplicative if ϕ(a1a2 . . . an) = ϕ(a1)ϕ(a2) . . . ϕ(an)
for all elements a1, a2, . . . , an ∈ A. Moreover, if ϕ is a linear mapping, then it
is called an n-homomorphism. If ϕ : A → C is a nonzero n-homomorphism,
then ϕ is called a complex n-character, or in brief, an n-character of A. If A
is a complex topological algebra, then the set of all continuous n-characters
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of A is denoted by M(A,n). As usual, the set of all continuous characters of A
is denoted by MA. The notion of n-homomorphism between Banach algebras
was first introduced by Hejazian et al. and some of their significant properties
were discussed in [7]. For further details on the above concepts and properties
one can refer, for example, to [5,6,9–11,13] and [14].

Let A and B be normed algebras and ε > 0. A linear map ϕ : A → B
is called an ε-multiplicative if for all x, y ∈ A,

‖ϕ(xy) − ϕ(x)ϕ(y)‖ ≤ ε‖x‖‖y‖.

The dual of a Banach algebra A is denoted by A∗ and the set of all n-
multiplicative (multiplicative) linear functionals on A is thus M(A,n) ∪ {0}
(MA ∪ {0}).
For each ϕ ∈ A∗, define

d(ϕ) = inf{‖ϕ − ψ‖ : ψ ∈ MA ∪ {0}}.
An algebra A is called an algebra in which approximately multiplicative linear
functionals are near multiplicative linear functionals, or A is AMNM for
short, if for every ε > 0, there exists δ > 0 such that d(ϕ) < ε, where ϕ is a
δ-multiplicative linear functional. The notion of AMNM algebras was first
introduced by Johnson and some significant properties of this algebras were
discussed in [1].

Let A and B be normed algebras and let ϕ : A → B be a linear map.
We define the map (ϕ, n)∨ as follows:

(ϕ, n)∨(a1, · · · , an) = ϕ(a1 · · · an) − ϕ(a1) . . . ϕ(an)

for all elements a1, . . . , an ∈ A with

‖(ϕ, n)∨‖ = sup{‖(ϕ, n)∨(a1, . . . , an)‖ : ‖ai‖ ≤ 1, 1 ≤ i ≤ n}.

If ‖(ϕ, n)∨‖ < ε, then we say that ϕ is an (ε, n)-multiplicative linear map.
Clearly, every (ε, 2)-multiplicative linear map is just an ε-multiplicative linear
map, in the usual sense. We also say that ϕ is approximately n-multiplicative
linear map, if there exists an ε > 0 such that ϕ is (ε, n)-multiplicative linear
map. For some properties of approximately n-multiplicative linear map, one
may refer to [2,3]. The following example shows that the class of approxi-
mately n-multiplicative linear mappings is essentially wider than the class of
approximately multiplicative linear mappings.

Example 1.1. Let X be an infinite-dimensional Banach algebra and f be a
linear discontinuous functional on X. Now, consider the following two sets A
and B,

A =
{(

0 x
0 0

)
: x ∈ X

}
, B =

⎧⎨
⎩

⎛
⎝0 0 x

y 0 z
0 0 0

⎞
⎠ : x, y, z ∈ C

⎫⎬
⎭ .

It is easy to see that A and B are two Banach algebras with the usual matrix
operations for addition, scalar multiplication and product if they are equipped
with the maximum norm. Define ϕ : A → B with
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ϕ

((
0 x
0 0

))
=

⎛
⎝ 0 0 f(x)

f(x) 0 f(x)
0 0 0

⎞
⎠ (x ∈ X).

Since for all P ∈ A and Q ∈ B, P 2 = Q3 = 0, then ϕ is a 3-homomorphism
and so it is an (ε, 3)-multiplicative linear map for all ε > 0. On the other
hand, ϕ is not an approximately multiplicative linear map because f is an
unbounded linear functional on X.

This paper is concerned with approximately n-multiplicative linear func-
tionals on Banach algebras, where n ≥ 2 is an integer. We say that A is an
n-AMNM (algebras in which approximately n-multiplicative linear func-
tionals are near n-multiplicative linear functionals) if for each ε > 0 there
exists δ > 0 such that dn(ϕ) < ε whenever ϕ is (δ, n)-multiplicative linear
functional, and dn(ϕ) = inf{‖ϕ − ψ‖ : ψ ∈ M(A,n) ∪ {0}}. Clearly, every
2-AMNM algebra is just an AMNM algebra, in the usual sense.

In this paper, we show that some properties of AMNM algebras are
also valid for n-AMNM algebras. We prove that every (ε, n)-multiplicative
linear functional ϕ on a Banach algebra is bounded by 1 + ε. We also give
some alternative definitions of n-AMNM and prove some theorems on the
hereditary properties of n-AMNM condition. Moreover, we show that if A is
a commutative separable unital Banach algebra where the Gelfand and norm
topologies on M(A,n) are the same, then A is n-AMNM if and only if for
all sequences (ϕm) in A∗ with ‖(ϕm, n)∨‖ → 0 and ϕm → ϕ in the weak∗

topology, ϕ �= 0, then ‖ϕm − ϕ‖ → 0.
Furthermore, we prove that if A is a commutative separable unital Ba-

nach algebra where the Gelfand and norm topologies on MA are the same,
then A is AMNM if and only if A is n-AMNM . Finally, we give some ex-
amples of n-AMNM Banach algebras and an example of a Banach algebra
which is not n-AMNM .

2. Approximately n-Multiplicative Linear Functionals

Throughout this section, n is an integer with n ≥ 2. We first state and prove
the following result, that will be needed later [3, 2.4].

Theorem 2.1. Let A be a normed algebra, and p ≥ 0. If ϕ : A → C satisfies
|ϕ(x1 · · · xn) − ϕ(x1) · · · ϕ(xn)| ≤ ε‖x1‖p · · · ‖xn‖p for all x1 · · · xn ∈ A, then
ϕ is n-multiplicative or there exists a constant k such that |ϕ(x)| ≤ k‖x‖p

for all x ∈ A.

Proof. Suppose that ϕ is not n-multiplicative, that is, there exist a1, . . . , an ∈
A such that

ϕ(a1 · · · an) �= ϕ(a1) · · · ϕ(an).

Then, for every nonzero element x ∈ A, we have
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|ϕ(x)|(n−1)|ϕ(a1 · · · an) − ϕ(a1) · · · ϕ(an)|
= |ϕ(x)(n−1)ϕ(a1 · · · an) − ϕ(x)(n−1)ϕ(a1) · · · ϕ(an)

±ϕ(x(n−1)a1 · · · an) ± ϕ(x(n−1)a1)ϕ(a2) · · · ϕ(an)|
≤ |ϕ(x)(n−1)ϕ(a1 · · · an) − ϕ(x(n−1)a1 · · · an)|
+|ϕ(x(n−1)a1 · · · an) − ϕ(x(n−1)a1)ϕ(a2) · · · ϕ(an)|
+|ϕ(x(n−1)a1)ϕ(a2) · · · ϕ(an) − ϕ(x)(n−1)ϕ(a1) · · · ϕ(an)|

≤ 2ε‖x‖p(n−1)‖a1‖p · · · ‖an‖p + |ϕ(a2) · · · ϕ(an)|ε‖x‖p(n−1)‖a1‖p

= ε‖x‖p(n−1)‖a1‖p[2‖a2‖p · · · ‖an‖p + |ϕ(a2) · · · ϕ(an)|].
Therefore, if

k =
(

ε‖a1‖p[2‖a2‖p · · · ‖an‖p + |ϕ(a2) · · · ϕ(an)|]
|ϕ(a1 · · · an) − ϕ(a1) · · · ϕ(an)|

) 1
(n−1)

,

then we have |ϕ(x)| ≤ k‖x‖p. �

Corollary 2.2. With the same hypotheses as in the theorem, if A is Banach
algebra and ϕ is linear, then it is continuous.

Proof. If ϕ is n-multiplicative linear functional, then as in the proof of [14,
Lemma 2.1] we can see that ‖ϕ‖ ≤ 1. Otherwise, by Theorem 2.1, the result
follows. �

The following theorem has been proved by Jarosz in [12, 5.5] which
shows that approximately multiplicative linear functionals are continuous.

Theorem 2.3. Let A be a Banach algebra and ϕ be an ε-multiplicative linear
functional. Then, ‖ϕ‖ ≤ 1 + ε.

Here, we extend the above theorem for (ε, n)-multiplicative linear func-
tionals.

Theorem 2.4. Let A be a Banach algebra and ϕ be an (ε, n)-multiplicative
linear functional. Then, ‖ϕ‖ ≤ 1 + ε.

Proof. If ϕ is n-multiplicative linear functional, then as in the proof of [14,
Lemma 2.1], we can see that ‖ϕ‖ ≤ 1, so the result follows. Otherwise, by
Corollary 2.2 ϕ is bounded. Assume towards a contradiction that ‖ϕ‖ > 1+ε,
then there exists a ∈ A with ‖a‖ = 1 and |ϕ(a)| > 1+ ε, so |ϕ(a)| = 1+ ε+ p
for some p > 0. By induction on m, we shall prove that

|ϕ(anm

)| ≥ 1 + ε + mp. (1)

By the hypothesis, we have

|ϕ(an)| ≥ |ϕn(a)| − |ϕn(a) − ϕ(an)| ≥ (1 + ε + p)n − ε ≥ 1 + ε + 2p,

so (1) is true, if m = 1. Assume that (1) is true for m. Then, we have
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∣∣∣ϕ(anm+1
)
∣∣∣ ≥

∣∣∣ϕn
(
anm

)∣∣∣ −
∣∣∣ϕ(

anm+1
)

− ϕn
(
anm

)∣∣∣
≥ (1 + ε + mp)n − ε

≥ 1 + ε + (m + 1)p.

This completes the proof of (1). Also, we have

|ϕ(x1 · · · xn) − ϕ(x1) · · · ϕ(xn)||ϕ(xn+1)| ≤ ε‖ϕ‖‖x1‖ · · · ‖xn+1‖ (2)

for all x1, . . . , xn, xn+1 ∈ A. In particular, if xn+1 = anm

, then by (1) and
(2) we have

|ϕ(x1 · · · xn) − ϕ(x1) · · · ϕ(xn)| ≤ ‖ϕ‖ε‖x1‖ · · · ‖xn‖
1 + ε + mp

for all x1, . . . , xn ∈ A and all m ∈ N. Letting m → ∞ shows that ϕ is
n-multiplicative linear functional so this is a contradiction. �

In the following theorem, we prove a result similar to that of [1, Propo-
sition 3.2] for n-AMNM algebras, which gives us some alternative definitions
of n-AMNM .

Proposition 2.5. Let A be a Banach algebra. Then, the following are equiva-
lent:
(i) A is n-AMNM ;
(ii) for any sequence (ϕm) in A∗ with ‖(ϕm, n)∨‖ → 0, there is a sequence

(ψm) in M(A,n) ∪ {0} with ‖ϕm − ψm‖ → 0;
(iii) for any sequence (ϕm) in A∗ with ‖(ϕm, n)∨‖ → 0, there is a subse-

quence (ϕmi
) and a sequence (ψi) in M(A,n) ∪{0} with ‖ϕmi

−ψi‖ → 0;
(iv) for any sequence (ϕm) in A∗ with ‖(ϕm, n)∨‖ → 0 and infm ‖ϕm‖ > 0,

there is a sequence (ψm) in M(A,n) with ‖ϕm − ψm‖ → 0.

Proof. (i) ⇒ (ii) Let (ϕm) be a sequence in A∗ with ‖(ϕm, n)∨‖ → 0. By the
hypothesis, we have dn(ϕm) → 0. So, it is easy to see that, there exists a
sequence (ψm) in M(A,n) ∪ {0} such that ‖ϕm − ψm‖ → 0.

(ii) ⇒ (iii) This is trivial.
(iii) ⇒ (i) Suppose (i) is not true. Then, there is ε > 0 such that for

any m ∈ N , there exists ( 1
m , n)-multiplicative linear functional ϕm such that

dn(ϕm) ≥ ε. By the hypothesis, there exists a subsequence (ϕmi
) of sequence

(ϕm) such that dn(ϕmi
) → 0, so we get a contradiction.

(i) ⇒ (iv) This is similar to (i) ⇒ (ii).
(iv) ⇒ (iii) If there exists a subsequence (ϕmi

) such that infi ‖ϕmi
‖ > 0,

then (iv) implies (iii). Otherwise, there exists a subsequence (ϕmk
) such that

‖ϕmk
‖ → 0, so the result follows. �

Corollary 2.6. Every finite-dimensional Banach algebra A is n-AMNM .

Proof. Let (ϕm) be a sequence in A∗ with ‖(ϕm, n)∨‖ → 0. Then, by Theo-
rem 2.4, the sequence (ϕm) is bounded and so has a convergent subsequence
(ϕmi

) with limit ψ. Since for any x1, . . . , xn ∈ A,

|ϕmi
(x1 · · · xn) − ϕmi

(x1) · · · ϕmi
(xn)| ≤ ‖(ϕmi

, n)∨‖‖x1‖ · · · ‖xn‖,
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by passing to the limit as i → ∞, we see that ψ ∈ M(A,n) ∪ {0}. So, by the
condition (iii) of Proposition 2.5 for ψi = ψ, the result follows. �

Theorem 2.7. [1, 2.3] Let A be a Banach algebra with a bounded approximate
identity (eα) of bound k > 0. If 0 < ε < 1

4k2 and ϕ is an ε-multiplicative
linear functional, then either ‖ϕ‖ ≤ 2εk or ‖ϕ‖ ≥ 1

k − 2εk.

Corollary 2.8. Let A be a Banach algebra with a bounded approximate identity
of bound k. If ϕ is an n-character on A, then ‖ϕ‖ > 1

k .

Proof. By the proof of [14, Lemma 2.1] and Theorem 2.7, the result follows.
�

Theorem 2.9. Let A be a commutative Banach algebra and let J be a closed
ideal in A. If J and A/J are n-AMNM , then A is n-AMNM .

Proof. If (ϕm) is a sequence in A∗ with ‖(ϕm, n)∨‖ → 0, then ‖(ϕm, n)∨|J‖ →
0. Now, we can assume that there exists a subsequence of (ϕm), again denoted
by (ϕm), such that infm ‖ϕm|J‖ > η for some η > 0 or ‖ϕm|J‖ → 0. If
there is an η > 0 such that infm ‖ϕm|J‖ > η, then by the hypothesis and
Proposition 2.5, there is a sequence (ψ′

m) ⊆ M(J,n) such that

‖ϕm|J − ψ′
m‖ → 0.

Since each ψ′
m is nonzero for all m ∈ N, there exists jm ∈ J which ψ′

m(jm) =
1. We now define ψm(a) = ψ′

m(aj
(n−1)
m ) for all a ∈ A, so that ψm ∈ A∗ and

we also have

ψm(a1 · · · an) = ψ′
m

(
a1 · · · anj(n−1)

m

) ψ′
m(j(n−1)

m )(n−1)

ψ′
m(j(n−1)

m )(n−1)

=
ψm(a1) · · · ψm(an)

ψ′
m(j(n−1)

m )(n−1)

for all a1, . . . , an ∈ A. On the other hand,

ψ′
m

(
j(n−1)
m

)(n−1)

= ψ′
m

(
j(n−1)
m

)(n−1)

ψ′
m(jm)

= ψ′
m

(
j(n−1)(n−1)
m jm

)
= ψ′

m(jm)(n−1)ψ′
m

(
j(n−1)(n−2)
m jm

)

= ψ′
m

(
j(n−1)(n−2)
m jm

)
= ψ′

m

(
j(n−1)(n−3)
m jm

)(n−1)

= · · ·

= ψ′
m

(
j(n−1)
m jm

)
= ψ′

m(jm)n = 1,

therefore, ψm is n-character and so ψm ∈ M(A,n). By the Hahn–Banach
theorem, (ϕm − ψm)|J can be extended to an element θm of A∗ with ‖θm‖ =
‖(ϕm − ψm)|J‖ = ‖ϕm|J − ψ′

m‖, so ‖θm‖ → 0. Since

‖(ϕm − θm, n)∨(a1, . . . , an)‖ ≤ (‖(ϕm, n)∨‖ + ‖θm‖

+
n∑

k=1

(
n

k

)
‖θm‖k‖ϕm‖n−k‖a1‖ · · · ‖an‖,
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then ‖(ϕm − θm, n)∨‖ → 0. For all a ∈ A,

(ϕm − θm)(a) = (ϕm − θm)(aj(n−1)
m ) − (ϕm − θm, n)∨(a, jm, . . . , jm)

= ψm(a) − (ϕm − θm, n)∨(a, jm, . . . , jm),

so ‖ϕm − θm − ψm‖ → 0 and hence

‖ϕm − ψm‖ ≤ ‖ϕm − ψm − θm‖ + ‖θm‖ → 0,

thus the result follows by Proposition 2.5.
Now, consider the case where ‖ϕm|J‖ → 0. Let θm be an extension

of ϕm|J to A with ‖θm‖ = ‖ϕm|J‖. Set φm = ϕm − θm, then by a similar
argument, ‖(φm, n)∨‖ → 0. Since φm = 0 on J , we can consider (φm) as a
sequence in (A/J)∗, and so, there is a sequence (ψm) ⊆ M(A/J,n) ∪ {0} ⊆
M(A,n) ∪ {0} such that ‖φm − ψm‖ → 0. Then

‖ϕm − ψm‖ ≤ ‖ϕm − θm − ψm‖ + ‖θm‖ → 0,

and by Proposition 2.5, the theorem is proved. �

Theorem 2.10. Let A be a commutative Banach algebra and let J be a closed
ideal in A. If A is n-AMNM , then J is n-AMNM . Moreover, if A is n-
AMNM and J has a bounded approximate identity of bound k > 0, then
A/J is n-AMNM .

Proof. Suppose that (ϕm) is a sequence in J∗ with ‖(ϕm, n)∨‖ → 0 and
k = inf ‖ϕm‖ > 0. Then, there exists a sequence (jm) in J with ‖jm‖ < 2

k

and ϕm(jm) = 1. Set φm(a) = ϕm(aj
(n−1)
m ) for all a ∈ A and m ∈ N. Then,

φm ∈ A∗ and for a1, . . . , an ∈ A we have

|(φm, n)∨(a1, · · · , an)| ≤
∣∣∣ϕm

(
a1 · · · anj(n−1)

m

)
− ϕm

(
a1 · · · anj2(n−1)

m

)∣∣∣
+

∣∣∣ϕm

(
a1 · · · anj2(n−1)

m

)
− ϕm

(
a1 · · · anj3(n−1)

m

)∣∣∣
+ · · · +

∣∣∣ϕm

(
a1 · · · anjn(n−1)

m

)
− ϕm

(
a1j

(n−1)
m

)
· · · ϕm

(
anj(n−1)

m

)∣∣∣ ,

so ‖(φm, n)∨‖ → 0. By the hypothesis and Proposition 2.5, there is a sequence
(ψm) in M(A,n) ∪ {0} with ‖φm − ψm‖ → 0. We now have

|φm(a) − ϕm(a)| = |(ϕm, n)∨(a, jm, . . . , jm)| → 0

for any a ∈ J . If θm = ψm|J , then it is easy to see that, θm ∈ M(J,n) ∪ {0}
and

‖ϕm − θm‖ ≤ ‖ϕm − φm‖ + ‖φm − θm‖ → 0.

Now, the result follows by Proposition 2.5.
For the proof of the second part of the theorem, let (ϕm) be a sequence

in (A/J)∗ ⊂ A∗ with ‖(ϕm, n)∨‖ → 0. Then, by Proposition 2.5, there is a
sequence (ψm) ⊂ M(A,n) ∪ {0} such that ‖ϕm − ψm‖ → 0. By Corollary 2.8,
either ‖ψm|J‖ = 0 or ‖ψm|J‖ ≥ 1

k . Since ‖ϕm − ψm‖ → 0 and ϕm|J = 0,
then ψm|J = 0 and hence each ψm ∈ M(A/J,n) ∪ {0}. So, by Proposition 2.5,
the result follows. �
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Corollary 2.11. Let A be a commutative Banach algebra and J be a closed
ideal in A such that A/J is finite dimensional. Then, A is n-AMNM if and
only if J is. In particular A is n-AMNM if and only if the unitization of A,
A+ is.

Proof. It is an immediate consequence of Corollary 2.6, Theorem 2.9 and
Theorem 2.10. �

In the next result, A⊗̂B is the completion of A ⊗ B in the projective
tensor norm [4].

Theorem 2.12. Let A and B be commutative n-AMNM Banach algebras.
Then, A⊗̂B is n-AMNM .

Proof. Suppose that (ϕm) is a sequence in (A⊗̂B)∗ with k = infm ‖ϕm‖ > 0
and ‖(ϕm, n)∨‖ → 0. Using the canonical isometric identification between
(A⊗̂B)∗ and the set of bounded bilinear forms on A × B, there exist se-
quences (am) and (bm) in A and B, respectively such that ‖am‖‖bm‖ < 2

k
and ϕm(am⊗bm) = 1. Now, define the functions θm : A → C and ψm : B → C

by

θm(x) = ϕm(xam ⊗ bm), ψm(y) = ϕm(a(n−1)
m ⊗ yb(n−1)

m ), x ∈ A, y ∈ B.

So for any x1, . . . , xn ∈ A, we have

|θm(x1 · · · xn) − θm(x1) · · · θm(xn)| = |ϕm(x1 · · · xnam ⊗ bm)
−ϕm(x1am ⊗ bm) · · · ϕm(xnam ⊗ bm)|

≤ |ϕm(x1 · · · xnam ⊗ bm)ϕm(am ⊗ bm)(n−1)

−ϕm(x1 · · · xnan
m ⊗ bn

m)|
+ |ϕm(x1 · · · xnan

m ⊗ bn
m)

−ϕm(x1am ⊗ bm) · · · ϕm(xnam ⊗ bm)|.
Since ‖(ϕm, n)∨‖ → 0, then ‖(θm, n)∨‖ −→ 0. By the hypothesis and Propo-
sition 2.5 there is a sequence (θ́m) in M(A,n) ∪ {0} with ‖θm − θ́m‖ −→ 0.
Also for any y1, . . . , yn ∈ B, we have

|ψm(y1 · · · yn) − ψm(y1) · · · ψm(yn)| =
∣∣∣ϕm

(
a(n−1)

m ⊗ y1 · · · ynb(n−1)
m

)

−ϕm

(
a(n−1)

m ⊗ y1b
(n−1)
m

)
· · · ϕm

(
a(n−1)

m ⊗ ynb(n−1)
m

)∣∣∣
≤

∣∣∣ϕm

(
a(n−1)

m ⊗ y1 · · · ynb(n−1)
m

)
ϕm(am ⊗ bm)(n−1)

−ϕm

(
a2(n−1)

m ⊗ y1 · · · ynb2(n−1)
m

)∣∣∣
+

∣∣∣ϕm

(
a2(n−1)

m ⊗ y1 · · · ynb2(n−1)
m

)
ϕm(am ⊗ bm)(n−1)

−ϕm

(
a3(n−1)

m ⊗ y1 · · · ynb3(n−1)
m

)∣∣∣
...

+
∣∣∣ϕm

(
an(n−1)

m ⊗ y1 · · · ynbn(n−1)
m

)
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−ϕm

(
a(n−1)

m ⊗ y1b
(n−1)
m

)
· · ·

ϕm

(
a(n−1)

m ⊗ ynb(n−1)
m

)∣∣∣ ,

therefore, ‖(ψm, n)∨‖ −→ 0. By the hypothesis and Proposition 2.5, there
is a sequence (ψ́m) in M(B,n) ∪ {0} with ‖ψm − ψ́m‖ −→ 0. Now, consider
the function φm : A⊗̂B → C defined by φm(x ⊗ y) = θ́m(x)ψ́m(y) for every
x ⊗ y ∈ A ⊗ B. It is easy to see that φm ∈ M(A⊗̂B,n) ∪ {0}. On the other
hand, we have

|ϕm(x ⊗ y) − φm(x ⊗ y)| ≤
∣∣∣ϕm(x ⊗ y)ϕm(am ⊗ bm)(n−1)

−ϕm

(
xa(n−1)

m ⊗ yb(n−1)
m

)∣∣∣
+

∣∣∣ϕm

(
xa(n−1)

m ⊗ yb(n−1)
m

)
ϕm(am ⊗ bm)(n−1)

−ϕm

(
xa2(n−1)

m ⊗ yb2(n−1)
m

)∣∣∣
+

∣∣∣ϕm

(
xa2(n−1)

m ⊗ yb2(n−1)
m

)

−ϕm(xam ⊗ bm)ϕm

(
a(n−1)

m ⊗ yb(n−1)
m

)
ϕm(am ⊗ bm)n−2

∣∣∣
+ |θm(x)ψm(y) − φm(x ⊗ y)| .

Since for any x ∈ A, y ∈ B, |θm(x)ψm(y) − φm(x ⊗ y)| −→ 0, then
‖ϕm − φm‖ −→ 0 and so by Proposition 2.5, the result follows. �

Theorem 2.13. Let B be a unital commutative Banach algebra and let A be a
commutative Banach algebra. If A⊗̂B is n-AMNM , then A is n-AMNM .

Proof. Let (ϕm) be a sequence in A∗ with k = infm ‖ϕm‖ > 0 and ‖(ϕm, n)∨‖
→ 0. Now, by the universal property of projective tensor product, we define
φm ∈ (A⊗̂B)∗ by φm(a ⊗ b) = ϕm(a)ψ(b), where ψ ∈ MB . It is easy to
see that ‖(φm, n)∨‖ = ‖(ϕm, n)∨‖ and ‖φm‖ = ‖ϕm‖, so ‖φm‖ ≥ k. By
the hypothesis and Proposition 2.5, there is a sequence (φ́m) in M(A⊗̂B,n)

with ‖φm − φ́m‖ −→ 0. Now, consider the function θm : A → C defined by
θm(a) = φ́m(a⊗1) for every a ∈ A. It is easy to see that θm ∈ M(A,n)∪{0} and
‖ϕm −θm‖ ≤ ‖φm − φ́m‖. Therefore, ‖ϕm −θm‖ −→ 0 and by Proposition 2.5
the result follows. �

Corollary 2.14. Let A and B be unital commutative Banach algebras. If A⊗̂B
is n-AMNM , then A and B are n-AMNM .

Proposition 2.15. Let A be a unital AMNM Banach algebra and n > 2
be an integer. Then, for every ε > 0, there exists δ > 0 such that for any
(δ, n)-multiplicative linear functional ϕ, either d(ϕ) < ε or d(ϕ(1)n−2ϕ) < ε.

Proof. Suppose that ε > 0. Then, by the hypothesis there exists a γ > 0
such that for any γ-multiplicative linear functional θ, d(θ) < ε. Set δ =
min{1, γ

2n , ε}, and let ϕ be a (δ, n)-multiplicative linear functional. If ϕ(1) =
0, then it is easy to see that ‖ϕ‖ ≤ δ ≤ ε and so d(ϕ) < ε. Otherwise, we
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define φ : A → C by φ = ϕ(1)n−2ϕ. Since |ϕ(1) − ϕ(1)n| < 1 so it is easy to
see that |ϕ(1)| < 2 and for every a, b ∈ A, we have

|φ(ab) − φ(a)φ(b)| = |ϕ(1)|n−2|ϕ(ab) − ϕ(1)n−2ϕ(a)ϕ(b)|
≤ 2n−2δ‖a‖‖b‖
< 2nδ‖a‖‖b‖.

Hence, φ is a 2nδ-multiplicative linear functional and then d(ϕ(1)n−2ϕ) <
ε. �
Lemma 2.16. Let A be a Banach algebra and let ϕ be an (ε, n)-multiplicative
linear functional on A such that ϕ(a) = 1. If ψ : A → C is defined by
ψ(x) = ϕ(ax), then ψ is approximately multiplicative linear functional.

Proof. By the hypothesis for every x, y ∈ A, we have

|ψ(xy) − ψ(x)ψ(y)| = |ϕ(axy) − ϕ(ax)ϕ(ay)|
= |ϕ(axy) ± ϕ(an−1xya) ± ϕ(ax)ϕ(ya) ± ϕ(axayan−2)|
≤ |ϕ(a)n−2ϕ(axy)ϕ(a) − ϕ(an−1xya)|

+ |ϕ(an−1xya) − ϕ(a)n−2ϕ(ax)ϕ(ya)|
+ |ϕ(ax)ϕ(a)ϕ(ya)ϕ(a)n−3 − ϕ(axayan−2)|
+|ϕ(axayan−2) − ϕ(ax)ϕ(ay)ϕ(a)n−2|

≤ 4ε‖a‖n‖x‖‖y‖.

Therefore, ψ is 4δ-multiplicative linear functional, such that δ = 4ε‖a‖n.
�

Theorem 2.17. Let X be a locally compact Hausdorff space and n > 2 be an
integer. Then, for every ε > 0, there exists δ > 0 such that for any (δ, n)-
multiplicative linear functional ϕ on C0(X), either d(ϕ) < ε or there exists
f0 ∈ C0(X) with ϕ(f0) �= 0 and d(ψ) < ε, where ψ(f) = ϕ(f0f) for all
f ∈ C0(X).

Proof. Let ε > 0. By [1, Theorem 4.1] there exists a γ > 0 such that for
any γ-multiplicative linear functional θ, d(θ) < ε. Suppose that (eα)α∈∧
is an approximate identity for C0(X) with ‖eα‖ ≤ 1, δ = min{ε, γ

4 } and
ϕ is a (δ, n)-multiplicative linear functional on C0(X). Since ϕ is a (δ, n)-
multiplicative linear functional, we have

|ϕ(fen−1
α ) − ϕ(f)ϕ(eα)n−1| ≤ δ‖f‖ f ∈ C0(X).

If for all α ∈ ∧, ϕ(eα) = 0, then it is easy to see that ‖ϕ‖ ≤ δ and so d(ϕ) < ε.
If there exists α0 ∈ ∧ such that ϕ(eα0) �= 0, then we define ψ : C0(X) → C

by ψ(f) = ϕ(eα0f). By Lemma 2.16, ψ is 4δ-multiplicative linear functional
and so d(ψ) < ε. �

The following theorem has been proved by Howey in [8, Theorem 3.1].

Theorem 2.18. Let A be a commutative separable unital Banach algebra where
the Gelfand and norm topologies coincide on MA . Then, A is AMNM if
and only if for all sequences (ϕm) in A∗ with ‖(ϕm, 2)∨‖ → 0 and ϕm → ϕ
in the weak∗ topology, ϕ �= 0, then ‖ϕm − ϕ‖ → 0.



Vol. 13 (2016) Approximately n-Multiplicative Functionals 1917

Lemma 2.19. Let A be a commutative unital Banach algebra. Then, the
Gelfand and norm topologies coincide on MA if and only if they are the
same on M(A,n).

Proof. Let (ϕm) be a sequence in M(A,n) weak∗ converges to ϕ in M(A,n).
Then, (ϕm) is bounded and ϕm(1) → ϕ(1). Define φm, φ : A → C by φm =
ϕm(1)n−2ϕm and φ = ϕ(1)n−2ϕ. By [7, Theorem 2.2] φm, φ ∈ MA for each
m ∈ N. Now by the hypothesis, we have φm → φ in the weak∗ topology,
and hence ‖φm − φ‖ → 0. Since ϕm = ϕm(1)φm and ϕ = ϕ(1)φ, then
‖ϕm − ϕ‖ → 0, so the result follows. �

The following theorem is an extension of Theorem 2.18 for n > 2.

Theorem 2.20. Let A be a commutative separable unital Banach algebra where
the Gelfand and norm topologies coincide on MA. Then, A is n-AMNM if
and only if for all sequences (ϕm) in A∗ with ‖(ϕm, n)∨‖ → 0 and ϕm → ϕ
in the weak∗ topology, ϕ �= 0, then ‖ϕm − ϕ‖ → 0.

Proof. By Lemma 2.19 and a modification of the proof of Theorem 2.18 the
result follows. �

Theorem 2.21. Let A be a commutative separable unital Banach algebra where
the Gelfand and norm topologies coincide on MA. Then, A is AMNM if and
only if A is n-AMNM .

Proof. Suppose that A is AMNM , (ϕm) is a sequence in A∗ with ‖(ϕm, n)∨‖
→ 0 and ϕm → ϕ in the weak∗ topology, where ϕ is a nonzero element of
A∗. Then, ϕ is n-character so by the proof of [14, Lemma 2.1] we can see
that |ϕ(1)| =‖ ϕ ‖= 1. Since ϕm(1) → ϕ(1), there exists M ∈ N such that
|ϕm(1)| > 1

2 for each m ≥ M . Now define φm, φ : A → C for all m ≥ M by
φm = ϕm/ϕm(1) and φ = ϕ/ϕ(1). By Lemma 2.19, for all x, y ∈ A, we have∣∣∣∣ϕm(xy)

ϕm(1)
− ϕm(x)ϕm(y)

ϕm(1)2

∣∣∣∣ ≤ 4
|ϕm(1)|n ‖(ϕm, n)∨‖‖x‖‖y‖,

then ‖(φm, 2)∨‖ → 0, and for all x ∈ A,∣∣∣∣ϕm(x)
ϕm(1)

− ϕ(x)
ϕ(1)

∣∣∣∣ ≤ |ϕm(x)||ϕ(1) − ϕm(1)| + |ϕm(1)||ϕm(x) − ϕ(x)|
|ϕm(1)||ϕ(1)| ,

so φm → φ in the weak∗ topology. Now by the hypothesis, we have ‖φm −
φ‖ → 0 and thus it is easy to see that ‖ϕm−ϕ‖ → 0. Then by Theorem 2.20 A
is n-AMNM . Conversely, let (ϕm) be a sequence in A∗ with ‖(ϕm, 2)∨‖ → 0
and ϕm → ϕ in the weak∗ topology, where ϕ is a nonzero element of A∗. It is
easy to see that ‖(ϕm, n)∨‖ → 0 and by the hypothesis, we have ‖ϕm −ϕ‖ →
0. Then, by Theorem 2.18, A is AMNM . �

Remark 2.22. Howey in [8] proved that the Gelfand and norm topologies are
the same on M(cN [0, 1]M ) where cN [0, 1]M is the algebra of complex-valued
functions defined on [0, 1]M with all Nth order partial derivatives continuous.
In fact, he proved that it is AMNM and so by Theorem 2.21, it is n-AMNM .
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Example 2.23. Let L1 = L1(Z) be the space of all functions f : Z → C

such that ‖f‖ =
∑

k∈Z
|f(k)| < ∞. Clearly, L1 is a separable commutative

unital Banach algebra with usual convolution. Johnson in [1, Theorem 5.2]
proved that L1 is AMNM . It is easy to see that the character space of L1 is
homeomorphic to T = {z ∈ C : |z| = 1}. Also, let zm converges to z0 in the
weak∗ topology of T (that is in the standard topology of T) and let P be the
set of all polynomials of z and z−1. For any f with norm 1 take p in P close
to f , then zm at p is close to z0 at p for large m, so it is convergent in norm.
Therefore, the Gelfand and norm topologies are the same on T = ML1 . Now
by Theorem 2.21, L1 is n-AMNM .

Johnson [1] gave the following example to show that not all the classical
commutative Banach algebras are AMNM . We show that the Banach algebra
obtained in this example is not n-AMNM .

Example 2.24. For each positive integer m, let Am be the algebra C
m with

multiplication (ab)j = ajbj . The standard basis of Am will be denoted by
e1, . . . , em and the unit by 1m. We set Sm = {0, e1, . . . , em, 1m} and let Um

be the absolutely convex cover of Sm, that is,

Um =

{
k−1∑
i=1

λiei + λk1m :
k∑

i=1

|λi| ≤ 1 , k ∈ N

}
.

We take the norm on Am for which the unit ball is Um. As Sm is closed
under multiplication so is Um and Am is a Banach algebra. We define A to
be the set of all sequences (aj) with aj ∈ Aj and ‖a‖ = (

∑ ‖aj‖2) 1
2 < ∞.

Then, A is a Banach algebra. Let fm ∈ A∗
m such that fm(ej) = 1

m for all
j = 1, . . . ,m, and pm be the projection of A to Am and gm = p∗

mfm. We
show that ‖(gm, n)∨‖ ≤ 1

m . For all x1, . . . , xn ∈ Sm, we have

fm(x1 . . . xn) − fm(x1) . . . fm(xn)

=

⎧⎨
⎩

0 if x1 = · · · = xn = 1m or ∃ xj = 0,
− 1

mn−r if xk1 = · · · = xkr
= 1m and ∃ i, j, xni

�= xnj
,

1
m − 1

mn−r if xk1 = · · · = xkr
= 1m and ∃ i, xkr+1 = · · · = xkn

= ei.

Thus, for all x1, . . . , xn ∈ Sm, |fm(x1, . . . , xn) − fm(x1) . . . fm(xn)| ≤ 1
m

and so, as Um is the absolutely convex cover of Sm, we get the same in-
equality for all x1, . . . , xn ∈ Um, showing that ‖(fm, n)∨‖ ≤ 1

m . Since pm

is a norm decreasing algebra homomorphism, we get (gm, n)∨(x1, . . . , xn) =
(fm, n)∨(p(x1), . . . , p(xn)). Therefore, ‖(gm, n)∨‖ ≤ 1

m . Let φ ∈ M(A,n)∪{0}.
If φ(1m) = 0, then

‖φ − gm‖ ≥ |φ(1m) − g(1m)| = 1,

because ‖1m‖ ≤ 1 and gm(1m) = 1. If φ(1m) �= 0, then ψm = φ|Am
∈

M(Am,n). Hence, there exists 0 ≤ θ ≤ 2π such that ψm(1m) = cos θ + i sin θ.
Define φm : Am → C by φm = ψm(1)n−2ψm. Then, by [7, Theorem 2.2],
φm ∈ MA and ψm = ψm(1m)φm. Since φm is a character on Am, we have
it is of the form x �→ xk for some k ∈ {1, . . . ,m}. Therefore, ψm(ek) =
ψm(1m)φm(ek) = ψm(1m) = cos θ + i sin θ. We have
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‖fm − ψm‖ ≥ |fm(ek) − ψm(ek)| =
√
1 +

1
m2

− 2
m

cos θ ≥ 1 − 1
m

,

thus

‖gm − φ‖ ≥ ‖(gm − φ)|Am
| = ‖fm − ψm‖ ≥ 1 − 1

m
.

So by Proposition 2.5 A is not n-AMNM .
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