Mediterranean Journal of Mathematics

CrossMark

Approximately *n*-Multiplicative Functionals on Banach Algebras

H. Shayanpour, E. Ansari-Piri, Z. Heidarpour and A. Zohri

Abstract. Let A be a normed algebra, $\varphi : A \to \mathbb{C}$ be a linear functional. Then, the functional $(\varphi, n)^{\vee}$ is defined as $(\varphi, n)^{\vee}(a_1, \ldots, a_n) =$ $\varphi(a_1 \dots a_n) - \varphi(a_1) \dots \varphi(a_n)$ for all elements $a_1, \dots, a_n \in A$. If the norm of $(\varphi, n)^{\vee}$ is small, then φ is approximately *n*-multiplicative linear functional and it is of interest whether or not $\|(\varphi, n)^{\vee}\|$ being small implies that φ is near to an *n*-multiplicative linear functional. If this property holds for a Banach algebra A, then A is an n-AMNM algebra (approximately *n*-multiplicative linear functionals are near *n*-multiplicative linear functionals). We show that some properties of AMNM (2-AMNM) algebras are also valid for n-AMNM algebras. For example, we give some alternative definitions of n-AMNM. We also prove some theorems on the hereditary properties of n-AMNM condition and we use an equivalent condition for the *n*-AMNM property on certain Banach algebras when the Gelfand and norm topologies coincide on the character space of the algebra. We also give some examples which are n-AMNM and finally, exhibit an example which is not n-AMNM.

Mathematics Subject Classification. Primary 46H99, 39B72; Secondary 46T99.

Keywords. Approximately *n*-multiplicative linear functional, Banach algebra, (ε, n) -multiplicative linear functional, *n*-AMNM property.

1. Introduction

Let A and B be two complex algebras and $n \geq 2$ be an integer. A map φ : $A \to B$ is called an *n*-multiplicative if $\varphi(a_1a_2...a_n) = \varphi(a_1)\varphi(a_2)...\varphi(a_n)$ for all elements $a_1, a_2, ..., a_n \in A$. Moreover, if φ is a linear mapping, then it is called an *n*-homomorphism. If $\varphi : A \to \mathbb{C}$ is a nonzero *n*-homomorphism, then φ is called a complex *n*-character, or in brief, an *n*-character of A. If A is a complex topological algebra, then the set of all continuous *n*-characters

H. Shayanpour was partially supported by the Center of Excellence for Mathematics, University of Shahrekord.

of A is denoted by $M_{(A,n)}$. As usual, the set of all continuous characters of A is denoted by M_A . The notion of n-homomorphism between Banach algebras was first introduced by Hejazian et al. and some of their significant properties were discussed in [7]. For further details on the above concepts and properties one can refer, for example, to [5, 6, 9-11, 13] and [14].

Let A and B be normed algebras and $\varepsilon > 0$. A linear map $\varphi : A \to B$ is called an ε -multiplicative if for all $x, y \in A$,

$$\|\varphi(xy) - \varphi(x)\varphi(y)\| \le \varepsilon \|x\| \|y\|$$

The dual of a Banach algebra A is denoted by A^* and the set of all *n*-multiplicative (multiplicative) linear functionals on A is thus $M_{(A,n)} \cup \{0\}$ $(M_A \cup \{0\})$.

For each $\varphi \in A^*$, define

$$d(\varphi) = \inf\{\|\varphi - \psi\| : \psi \in M_A \cup \{0\}\}.$$

An algebra A is called an algebra in which approximately multiplicative linear functionals are near multiplicative linear functionals, or A is AMNM for short, if for every $\varepsilon > 0$, there exists $\delta > 0$ such that $d(\varphi) < \varepsilon$, where φ is a δ -multiplicative linear functional. The notion of AMNM algebras was first introduced by Johnson and some significant properties of this algebras were discussed in [1].

Let A and B be normed algebras and let $\varphi : A \to B$ be a linear map. We define the map $(\varphi, n)^{\vee}$ as follows:

$$(\varphi, n)^{\vee}(a_1, \cdots, a_n) = \varphi(a_1 \cdots a_n) - \varphi(a_1) \dots \varphi(a_n)$$

for all elements $a_1, \ldots, a_n \in A$ with

$$\|(\varphi, n)^{\vee}\| = \sup\{\|(\varphi, n)^{\vee}(a_1, \dots, a_n)\|: \|a_i\| \le 1, \ 1 \le i \le n\}.$$

If $\|(\varphi, n)^{\vee}\| < \varepsilon$, then we say that φ is an (ε, n) -multiplicative linear map. Clearly, every $(\varepsilon, 2)$ -multiplicative linear map is just an ε -multiplicative linear map, in the usual sense. We also say that φ is approximately *n*-multiplicative linear map, if there exists an $\varepsilon > 0$ such that φ is (ε, n) -multiplicative linear map. For some properties of approximately *n*-multiplicative linear map, one may refer to [2,3]. The following example shows that the class of approximately *n*-multiplicative linear mappings is essentially wider than the class of approximately multiplicative linear mappings.

Example 1.1. Let X be an infinite-dimensional Banach algebra and f be a linear discontinuous functional on X. Now, consider the following two sets A and B,

$$A = \left\{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} : x \in X \right\}, \qquad B = \left\{ \begin{pmatrix} 0 & 0 & x \\ y & 0 & z \\ 0 & 0 & 0 \end{pmatrix} : x, y, z \in \mathbb{C} \right\}.$$

It is easy to see that A and B are two Banach algebras with the usual matrix operations for addition, scalar multiplication and product if they are equipped with the maximum norm. Define $\varphi : A \to B$ with

$$\varphi\left(\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} 0 & 0 & f(x) \\ f(x) & 0 & f(x) \\ 0 & 0 & 0 \end{pmatrix} \qquad (x \in X).$$

Since for all $P \in A$ and $Q \in B$, $P^2 = Q^3 = 0$, then φ is a 3-homomorphism and so it is an $(\varepsilon, 3)$ -multiplicative linear map for all $\varepsilon > 0$. On the other hand, φ is not an approximately multiplicative linear map because f is an unbounded linear functional on X.

This paper is concerned with approximately *n*-multiplicative linear functionals on Banach algebras, where $n \geq 2$ is an integer. We say that A is an *n*-AMNM (algebras in which approximately *n*-multiplicative linear functionals are near *n*-multiplicative linear functionals) if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d_n(\varphi) < \varepsilon$ whenever φ is (δ, n) -multiplicative linear functional, and $d_n(\varphi) = \inf\{\|\varphi - \psi\| : \psi \in M_{(A,n)} \cup \{0\}\}$. Clearly, every 2-AMNM algebra is just an AMNM algebra, in the usual sense.

In this paper, we show that some properties of AMNM algebras are also valid for n-AMNM algebras. We prove that every (ε, n) -multiplicative linear functional φ on a Banach algebra is bounded by $1 + \varepsilon$. We also give some alternative definitions of n-AMNM and prove some theorems on the hereditary properties of n-AMNM condition. Moreover, we show that if A is a commutative separable unital Banach algebra where the Gelfand and norm topologies on $M_{(A,n)}$ are the same, then A is n-AMNM if and only if for all sequences (φ_m) in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, $\varphi \neq 0$, then $\|\varphi_m - \varphi\| \to 0$.

Furthermore, we prove that if A is a commutative separable unital Banach algebra where the Gelfand and norm topologies on M_A are the same, then A is AMNM if and only if A is n-AMNM. Finally, we give some examples of n-AMNM Banach algebras and an example of a Banach algebra which is not n-AMNM.

2. Approximately *n*-Multiplicative Linear Functionals

Throughout this section, n is an integer with $n \ge 2$. We first state and prove the following result, that will be needed later [3, 2.4].

Theorem 2.1. Let A be a normed algebra, and $p \ge 0$. If $\varphi : A \to \mathbb{C}$ satisfies $|\varphi(x_1 \cdots x_n) - \varphi(x_1) \cdots \varphi(x_n)| \le \varepsilon ||x_1||^p \cdots ||x_n||^p$ for all $x_1 \cdots x_n \in A$, then φ is n-multiplicative or there exists a constant k such that $|\varphi(x)| \le k ||x||^p$ for all $x \in A$.

Proof. Suppose that φ is not *n*-multiplicative, that is, there exist $a_1, \ldots, a_n \in A$ such that

$$\varphi(a_1 \cdots a_n) \neq \varphi(a_1) \cdots \varphi(a_n).$$

Then, for every nonzero element $x \in A$, we have

$$\begin{aligned} |\varphi(x)|^{(n-1)} |\varphi(a_{1}\cdots a_{n}) - \varphi(a_{1})\cdots \varphi(a_{n})| \\ &= |\varphi(x)^{(n-1)}\varphi(a_{1}\cdots a_{n}) - \varphi(x)^{(n-1)}\varphi(a_{1})\cdots \varphi(a_{n}) \\ &\pm \varphi(x^{(n-1)}a_{1}\cdots a_{n}) \pm \varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n})| \\ &\leq |\varphi(x)^{(n-1)}\varphi(a_{1}\cdots a_{n}) - \varphi(x^{(n-1)}a_{1}\cdots a_{n})| \\ &+ |\varphi(x^{(n-1)}a_{1}\cdots a_{n}) - \varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n})| \\ &+ |\varphi(x^{(n-1)}a_{1})\varphi(a_{2})\cdots \varphi(a_{n}) - \varphi(x)^{(n-1)}\varphi(a_{1})\cdots \varphi(a_{n})| \\ &\leq 2\varepsilon ||x||^{p(n-1)} ||a_{1}||^{p}\cdots ||a_{n}||^{p} + |\varphi(a_{2})\cdots \varphi(a_{n})|\varepsilon ||x||^{p(n-1)} ||a_{1}||^{p} \\ &= \varepsilon ||x||^{p(n-1)} ||a_{1}||^{p} [2||a_{2}||^{p}\cdots ||a_{n}||^{p} + |\varphi(a_{2})\cdots \varphi(a_{n})|]. \end{aligned}$$

Therefore, if

$$k = \left(\frac{\varepsilon \|a_1\|^p [2\|a_2\|^p \cdots \|a_n\|^p + |\varphi(a_2) \cdots \varphi(a_n)|]}{|\varphi(a_1 \cdots a_n) - \varphi(a_1) \cdots \varphi(a_n)|}\right)^{\frac{1}{(n-1)}},$$

then we have $|\varphi(x)| \leq k ||x||^p$.

Corollary 2.2. With the same hypotheses as in the theorem, if A is Banach algebra and φ is linear, then it is continuous.

Proof. If φ is *n*-multiplicative linear functional, then as in the proof of [14, Lemma 2.1] we can see that $\|\varphi\| \leq 1$. Otherwise, by Theorem 2.1, the result follows.

The following theorem has been proved by Jarosz in [12, 5.5] which shows that approximately multiplicative linear functionals are continuous.

Theorem 2.3. Let A be a Banach algebra and φ be an ε -multiplicative linear functional. Then, $\|\varphi\| \leq 1 + \varepsilon$.

Here, we extend the above theorem for (ε, n) -multiplicative linear functionals.

Theorem 2.4. Let A be a Banach algebra and φ be an (ε, n) -multiplicative linear functional. Then, $\|\varphi\| \leq 1 + \varepsilon$.

Proof. If φ is *n*-multiplicative linear functional, then as in the proof of [14, Lemma 2.1], we can see that $\|\varphi\| \leq 1$, so the result follows. Otherwise, by Corollary 2.2 φ is bounded. Assume towards a contradiction that $\|\varphi\| > 1 + \varepsilon$, then there exists $a \in A$ with $\|a\| = 1$ and $|\varphi(a)| > 1 + \varepsilon$, so $|\varphi(a)| = 1 + \varepsilon + p$ for some p > 0. By induction on m, we shall prove that

$$|\varphi(a^{n^m})| \ge 1 + \varepsilon + mp. \tag{1}$$

By the hypothesis, we have

$$|\varphi(a^n)| \ge |\varphi^n(a)| - |\varphi^n(a) - \varphi(a^n)| \ge (1 + \varepsilon + p)^n - \varepsilon \ge 1 + \varepsilon + 2p$$

so (1) is true, if m = 1. Assume that (1) is true for m. Then, we have

$$\begin{aligned} \left|\varphi(a^{n^{m+1}})\right| &\geq \left|\varphi^n\left(a^{n^m}\right)\right| - \left|\varphi\left(a^{n^{m+1}}\right) - \varphi^n\left(a^{n^m}\right)\right| \\ &\geq (1 + \varepsilon + mp)^n - \varepsilon \\ &\geq 1 + \varepsilon + (m+1)p. \end{aligned}$$

This completes the proof of (1). Also, we have

$$|\varphi(x_1\cdots x_n) - \varphi(x_1)\cdots \varphi(x_n)||\varphi(x_{n+1})| \le \varepsilon \|\varphi\| \|x_1\|\cdots \|x_{n+1}\| \qquad (2)$$

for all $x_1, \ldots, x_n, x_{n+1} \in A$. In particular, if $x_{n+1} = a^{n^m}$, then by (1) and (2) we have

$$|\varphi(x_1\cdots x_n) - \varphi(x_1)\cdots \varphi(x_n)| \le \frac{\|\varphi\|\varepsilon\|x_1\|\cdots\|x_n\|}{1+\varepsilon+mp}$$

for all $x_1, \ldots, x_n \in A$ and all $m \in \mathbb{N}$. Letting $m \to \infty$ shows that φ is n-multiplicative linear functional so this is a contradiction. \square

In the following theorem, we prove a result similar to that of [1, Proposition 3.2 for *n*-AMNM algebras, which gives us some alternative definitions of *n*-AMNM.

Proposition 2.5. Let A be a Banach algebra. Then, the following are equiva*lent:*

- (i) A is n-AMNM;
- (ii) for any sequence (φ_m) in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$, there is a sequence $(\psi_m) \text{ in } M_{(A,n)} \cup \{0\} \text{ with } \|\varphi_m - \psi_m\| \to 0;$
- (iii) for any sequence (φ_m) in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$, there is a subsequence (φ_{m_i}) and a sequence (ψ_i) in $M_{(A,n)} \cup \{0\}$ with $\|\varphi_{m_i} - \psi_i\| \to 0$; (iv) for any sequence (φ_m) in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$ and $\inf_m \|\varphi_m\| > 0$,
- there is a sequence (ψ_m) in $M_{(A,n)}$ with $\|\varphi_m \psi_m\| \to 0$.

Proof. (i) \Rightarrow (ii) Let (φ_m) be a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$. By the hypothesis, we have $d_n(\varphi_m) \to 0$. So, it is easy to see that, there exists a sequence (ψ_m) in $M_{(A,n)} \cup \{0\}$ such that $\|\varphi_m - \psi_m\| \to 0$.

(ii) \Rightarrow (iii) This is trivial.

(iii) \Rightarrow (i) Suppose (i) is not true. Then, there is $\varepsilon > 0$ such that for any $m \in \mathbb{N}$, there exists $(\frac{1}{m}, n)$ -multiplicative linear functional φ_m such that $d_n(\varphi_m) \geq \varepsilon$. By the hypothesis, there exists a subsequence (φ_{m_i}) of sequence (φ_m) such that $d_n(\varphi_{m_i}) \to 0$, so we get a contradiction.

(i) \Rightarrow (iv) This is similar to (i) \Rightarrow (ii).

(iv) \Rightarrow (iii) If there exists a subsequence (φ_{m_i}) such that $\inf_i \|\varphi_{m_i}\| > 0$, then (iv) implies (iii). Otherwise, there exists a subsequence (φ_{m_k}) such that $\|\varphi_{m_k}\| \to 0$, so the result follows.

Corollary 2.6. Every finite-dimensional Banach algebra A is n-AMNM.

Proof. Let (φ_m) be a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$. Then, by Theorem 2.4, the sequence (φ_m) is bounded and so has a convergent subsequence (φ_{m_i}) with limit ψ . Since for any $x_1, \ldots, x_n \in A$,

$$|\varphi_{m_i}(x_1\cdots x_n)-\varphi_{m_i}(x_1)\cdots \varphi_{m_i}(x_n)| \le \|(\varphi_{m_i},n)^{\vee}\|\|x_1\|\cdots\|x_n\|,$$

1911

by passing to the limit as $i \to \infty$, we see that $\psi \in M_{(A,n)} \cup \{0\}$. So, by the condition (iii) of Proposition 2.5 for $\psi_i = \psi$, the result follows.

Theorem 2.7. [1, 2.3] Let A be a Banach algebra with a bounded approximate identity (e_{α}) of bound k > 0. If $0 < \varepsilon < \frac{1}{4k^2}$ and φ is an ε -multiplicative linear functional, then either $\|\varphi\| \le 2\varepsilon k$ or $\|\varphi\| \ge \frac{1}{k} - 2\varepsilon k$.

Corollary 2.8. Let A be a Banach algebra with a bounded approximate identity of bound k. If φ is an n-character on A, then $\|\varphi\| > \frac{1}{k}$.

Proof. By the proof of [14, Lemma 2.1] and Theorem 2.7, the result follows. \Box

Theorem 2.9. Let A be a commutative Banach algebra and let J be a closed ideal in A. If J and A/J are n-AMNM, then A is n-AMNM.

Proof. If (φ_m) is a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$, then $\|(\varphi_m, n)^{\vee}|_J\| \to 0$. Now, we can assume that there exists a subsequence of (φ_m) , again denoted by (φ_m) , such that $\inf_m \|\varphi_m|_J\| > \eta$ for some $\eta > 0$ or $\|\varphi_m|_J\| \to 0$. If there is an $\eta > 0$ such that $\inf_m \|\varphi_m|_J\| > \eta$, then by the hypothesis and Proposition 2.5, there is a sequence $(\psi'_m) \subseteq M_{(J,n)}$ such that

$$\|\varphi_m|_J - \psi'_m\| \to 0.$$

Since each ψ'_m is nonzero for all $m \in \mathbb{N}$, there exists $j_m \in J$ which $\psi'_m(j_m) = 1$. We now define $\psi_m(a) = \psi'_m(aj_m^{(n-1)})$ for all $a \in A$, so that $\psi_m \in A^*$ and we also have

$$\psi_m(a_1 \cdots a_n) = \psi'_m \left(a_1 \cdots a_n j_m^{(n-1)} \right) \frac{\psi'_m (j_m^{(n-1)})^{(n-1)}}{\psi'_m (j_m^{(n-1)})^{(n-1)}}$$
$$= \frac{\psi_m(a_1) \cdots \psi_m(a_n)}{\psi'_m (j_m^{(n-1)})^{(n-1)}}$$

for all $a_1, \ldots, a_n \in A$. On the other hand, $\psi'_m \left(j_m^{(n-1)}\right)^{(n-1)} = \psi'_m \left(j_m^{(n-1)}\right)^{(n-1)} \psi'_m(j_m)$ $= \psi'_m \left(j_m^{(n-1)(n-1)} j_m\right) = \psi'_m (j_m)^{(n-1)} \psi'_m \left(j_m^{(n-1)(n-2)} j_m\right)$ $= \psi'_m \left(j_m^{(n-1)(n-2)} j_m\right) = \psi'_m \left(j_m^{(n-1)(n-3)} j_m\right)^{(n-1)} = \cdots$ $= \psi'_m \left(j_m^{(n-1)} j_m\right) = \psi'_m (j_m)^n = 1,$

therefore, ψ_m is *n*-character and so $\psi_m \in M_{(A,n)}$. By the Hahn–Banach theorem, $(\varphi_m - \psi_m)|_J$ can be extended to an element θ_m of A^* with $\|\theta_m\| = \|(\varphi_m - \psi_m)|_J\| = \|\varphi_m|_J - \psi'_m\|$, so $\|\theta_m\| \to 0$. Since

$$\|(\varphi_m - \theta_m, n)^{\vee}(a_1, \dots, a_n)\| \le (\|(\varphi_m, n)^{\vee}\| + \|\theta_m\| + \sum_{k=1}^n \binom{n}{k} \|\theta_m\|^k \|\varphi_m\|^{n-k} \|a_1\| \cdots \|a_n\|,$$

then $\|(\varphi_m - \theta_m, n)^{\vee}\| \to 0$. For all $a \in A$,

$$(\varphi_m - \theta_m)(a) = (\varphi_m - \theta_m)(aj_m^{(n-1)}) - (\varphi_m - \theta_m, n)^{\vee}(a, j_m, \dots, j_m)$$
$$= \psi_m(a) - (\varphi_m - \theta_m, n)^{\vee}(a, j_m, \dots, j_m),$$

so $\|\varphi_m - \theta_m - \psi_m\| \to 0$ and hence

$$\|\varphi_m - \psi_m\| \le \|\varphi_m - \psi_m - \theta_m\| + \|\theta_m\| \to 0,$$

thus the result follows by Proposition 2.5.

Now, consider the case where $\|\varphi_m|_J\| \to 0$. Let θ_m be an extension of $\varphi_m|_J$ to A with $\|\theta_m\| = \|\varphi_m|_J\|$. Set $\phi_m = \varphi_m - \theta_m$, then by a similar argument, $\|(\phi_m, n)^{\vee}\| \to 0$. Since $\phi_m = 0$ on J, we can consider (ϕ_m) as a sequence in $(A/J)^*$, and so, there is a sequence $(\psi_m) \subseteq M_{(A/J,n)} \cup \{0\} \subseteq$ $M_{(A,n)} \cup \{0\}$ such that $\|\phi_m - \psi_m\| \to 0$. Then

$$\|\varphi_m - \psi_m\| \le \|\varphi_m - \theta_m - \psi_m\| + \|\theta_m\| \to 0,$$

and by Proposition 2.5, the theorem is proved.

Theorem 2.10. Let A be a commutative Banach algebra and let J be a closed ideal in A. If A is n-AMNM, then J is n-AMNM. Moreover, if A is n-AMNM and J has a bounded approximate identity of bound k > 0, then A/J is n-AMNM.

Proof. Suppose that (φ_m) is a sequence in J^* with $||(\varphi_m, n)^{\vee}|| \to 0$ and $k = \inf ||\varphi_m|| > 0$. Then, there exists a sequence (j_m) in J with $||j_m|| < \frac{2}{k}$ and $\varphi_m(j_m) = 1$. Set $\phi_m(a) = \varphi_m(aj_m^{(n-1)})$ for all $a \in A$ and $m \in \mathbb{N}$. Then, $\phi_m \in A^*$ and for $a_1, \ldots, a_n \in A$ we have

$$\begin{aligned} |(\phi_m, n)^{\vee}(a_1, \cdots, a_n)| &\leq \left|\varphi_m\left(a_1 \cdots a_n j_m^{(n-1)}\right) - \varphi_m\left(a_1 \cdots a_n j_m^{2(n-1)}\right)\right| \\ &+ \left|\varphi_m\left(a_1 \cdots a_n j_m^{2(n-1)}\right) - \varphi_m\left(a_1 \cdots a_n j_m^{3(n-1)}\right)\right| \\ &+ \cdots + \left|\varphi_m\left(a_1 \cdots a_n j_m^{n(n-1)}\right) - \varphi_m\left(a_1 j_m^{(n-1)}\right) \cdots \varphi_m\left(a_n j_m^{(n-1)}\right)\right|, \end{aligned}$$

so $\|(\phi_m, n)^{\vee}\| \to 0$. By the hypothesis and Proposition 2.5, there is a sequence (ψ_m) in $M_{(A,n)} \cup \{0\}$ with $\|\phi_m - \psi_m\| \to 0$. We now have

$$|\phi_m(a) - \varphi_m(a)| = |(\varphi_m, n)^{\vee}(a, j_m, \dots, j_m)| \to 0$$

for any $a \in J$. If $\theta_m = \psi_m|_J$, then it is easy to see that, $\theta_m \in M_{(J,n)} \cup \{0\}$ and

$$\|\varphi_m - \theta_m\| \le \|\varphi_m - \phi_m\| + \|\phi_m - \theta_m\| \to 0.$$

Now, the result follows by Proposition 2.5.

For the proof of the second part of the theorem, let (φ_m) be a sequence in $(A/J)^* \subset A^*$ with $\|(\varphi_m, n)^{\vee}\| \to 0$. Then, by Proposition 2.5, there is a sequence $(\psi_m) \subset M_{(A,n)} \cup \{0\}$ such that $\|\varphi_m - \psi_m\| \to 0$. By Corollary 2.8, either $\|\psi_m|_J\| = 0$ or $\|\psi_m|_J\| \ge \frac{1}{k}$. Since $\|\varphi_m - \psi_m\| \to 0$ and $\varphi_m|_J = 0$, then $\psi_m|_J = 0$ and hence each $\psi_m \in M_{(A/J,n)} \cup \{0\}$. So, by Proposition 2.5, the result follows.

Corollary 2.11. Let A be a commutative Banach algebra and J be a closed ideal in A such that A/J is finite dimensional. Then, A is n-AMNM if and only if J is. In particular A is n-AMNM if and only if the unitization of A, A^+ is.

Proof. It is an immediate consequence of Corollary 2.6, Theorem 2.9 and Theorem 2.10. $\hfill \Box$

In the next result, $A \hat{\otimes} B$ is the completion of $A \otimes B$ in the projective tensor norm [4].

Theorem 2.12. Let A and B be commutative n-AMNM Banach algebras. Then, $A \hat{\otimes} B$ is n-AMNM.

Proof. Suppose that (φ_m) is a sequence in $(A \hat{\otimes} B)^*$ with $k = \inf_m \|\varphi_m\| > 0$ and $\|(\varphi_m, n)^{\vee}\| \to 0$. Using the canonical isometric identification between $(A \hat{\otimes} B)^*$ and the set of bounded bilinear forms on $A \times B$, there exist sequences (a_m) and (b_m) in A and B, respectively such that $\|a_m\| \|b_m\| < \frac{2}{k}$ and $\varphi_m(a_m \otimes b_m) = 1$. Now, define the functions $\theta_m : A \to \mathbb{C}$ and $\psi_m : B \to \mathbb{C}$ by

$$\theta_m(x) = \varphi_m(xa_m \otimes b_m), \ \psi_m(y) = \varphi_m(a_m^{(n-1)} \otimes yb_m^{(n-1)}), \ x \in A, \ y \in B.$$

So for any $x_1, \ldots, x_n \in A$, we have

$$\begin{aligned} |\theta_m(x_1\cdots x_n) - \theta_m(x_1)\cdots \theta_m(x_n)| &= |\varphi_m(x_1\cdots x_n a_m \otimes b_m)| \\ &- \varphi_m(x_1 a_m \otimes b_m) \cdots \varphi_m(x_n a_m \otimes b_m)| \\ &\leq |\varphi_m(x_1\cdots x_n a_m \otimes b_m)\varphi_m(a_m \otimes b_m)^{(n-1)} \\ &- \varphi_m(x_1\cdots x_n a_m^n \otimes b_m^n)| \\ &+ |\varphi_m(x_1\cdots x_n a_m^n \otimes b_m^n) \\ &- \varphi_m(x_1 a_m \otimes b_m) \cdots \varphi_m(x_n a_m \otimes b_m)|. \end{aligned}$$

Since $\|(\varphi_m, n)^{\vee}\| \to 0$, then $\|(\theta_m, n)^{\vee}\| \longrightarrow 0$. By the hypothesis and Proposition 2.5 there is a sequence $(\hat{\theta}_m)$ in $M_{(A,n)} \cup \{0\}$ with $\|\theta_m - \hat{\theta}_m\| \longrightarrow 0$. Also for any $y_1, \ldots, y_n \in B$, we have

$$\begin{aligned} |\psi_m(y_1\cdots y_n) - \psi_m(y_1)\cdots \psi_m(y_n)| &= \left|\varphi_m\left(a_m^{(n-1)}\otimes y_1\cdots y_n b_m^{(n-1)}\right)\right. \\ &-\varphi_m\left(a_m^{(n-1)}\otimes y_1 b_m^{(n-1)}\right)\cdots \varphi_m\left(a_m^{(n-1)}\otimes y_n b_m^{(n-1)}\right)\right| \\ &\leq \left|\varphi_m\left(a_m^{(n-1)}\otimes y_1\cdots y_n b_m^{(n-1)}\right)\varphi_m(a_m\otimes b_m)^{(n-1)}\right. \\ &-\varphi_m\left(a_m^{2(n-1)}\otimes y_1\cdots y_n b_m^{2(n-1)}\right)\right| \\ &+ \left|\varphi_m\left(a_m^{2(n-1)}\otimes y_1\cdots y_n b_m^{3(n-1)}\right)\varphi_m(a_m\otimes b_m)^{(n-1)}\right. \\ &-\varphi_m\left(a_m^{3(n-1)}\otimes y_1\cdots y_n b_m^{3(n-1)}\right)\right| \\ &\vdots \\ &+ \left|\varphi_m\left(a_m^{n(n-1)}\otimes y_1\cdots y_n b_m^{n(n-1)}\right)\right. \end{aligned}$$

$$-\varphi_m\left(a_m^{(n-1)}\otimes y_1b_m^{(n-1)}\right)\cdots$$
$$\varphi_m\left(a_m^{(n-1)}\otimes y_nb_m^{(n-1)}\right)\Big|,$$

therefore, $\|(\psi_m, n)^{\vee}\| \longrightarrow 0$. By the hypothesis and Proposition 2.5, there is a sequence (ψ'_m) in $M_{(B,n)} \cup \{0\}$ with $\|\psi_m - \psi'_m\| \longrightarrow 0$. Now, consider the function $\phi_m : A \hat{\otimes} B \to \mathbb{C}$ defined by $\phi_m(x \otimes y) = \hat{\theta}_m(x) \hat{\psi}_m(y)$ for every $x \otimes y \in A \otimes B$. It is easy to see that $\phi_m \in M_{(A \hat{\otimes} B, n)} \cup \{0\}$. On the other hand, we have

$$\begin{aligned} |\varphi_m(x \otimes y) - \phi_m(x \otimes y)| &\leq \left|\varphi_m(x \otimes y)\varphi_m(a_m \otimes b_m)^{(n-1)} \right. \\ \left. -\varphi_m\left(xa_m^{(n-1)} \otimes yb_m^{(n-1)}\right)\right| \\ &+ \left|\varphi_m\left(xa_m^{(n-1)} \otimes yb_m^{(n-1)}\right)\varphi_m(a_m \otimes b_m)^{(n-1)} \right. \\ \left. -\varphi_m\left(xa_m^{2(n-1)} \otimes yb_m^{2(n-1)}\right)\right| \\ &+ \left|\varphi_m\left(xa_m^{2(n-1)} \otimes yb_m^{2(n-1)}\right)\right| \\ &+ \left|\varphi_m\left(xa_m^{2(n-1)} \otimes yb_m^{2(n-1)}\right)\right| \\ &+ \left|\theta_m(x)\psi_m(y) - \phi_m(x \otimes y)\right|. \end{aligned}$$

Since for any $x \in A$, $y \in B$, $|\theta_m(x)\psi_m(y) - \phi_m(x \otimes y)| \longrightarrow 0$, then $\|\varphi_m - \phi_m\| \longrightarrow 0$ and so by Proposition 2.5, the result follows. \Box

Theorem 2.13. Let B be a unital commutative Banach algebra and let A be a commutative Banach algebra. If $A \otimes B$ is n-AMNM, then A is n-AMNM.

Proof. Let (φ_m) be a sequence in A^* with $k = \inf_m \|\varphi_m\| > 0$ and $\|(\varphi_m, n)^{\vee}\| \to 0$. Now, by the universal property of projective tensor product, we define $\phi_m \in (A \hat{\otimes} B)^*$ by $\phi_m(a \otimes b) = \varphi_m(a)\psi(b)$, where $\psi \in M_B$. It is easy to see that $\|(\phi_m, n)^{\vee}\| = \|(\varphi_m, n)^{\vee}\|$ and $\|\phi_m\| = \|\varphi_m\|$, so $\|\phi_m\| \ge k$. By the hypothesis and Proposition 2.5, there is a sequence (ϕ'_m) in $M_{(A \hat{\otimes} B, n)}$ with $\|\phi_m - \phi'_m\| \longrightarrow 0$. Now, consider the function $\theta_m : A \to \mathbb{C}$ defined by $\theta_m(a) = \phi'_m(a \otimes 1)$ for every $a \in A$. It is easy to see that $\theta_m \in M_{(A,n)} \cup \{0\}$ and $\|\varphi_m - \theta_m\| \le \|\phi_m - \phi'_m\|$. Therefore, $\|\varphi_m - \theta_m\| \longrightarrow 0$ and by Proposition 2.5 the result follows.

Corollary 2.14. Let A and B be unital commutative Banach algebras. If $A \otimes B$ is n-AMNM, then A and B are n-AMNM.

Proposition 2.15. Let A be a unital AMNM Banach algebra and n > 2be an integer. Then, for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any (δ, n) -multiplicative linear functional φ , either $d(\varphi) < \varepsilon$ or $d(\varphi(1)^{n-2}\varphi) < \varepsilon$.

Proof. Suppose that $\varepsilon > 0$. Then, by the hypothesis there exists a $\gamma > 0$ such that for any γ -multiplicative linear functional θ , $d(\theta) < \varepsilon$. Set $\delta = \min\{1, \frac{\gamma}{2^n}, \varepsilon\}$, and let φ be a (δ, n) -multiplicative linear functional. If $\varphi(1) = 0$, then it is easy to see that $\|\varphi\| \leq \delta \leq \varepsilon$ and so $d(\varphi) < \varepsilon$. Otherwise, we

define $\phi: A \to \mathbb{C}$ by $\phi = \varphi(1)^{n-2}\varphi$. Since $|\varphi(1) - \varphi(1)^n| < 1$ so it is easy to see that $|\varphi(1)| < 2$ and for every $a, b \in A$, we have

$$\begin{aligned} |\phi(ab) - \phi(a)\phi(b)| &= |\varphi(1)|^{n-2} |\varphi(ab) - \varphi(1)^{n-2} \varphi(a)\varphi(b)| \\ &\leq 2^{n-2} \delta \|a\| \|b\| \\ &< 2^n \delta \|a\| \|b\|. \end{aligned}$$

Hence, ϕ is a $2^n \delta$ -multiplicative linear functional and then $d(\varphi(1)^{n-2}\varphi) < \varepsilon$.

Lemma 2.16. Let A be a Banach algebra and let φ be an (ε, n) -multiplicative linear functional on A such that $\varphi(a) = 1$. If $\psi : A \to \mathbb{C}$ is defined by $\psi(x) = \varphi(ax)$, then ψ is approximately multiplicative linear functional.

Proof. By the hypothesis for every $x, y \in A$, we have

$$\begin{split} |\psi(xy) - \psi(x)\psi(y)| &= |\varphi(axy) - \varphi(ax)\varphi(ay)| \\ &= |\varphi(axy) \pm \varphi(a^{n-1}xya) \pm \varphi(ax)\varphi(ya) \pm \varphi(axaya^{n-2})| \\ &\leq |\varphi(a)^{n-2}\varphi(axy)\varphi(a) - \varphi(a^{n-1}xya)| \\ &+ |\varphi(a^{n-1}xya) - \varphi(a)^{n-2}\varphi(ax)\varphi(ya)| \\ &+ |\varphi(ax)\varphi(a)\varphi(ya)\varphi(a)^{n-3} - \varphi(axaya^{n-2})| \\ &+ |\varphi(axaya^{n-2}) - \varphi(ax)\varphi(ay)\varphi(a)^{n-2}| \\ &\leq 4\varepsilon \|a\|^n \|x\| \|y\|. \end{split}$$

Therefore, ψ is 4 δ -multiplicative linear functional, such that $\delta = 4\varepsilon ||a||^n$.

Theorem 2.17. Let X be a locally compact Hausdorff space and n > 2 be an integer. Then, for every $\varepsilon > 0$, there exists $\delta > 0$ such that for any (δ, n) -multiplicative linear functional φ on $C_0(X)$, either $d(\varphi) < \varepsilon$ or there exists $f_0 \in C_0(X)$ with $\varphi(f_0) \neq 0$ and $d(\psi) < \varepsilon$, where $\psi(f) = \varphi(f_0 f)$ for all $f \in C_0(X)$.

Proof. Let $\varepsilon > 0$. By [1, Theorem 4.1] there exists a $\gamma > 0$ such that for any γ -multiplicative linear functional θ , $d(\theta) < \varepsilon$. Suppose that $(e_{\alpha})_{\alpha \in \wedge}$ is an approximate identity for $C_0(X)$ with $||e_{\alpha}|| \leq 1$, $\delta = \min\{\varepsilon, \frac{\gamma}{4}\}$ and φ is a (δ, n) -multiplicative linear functional on $C_0(X)$. Since φ is a (δ, n) multiplicative linear functional, we have

$$|\varphi(fe_{\alpha}^{n-1}) - \varphi(f)\varphi(e_{\alpha})^{n-1}| \le \delta ||f|| \quad f \in C_0(X).$$

If for all $\alpha \in \wedge$, $\varphi(e_{\alpha}) = 0$, then it is easy to see that $\|\varphi\| \leq \delta$ and so $d(\varphi) < \varepsilon$. If there exists $\alpha_0 \in \wedge$ such that $\varphi(e_{\alpha_0}) \neq 0$, then we define $\psi : C_0(X) \to \mathbb{C}$ by $\psi(f) = \varphi(e_{\alpha_0}f)$. By Lemma 2.16, ψ is 4 δ -multiplicative linear functional and so $d(\psi) < \varepsilon$.

The following theorem has been proved by Howey in [8, Theorem 3.1].

Theorem 2.18. Let A be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on M_A . Then, A is AMNM if and only if for all sequences (φ_m) in A^* with $\|(\varphi_m, 2)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, $\varphi \neq 0$, then $\|\varphi_m - \varphi\| \to 0$. **Lemma 2.19.** Let A be a commutative unital Banach algebra. Then, the Gelfand and norm topologies coincide on M_A if and only if they are the same on $M_{(A,n)}$.

Proof. Let (φ_m) be a sequence in $M_{(A,n)}$ weak^{*} converges to φ in $M_{(A,n)}$. Then, (φ_m) is bounded and $\varphi_m(1) \to \varphi(1)$. Define $\phi_m, \phi : A \to \mathbb{C}$ by $\phi_m = \varphi_m(1)^{n-2}\varphi_m$ and $\phi = \varphi(1)^{n-2}\varphi$. By [7, Theorem 2.2] $\phi_m, \phi \in M_A$ for each $m \in \mathbb{N}$. Now by the hypothesis, we have $\phi_m \to \phi$ in the weak^{*} topology, and hence $\|\phi_m - \phi\| \to 0$. Since $\varphi_m = \varphi_m(1)\phi_m$ and $\varphi = \varphi(1)\phi$, then $\|\varphi_m - \varphi\| \to 0$, so the result follows.

The following theorem is an extension of Theorem 2.18 for n > 2.

Theorem 2.20. Let A be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on M_A . Then, A is n-AMNM if and only if for all sequences (φ_m) in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, $\varphi \neq 0$, then $\|\varphi_m - \varphi\| \to 0$.

Proof. By Lemma 2.19 and a modification of the proof of Theorem 2.18 the result follows. \Box

Theorem 2.21. Let A be a commutative separable unital Banach algebra where the Gelfand and norm topologies coincide on M_A . Then, A is AMNM if and only if A is n-AMNM.

Proof. Suppose that A is AMNM, (φ_m) is a sequence in A^* with $\|(\varphi_m, n)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the weak^{*} topology, where φ is a nonzero element of A^* . Then, φ is n-character so by the proof of [14, Lemma 2.1] we can see that $|\varphi(1)| = \| \varphi \| = 1$. Since $\varphi_m(1) \to \varphi(1)$, there exists $M \in \mathbb{N}$ such that $|\varphi_m(1)| > \frac{1}{2}$ for each $m \ge M$. Now define $\phi_m, \phi : A \to \mathbb{C}$ for all $m \ge M$ by $\phi_m = \varphi_m / \varphi_m(1)$ and $\phi = \varphi / \varphi(1)$. By Lemma 2.19, for all $x, y \in A$, we have

$$\left|\frac{\varphi_m(xy)}{\varphi_m(1)} - \frac{\varphi_m(x)\varphi_m(y)}{\varphi_m(1)^2}\right| \le \frac{4}{|\varphi_m(1)|^n} \|(\varphi_m, n)^{\vee}\| \|x\| \|y\|,$$

then $||(\phi_m, 2)^{\vee}|| \to 0$, and for all $x \in A$,

$$\left|\frac{\varphi_m(x)}{\varphi_m(1)} - \frac{\varphi(x)}{\varphi(1)}\right| \le \frac{|\varphi_m(x)||\varphi(1) - \varphi_m(1)| + |\varphi_m(1)||\varphi_m(x) - \varphi(x)|}{|\varphi_m(1)||\varphi(1)|}$$

so $\phi_m \to \phi$ in the *weak*^{*} topology. Now by the hypothesis, we have $\|\phi_m - \phi\| \to 0$ and thus it is easy to see that $\|\varphi_m - \varphi\| \to 0$. Then by Theorem 2.20 A is *n*-AMNM. Conversely, let (φ_m) be a sequence in A^* with $\|(\varphi_m, 2)^{\vee}\| \to 0$ and $\varphi_m \to \varphi$ in the *weak*^{*} topology, where φ is a nonzero element of A^* . It is easy to see that $\|(\varphi_m, n)^{\vee}\| \to 0$ and by the hypothesis, we have $\|\varphi_m - \varphi\| \to 0$. Then, by Theorem 2.18, A is AMNM.

Remark 2.22. Howey in [8] proved that the Gelfand and norm topologies are the same on $M(c^N[0,1]^M)$ where $c^N[0,1]^M$ is the algebra of complex-valued functions defined on $[0,1]^M$ with all Nth order partial derivatives continuous. In fact, he proved that it is AMNM and so by Theorem 2.21, it is n-AMNM.

Example 2.23. Let $L^1 = L^1(\mathbb{Z})$ be the space of all functions $f : \mathbb{Z} \to \mathbb{C}$ such that $||f|| = \sum_{k \in \mathbb{Z}} |f(k)| < \infty$. Clearly, L^1 is a separable commutative unital Banach algebra with usual convolution. Johnson in [1, Theorem 5.2] proved that L^1 is AMNM. It is easy to see that the character space of L^1 is homeomorphic to $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Also, let z_m converges to z_0 in the weak* topology of \mathbb{T} (that is in the standard topology of \mathbb{T}) and let \mathcal{P} be the set of all polynomials of z and z^{-1} . For any f with norm 1 take p in \mathcal{P} close to f, then z_m at p is close to z_0 at p for large m, so it is convergent in norm. Therefore, the Gelfand and norm topologies are the same on $\mathbb{T} = M_{L^1}$. Now by Theorem 2.21, L^1 is n-AMNM.

Johnson [1] gave the following example to show that not all the classical commutative Banach algebras are AMNM. We show that the Banach algebra obtained in this example is not n-AMNM.

Example 2.24. For each positive integer m, let A_m be the algebra \mathbb{C}^m with multiplication $(ab)_j = a_j b_j$. The standard basis of A_m will be denoted by e_1, \ldots, e_m and the unit by 1_m . We set $S_m = \{0, e_1, \ldots, e_m, 1_m\}$ and let U_m be the absolutely convex cover of S_m , that is,

$$U_m = \left\{ \sum_{i=1}^{k-1} \lambda_i e_i + \lambda_k \mathbf{1}_m : \sum_{i=1}^k |\lambda_i| \le 1 \ , \ k \in N \right\}.$$

We take the norm on A_m for which the unit ball is U_m . As S_m is closed under multiplication so is U_m and A_m is a Banach algebra. We define A to be the set of all sequences (a_j) with $a_j \in A_j$ and $||a|| = (\sum ||a_j||^2)^{\frac{1}{2}} < \infty$. Then, A is a Banach algebra. Let $f_m \in A_m^*$ such that $f_m(e_j) = \frac{1}{m}$ for all $j = 1, \ldots, m$, and p_m be the projection of A to A_m and $g_m = p_m^* f_m$. We show that $||(g_m, n)^{\vee}|| \leq \frac{1}{m}$. For all $x_1, \ldots, x_n \in S_m$, we have

$$f_m(x_1 \dots x_n) - f_m(x_1) \dots f_m(x_n) = \begin{cases} 0 & \text{if } x_1 = \dots = x_n = 1_m \text{ or } \exists x_j = 0, \\ -\frac{1}{m^{n-r}} & \text{if } x_{k_1} = \dots = x_{k_r} = 1_m \text{ and } \exists i, j, \ x_{n_i} \neq x_{n_j}, \\ \frac{1}{m} - \frac{1}{m^{n-r}} & \text{if } x_{k_1} = \dots = x_{k_r} = 1_m \text{ and } \exists i, \ x_{k_{r+1}} = \dots = x_{k_n} = e_i. \end{cases}$$

Thus, for all $x_1, \ldots, x_n \in S_m$, $|f_m(x_1, \ldots, x_n) - f_m(x_1) \ldots f_m(x_n)| \leq \frac{1}{m}$ and so, as U_m is the absolutely convex cover of S_m , we get the same inequality for all $x_1, \ldots, x_n \in U_m$, showing that $||(f_m, n)^{\vee}|| \leq \frac{1}{m}$. Since p_m is a norm decreasing algebra homomorphism, we get $(g_m, n)^{\vee}(x_1, \ldots, x_n) =$ $(f_m, n)^{\vee}(p(x_1), \ldots, p(x_n))$. Therefore, $||(g_m, n)^{\vee}|| \leq \frac{1}{m}$. Let $\phi \in M_{(A,n)} \cup \{0\}$. If $\phi(1_m) = 0$, then

$$\|\phi - g_m\| \ge |\phi(1_m) - g(1_m)| = 1,$$

because $||1_m|| \leq 1$ and $g_m(1_m) = 1$. If $\phi(1_m) \neq 0$, then $\psi_m = \phi_{|A_m} \in M_{(A_m,n)}$. Hence, there exists $0 \leq \theta \leq 2\pi$ such that $\psi_m(1_m) = \cos \theta + i \sin \theta$. Define $\phi_m : A_m \to \mathbb{C}$ by $\phi_m = \psi_m(1)^{n-2}\psi_m$. Then, by [7, Theorem 2.2], $\phi_m \in M_A$ and $\psi_m = \psi_m(1_m)\phi_m$. Since ϕ_m is a character on A_m , we have it is of the form $x \mapsto x_k$ for some $k \in \{1, \ldots, m\}$. Therefore, $\psi_m(e_k) = \psi_m(1_m)\phi_m(e_k) = \psi_m(1_m) = \cos \theta + i \sin \theta$. We have

$$||f_m - \psi_m|| \ge |f_m(e_k) - \psi_m(e_k)| = \sqrt{1 + \frac{1}{m^2} - \frac{2}{m}\cos\theta} \ge 1 - \frac{1}{m},$$

thus

$$||g_m - \phi|| \ge ||(g_m - \phi)|_{A_m}| = ||f_m - \psi_m|| \ge 1 - \frac{1}{m}$$

So by Proposition 2.5 A is not n-AMNM.

Acknowledgments

The authors would like to thank Professor Krzysztof Jarosz for providing Example 2.23.

References

- Johnson, B.E.: Approximately multiplicative functionals. J. Lond. Math. Soc. 2(34), 489–510 (1986)
- [2] Ansari-piri, E., Eghbali, N.: Almost n-multiplicative maps. Afr. J. Math. Comput. Sci. Res. 5(12), 200–203 (2012)
- [3] Ansari-piri, E., Shayanpour, H., Heidarpour, Z.: A class of certain properties of almost *n*-multiplicative maps on normed algebras (2015, submitted)
- [4] Bonsall, F., Duncan, J.: Complete Normed Algebras. Springer, New York (1973)
- [5] Bračič, J., Moslehian, S.: On automatic continuity of 3-homomorphisms on Banach algebras. Bull. Malays. Math. Sci. Soc. (2) 30(2), 195–200 (2007)
- [6] Dales, H.G.: Banach Algebras and Automatic Continuity, London Mathematical, Society Monograph, vol. 24. Clarendon Press, Oxford (2000)
- [7] Hejazian, M., Mirzavaziri, M., Moslehian, M.S.: n-Homomorphisms. Bull. Iranian Math. Soc. 31(1), 13–23 (2005)
- [8] Howey, R.A.J.: Approximately multiplicative functionals on algebras of smooth functions. J. Lond. Math. Soc. (2) 68, 739–752 (2003)
- [9] Honary, T.G., Shayanpour, H.: Automatic continuity of n-homomorphisms between Banach algebras. Quaest. Math. 33(2), 189–196 (2010)
- [10] Honary, T.G., Shayanpour, H.: Automatic continuity of n-homomorphisms between topological algebras. Bull. Aust. Math. Soc. 83(3), 389–400 (2011)
- [11] Honary, T.G., Najafi Tavani, M., Shayanpour, H.: Automatic continuity of n-homomorphisms between Fréchet algebras. Quaest. Math. 34(2), 265–274 (2011)
- [12] Jarosz, K.: Perturbations of Banach algebras, Lecture Notes in Mathematics, vol. 1120. Springer, Berlin (1985)
- [13] Park, E., Trout, J.: On the nonexistence of nontrivial involutive nhomomorphisms of C*-algebras. Trans. Am. Math. Soc. 361, 1949–1961 (2009)
- [14] Shayanpour, H., Honary, T.G., Hashemi, M.S.: Certain properties of n-characters and n-homomorphisms on topological algebras. Bull. Malays. Math. Sci. Soc. (2015). doi:10.1007/s40840-014-0062-4

H. Shayanpour Faculty of Mathematical Sciences Department of Pure Mathematics University of Shahrekord P. O. Box 88186-34141 Shahrekord, Iran e-mail: h.shayanpour@sci.sku.ac.ir

E. Ansari-Piri Faculty of Mathematical Science University of Guilan Rasht, Iran e-mail: eansaripiri@gmail.com

Z. Heidarpour Payame Noor University Tehran, Iran e-mail: heidarpor86@yahoo.com

A. Zohri Payame Noor University Tehran, Iran e-mail: alizohri@gmail.com

Received: January 27, 2015. Revised: April 16, 2015. Accepted: April 19, 2015.