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1. Introduction

The natural exponential families (NEFs) represent a very important class
of distributions in probability and statistical theory. In the last decades, it
has drawn considerable attention of researchers and numerous works have
been realized on their different aspects. For example, several characteristic
properties of this class of distributions have been established (see Brown [4]
and Louati [17]) and many classifications of the NEFs according to the form
of their variance functions have been realized (see, for instance, Letac and
Mora [15]).

The importance of the variance function can be explained as follows:
on the one hand, it is a function of the mean, and on the other hand, it
characterizes the family F' within the class of all NEFs (see Tweedie [23]).
Furthermore, for many common NEFSs, the variance function takes a very
simple form (see Kokonendji and Masmoudi [13,14]).

An interesting class of NEFs is so called the stable one introduced by
Paul Lévy in 1924. It is a rich class of probability distributions which has
several mathematical properties. The stable distributions play a constantly
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increasing role. They are particularly important in probability because of
their role as a natural generalization of the normal distribution and also in
the practical work of the statisticians in the analysis of data in several ar-
eas of applications. That is why, several monographs have focused on stable
models and have described the basic properties of the stable distributions,
with an emphasis on practical applications. This class of probability distrib-
utions can be especially used as a model of different kinds of financial data.
In fact, it is considered as a class of Lévy processes with stable distributions
and used in financial applications: stock exchange, variation of stock mar-
ket, financial returns, etc. (see Feller [6], McCulloch [18], Nolan [20,21] and
Zolotarev [25]). Recently, Seshadri [22] gave a complete description of the
class of univariate stable families, and Hassairi and Louati [10] characterized
the multivariate stable exponential families by a homogeneous property of
the variance function.

In 1997, Barndorfl-Nielsen [2] defined the normal inverse Gaussian dis-
tribution by taking a random vector (Y1,Y) on ]0, +0o[xR?~! such that Y;
is an inverse Gaussian distributed, and the conditional distribution of Y,
given Y; = y1, is a centred normal random vector on R%~! with a variance—
covariance matrix y; I4_1, where I;_; denotes the identity matrix of R4 Tt
follows that the random vector Y is a normal inverse Gaussian distributed.
Many papers have used this distribution to determine a Lévy process, which
is representable through subordination of Brownian motion by the inverse
Gaussian process. Some of them applied this Lévy process in a stochastic
volatility modelling (see Barndorff-Nielsen [2]) and used it to construct a
market model for financial assets (see Jonsson et al. [12]).

Motivated by the definition of normal inverse Gaussian distribution
given by Barndorff-Nielsen [2], in the present paper, we introduce a class of
distributions called the class of normal a-stable distributions with « €]0, 1.
This class represents an extension of the inverse Gaussian one (o = 3)
from taking the random vector (Y7,Y) on |0, +oo[xR9~1 with distribution
la,3 such that Y7 is drifted a-stable distributed with Laplace transform
Ly, ,(s) =e'=(=89" "and the conditional distribution of Y, given Y; = y1,
is a centred normal random vector on R?~! with a variance-covariance matrix
y114_1. Hence, the distribution Ho g of Y is called normal a-stable distribu-
tion. In this work, we explicit the expression of the variance functions of the
NEF's generated respectively by pq g and [, g. Since the distribution p,, g of
(Y1,Y) and the normal a-stable distribution of Y are infinitely divisible, we
determine their associated Lévy measures.

This paper is structured as follows. After recalling some properties of
the NEFs and defining the normal a-stable distribution in Sect. 2, we deter-
mine the variance function of the NEF generated by the distribution 14 g and
the variance function of the NEF generated by the normal a-stable distribu-
tion in Sect. 3. In Sect. 4, we use the Lévy—Khintchine representation of the
distribution p, s and the normal a-stable distribution 7z, 4 to determine the
Lévy measures of these distributions. Our work will be illustrated by some
examples immediately followed by a conclusion.
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2. Natural Exponential Families and Normal «-Stable
Random Vector

2.1. Natural Exponential Families on R¢

To clarify the results of this paper, we need to introduce some basic notations

and definitions. Our notations are the ones used by Letac and Mora [15].
Let u be a positive random measure on R?. We denote its Laplace

transform by

£0) = [ e u(ao)

where (0, x) is the ordinary scalar product on R%. Moreover, the set ©(p) is
defined by

O(p) = interior{# € R%; L, (0) < co}.

The set M(R?) is now defined as the set of positive measures y such that p
is not concentrated on an affine hyperplane and O(u) is not empty. For each
€ M(RY) and 6 € ©(u), we define the cumulant function of u by

ku(0) =1In(L(9)) -
The probability set
F = F(u) = {P(0, p)(dz) = e * O p(dz); 6 € O}

is called the NEF generated by pu.
It is well known that the mean of P(6, u) is

K.(0) = /R PO, 1)(de). (2.1)

The first derivative k;, defines a diffeomorphism between ©(u) and its image
Mp ), called the domain of the means of F'(x), and we denote its inverse
function by v, Mp(,) — O(u).

The covariance operator k() of P(0, ;1) is symmetric positive definite.
It is given by

k,(0) = /]Rd x@aP(0,p)(dr) - k,(0) @ k,(6),

where, for all vectors u and v in R?, (z @ x)(u,v) = (z,u)(x,v).

The map defined on Mp(,) by m +—— Vp(,)(m) = kj/(1,(m)) is called
the variance function of the NEF F'(u1). The importance of this function stems
from the fact that it characterizes the family F'(u).

Finally, the set

A(p) = {X > 0; 3 py such that k,, (0) = Ak, (0),V0 € ©(ur) = O(u)}

is called the Jorgensen set of p and the probability measure p) is its Ath
power of convolution. The measure p is infinitely divisible, if the set A(u)
is equal to ]0, +o00[ (see Seshadri [22, p. 155]). Recall that if a measure p is
infinitely divisible on R?, then it satisfies the Lévy-Khintchine representation

ky(0) =%+ / @ ze'®Py(dzx),
R4\ {0}
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where 3 is a symmetric positive matrix and the measure v satisfies the condi-
tion fRd\{o} min(1, ||z]|?)v(dz) < +oo. The measure v is called Lévy measure.
It is important to notice that Seshadri has given, in one dimension, the Lévy
measure associated to the class of stable distributions (see Seshadri [22, p.
163]).

In what follows, we denote by (ey,...,eq) an orthonormal basis of R?
and each element z of R? is represented as x = (r1,7) € R x R47L.

2.2. Normal «-Stable Random Vector

Let « be an element of ]0,2]. A random variable X on R is a-stable if, for
each n > 2, there exist f,, € R and n independent copies X1, Xo,..., X, of
X, such that
X1+ X4+ X, =X + f,, (2.2)

where =% denotes the equality in distribution. Moreover, X is strictly stable
if (2.2) holds with f,, = 0. Note that the case a = 2 corresponds to a Gaussian
random variable.

Let us consider « €]0,1[. A positive random variable X has a standard
positive stable distribution with index «, if there exists ¢ > 0 such that, for
all f; <0, we have

Lx(0y) = E(ehX) = ¢=o(=01)", (2.3)

We say that a random variable Z has a drifted positive stable distribution
(see Hougaard [11]), if there exists 8y < 0 such that, for all §; < —6,, we
have

Lz(0)) = E(e"1%) = e=e(=01=00)"+e(=00)% (2.4)

Remarks 2.1. 1. Note that the drifted distribution belongs to the expo-
nential family generated by the standard one. In fact, according to (2.3)
and (2.4), we can write, for all ; < —0,

LZ(GI) = eC(—OU)ae—C(—&—@o)a — eC(—9o)aLX (61 + 90)
This implies that the distribution Pz of Z is an element of the NEF
generated by Px:
Py(dz) =2 Pz Fe(=0)" py(dz).
2. The Laplace transform of a drifted positive stable random variable Z
has the following form
Lz(0y) = e~ ¢(=01700)%+c(=00)"

_comr(i-(14))

= et(lf(lfﬁel)a), for all 6, < %,
where § = —% > 0 and t = ¢(—6p)* > 0. Note that, without loss of
generality, we can take t = 1.

Let Y = (¥7,Y) be a random vector on ]0, +oc[xR?! such that V;
is a drifted a-stable random variable on ]0,+oo[ with a distribution w, g
(0 < a < 1) and the conditional distribution of Y, given Y7 = yy, is a centred
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normal random vector on R%! with a variance—covariance matrix y1lg—1,
where I;_; represents the identity matrix of order d — 1. We denote the
distribution of Y = (¥7,Y) by

fra,p(dy1, dy) = N(0,y11a-1)(dY) @ ma,5(dys ). (2.5)

Let F,, 3 = F({ta,3) be the NEF generated by pa 5. Suppose that there exists
[ > 0 such that the Laplace transform of the drifted a-stable random variable
Y1 is defined by

Ly ,(01) = e =07F0" 0 vg, < 1/ (2.6)

Next, we characterize the distribution z, 3 of the random vector Y. More
precisely, we have the following result.

Proposition 2.2. The distribution i, g of Y is called the normal a-stable

distribution on R4=Y and for all § € By_1(0,/2/03), its Laplace transform
is given by

— —(1-plEI2 )"
Lﬁ 5(9)261 (1 oz ) s
where Bg_1(0,+/2/) is the ball in R~ centred at 0, with a radius \/2/83.

Proof. Using (2.5) and (2.6), we get, for all 6 € {(01,0) € R x R¥"!; 6, +
5= <1/,

Ly, ,(0)

|
=

(e<9,Y)) _ E( 91Y1+<§,7))

+
| [ et RNt (d) @ o sldn)
0 Rd-1

+oo _
/ e (/ <0’y>N(anlfd1)(dZ/)) Ta,3(dy1)
0 Rd 1

Foo v 1912
/ 61y1 ) Wa,ﬁ(dyl)

+

el
=L,
(9 + 1
1—(1—5(914‘@))& (2 7)
Taking 6; = 0 in (2.7), we deduce that for all § = (0,0) such that 6 €

Ba-1(0,+/2/0), we get

I
8

Il
=)
v
)
L
@
—~
o,
<
—
—

(2.8)
O

It is important to notice that when ov = 1/2, 7 5 5 corresponds to the
normal inverse Gaussian distribution (see Barndorff-Nielsen [2]), and (2.8)
becomes
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e

Lﬁl/lﬁ(g) 2617 1-8 D)

The class of normal inverse Gaussian distributions is absolutely continuous
probability distribution that is defined as the normal variance-mean mix-
ture where the mixing density is the inverse Gaussian distribution. It is well
known that this class is infinitely divisible. In terms of processes, this dis-
tribution defines a Lévy process, which is determined through subordination
of Brownian motion by the inverse Gaussian process (see Barndorff-Nielsen

[1])-

3. Variance Function

In this section, we determine explicitly the expression of the variance func-
tion of the NEF F(fz, 5) generated by the normal a-stable distribution. The
importance of the variance function comes from the fact that it characterizes
the NEF and can be written as a function of the mean parameter m. Many
characteristic properties of classes of distributions have been established us-
ing variance function (see Hassairi and Zarai [9], Letac and Mora [15] and
Morris [19]). For this purpose, we give the expression of the Hessian of the
cumulant function of ji4 3.

Proposition 3.1. 1. The covariance operator k,/ia,ﬁ (01,0) of pap is given
by
= 1-— 2 _ _
AN S CL G EYR)
(o)
o

' (1-a (o +192))" e

where 0 is an element of ©(pia,5) = {(01,0) eRY 5 0, + @ < 1/p}.
2. The covariance operator ky 5(9) of T g 18 given by

L (@):Lji +0‘(1_—0‘)52§®§7

Ho,p 712 T—aqtd-1 a2 2—«a
(o o)
where 8 is an element of O(fi, 3) = Ba—1(0,/2/0).
Proof.
1. According to (2.7), we have, for all 6 € {(0;,0) € R?; 6, + @ < 1/p8},

Ky, »(0) =k, ,(61,0) =1— (1 - B (91 + ”92”2)>a . (3.9)

The derivatives of k,, ,(#) with respect to #; and 6§ are given by

Ok, ,(01,0) 182\
St (s ) e
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and
Ok, (61,9) _ 1#12\)* 5
Differentiating these with respect to 6, and 6, we get
82kﬂa-ﬁ (917§> — a(l B 04)62 (3 12)
e )
2
Phi,000) _ al-ap (3.13)
90,00 a2\ '
! (1-8(0+152))
and
anlJa,ﬁ (9175) o Ozﬂ Id )
2 - Fil2 l—a a—
a0 1- 6 (00 + 192)) -
a(l —a)p? s '
(1 -3 (91 + \|9|\2)>
Therefore,
- a(l —a)p? 1 [
Fi,a (01,0) = ( |)9||2 e </ 9®6)
1-8 (00 +142))

(3.15)

+ f (0 0)
(1-p (0 + 1)) " \0 de )

where 8 denotes the vector transpose of §. This implies that the covari-

ance operator kj; ﬁ(&l, 0) is equal to

a(l —a)p? _ _
(1-6(0+ H@\?))Q‘“ H0 e
+ b = la—e1®e1).

2. Using (3.9) and the fact that
kﬁa,ﬁ (5) = kﬂa,ﬁ (0,?), (316)

we deduce that, for all § € By_1(0,+/2/3), we have

_ an\ “
kua,ﬁ(o)_1—<1—@|2”> .

Differentiating this twice with respect to 0, we get the desired result 0
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Y
Remark 3.2. The random vector —— is standard normal a-stable distrib-
vap
ted. In fact, using (3.11) and (3.16 t B(—2 _ Fs0)
uted. In fact, using (3.11) and (3.16), we ge (ﬁ)—i
thermore, using (3.15), we deduce that the variance of the random variable

= 0. Fur-

Y .
Vo 18

Y k(0
o (o) = e

Next, we give the variance function of the NEF F'(u, 3) generated by
Ha,B-

Theorem 3.3. For all m = (my,m) € Mp(,, ,) =]0,00[xR*", the variance
function of F(uq ) is given by

VF(M’[,)(ml,m):aﬁ(l— )ﬁa 1m1 Trmemtmy (Ig — e ®eq). (3.17)

Proof. Since

_ Ok, ,(01,0) Ok, ,(01,0 _
K (91,9)< oo (61, 9) “aﬁfl )>m(m1,m)e}o,oo[de L

fos 061 T 0f
using (3.10), we deduce that

1012\ (mi\ T
(e 50) = (5)

and according to (3.11), we have

="
mi
Inserting this in (3.15), we get

9 _
R a2 [ omy mim 0 O

VE(ap) (M1, M) = o1 (1—a)Ba-Tm (m1m/ m®m>+m1 (0 Id_l).

(3.18)

Q

Then, the variance function of F(ua ), for all m = (mq,m) €]0, co[xR4~1
is given by

@

1 o
VE(a.s) (M) = aa=1(1 —a)fa=Tm{*m@m+my (Io —e1 @ e1).
O

Remark 3.4. Note that the case where av = 1/2 corresponds to the inverse
Gaussian family given by Hassairi [8]. In fact, let Y = (Y;,Y) be a random
vector such that Y; is an inverse Gaussian distributed and Y is a normal
inverse Gaussian distributed. Taking o« = 1/2 in (3.17), we obtain, for all
m = (my,m) €]0,00[xRI1L,

Vir(

2
#1/295)(m1,m) = Bmlm @m+mi(ly— e ®eq).



Vol. 13 (2016) Multivariate Normal a-Stable. .. 1315

This corresponds to a multivariate cubic variance function (Hassairi and
Zarai [9]).

Next, we characterize the natural exponential family F'(7, ) generated
by the normal a-stable distribution by means its variance function. More
precisely, we have the following theorem.

Theorem 3.5. For allm € Mp, ,) = R, the variance function of F(fi, 5)
is given by

Vi, ) () = E) a1 + am1 (1 = )35 T ¢(m) v m @ m,

where £(T) is the unique solution of the equation

_ ]2
(af)Tasea — g%+ M =0, Vs>0.

Before starting the proof of Theorem 3.5, we need to study and prove
the two following technical lemmas.

Lemma 3.6. Let o be an element of ]0;1[ and 3 be a strictly positive real.
Then, the function ¢ defined on ]0,+o0[ by
2

—2
o(x) = (aﬁ)ﬁac;f_11 — 2%+ LV;H (3.19)

admits a unique positive solution &(T).

Proof of Lemma 3.6. Differentiating ¢ with respect to x, we obtain, for all

x>0,
1 20 —1 a

¢ (x) = (af)T== o1 2z (3.20)
We distinguish three cases.
Case 1: a=1/2
In this case, ¢ is strictly decreasing from ]0, +oo[ to ¢(]0, +o00[) =] — o0, %2 +

2 2 2
% [. Since %4— % > 0, we deduce that ¢ admits a unique positive zero.

Case 2: 0 < v < 1/2

In this case,

20— 1\'7*
¢/(z)—0<:>a:—:c0—oz,6’<2a_2> > 0.

Using the fact that ¢ admits a unique zero x¢ in |0, +00[, limg, ¢ ¢’ () = +00
and limg,, oo @' (x) = —00, we deduce that

¢ (r) >0, VY €l0,xo|
and
¢ (x) <0, Vr€lxg,+oof.
This implies that the function ¢ is strictly increasing on 0, 29[ and strictly
decreasing on |xg, +0o[. Furthermore, since ¢(0) = M > 0, ¢(xo) > 0,
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and since hrf ¢(x) = —o0, we conclude that ¢ has a unique positive zero
Tr— 100

§(m) > xo.
Case 3: 1/2<a<1

Using (3.20), we deduce that ¢ is strictly decreasing from ]0,+oo[ to
#(]0,+c[) = R. It follows that the equation ¢(x) = 0 admits a unique
solution. 0

Lemma 3.7. For all 6 € By_1(0,+/3/2), one has

_ Ok, ,(0,0) _
Ky 5(0,0) = (a‘;l k;a,[,(9)> ;

and
k., 5(0,0) %k, 5(0,0)
_ 802 8006,
K, (0,0) = 8%k ' 0.9\ —
Ho,B ;Laﬂ( ,0) k” (9)
86,00 Fa,p

Proof of Lemma 3.7. According to (2.1), we have for all § € {(6;,0) € R x
D12
R g+ 10 <1/6)

—+oo
b 000 = [ [ P e @21)
Rd—1

It follows that for all @ = (61,0) € O(ua,5) = {(01,0) € RxRI1;
1/8},

00 = ([ [ P00 ) )

. /0+°° /Rd,l yP((61,0), ua7ﬁ)(dy17dy)> .

By setting 6; = 0 and using the fact that

P((0,0), pra5) (dyn, dy) = 79 Fras @ (dy,, dy),

we deduce that for all @ € By_1(0,+/3/2), we have

Ok, ,(0,0) oo
a5 (0,6) / / ((0.8), a5) (dy1, d7)
80 Rd—-1
Hee 0.5)—kp (@
:/ / el ® e @, 5(dys, dg)
0 Rd—l

_/Rd e PP O (a)

— k. (B). (3.22)

:u‘OLﬂ
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Inserting this in (3.21), we conclude that for all § € By_1(0,+/3/2), we have
k00 = ([ [ P80 )0, 09),
0 Rd—1
+oo .
<[ P8 e ) )
0 Rd-1
+o0 _ .
- ( [/ ylp((ow,ua,g)(dyl,dy),k;aﬁw))
0 Rd—1 ’

Ok, 0,0)
_<891,/%ﬁ(9) .

Furthermore, by differentiating (3.22) with respect to 6, we can write

kgww):/o /Rd_ly@yp((o,9)7ua,ﬁ)(dy1,dy)—k'ﬁm(a)@k’m(e)

Pl (0,0)

3 .

00
This represents the desired result. O

Now, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Using (3.10) and (3.11), we deduce that for a fixed
01 = 0 and for 0 € By_1(0,/2/83), there exist m;(0,0) €]0,+oo[ and m €
R%1, such that

Ok (0,0 a2\ 7
Mw(’):aﬁ(l—5”9|> =mi(0,0) = m1 >0,

d0,1 2
and
Ok, (0,0 a2\ - _
7“”55( )~ ap (1—5'92” ) 0 =m(0,0) =m e R
Therefore,

——n2\ a—1
m1 = af (1 — ﬁn;”z) .

2a-1 mll?
(aﬁ)ﬁmlafl —m%—i—ﬁ";nH _

Hence, m; is a positive zero of the function ¢ defined in (3.19). This, together
with Lemma 3.6, implies that

It follows that
0. (3.23)

my = &(m) (3.24)
Furthermore, by combining Lemma 3.7 with the equality (3.18), we have

k'”

o0 = Vi, (@) =mily + a7 (1-a)faTm{ "mem. (3.25)
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Inserting (3.24) in (3.25), we get for all m € R9~1
Ve (M) = E0MIay + a7 (1 - 0)f5Em) =sm@m.  (3.26)

Remark 3.8. Note that, if o = 1/2, then the solution of (3.23) is {(m) =

v/ @ + %2. In this case (3.26) becomes

_ Bl 2__ _ _
Vp(ﬁl/w,)( m) = H2|| -l-Z Id_1+5m®m , for all/m € R4 L,

Then, F'(fi, ,5) is the normal inverse Gaussian family on RI-1L.

4. Lévy Measures

In this section, we determine the Lévy measures of the distribution p,, g and
the normal a-stable distribution fz,, 5 which are infinitely divisible (see Letac
and Seshadri [16]). For this purpose, we use the Lévy—Khintchine represen-
tation (see Barndorff-Nielsen and Hubalek [3] and Burnaev [5]).

Lemma 4.1. There exists a Lévy measure v, g such that
ki ,(61,0) :/ (1,7) @ (g1, e 0Ny 5(dys, dy).
v R\ {0}

Proof. Using Proposition 3.1, we have for all § € {(6;,0) € R x R¥~1; 6, +
D112
5= </,

— all —a)p? — —
K (61,0) = ( <( |)0|2>)M(1,9)®(1,9)
1-p6(01+5
+ op > Lo —e1®er).
(o))
It follows that
elgmw k. ,(01,0) = 0. (4.27)

Furthermore, since jiq,g is infinitely divisible, and according to Lévy-—
Khintchine representation, there exist a symmetric positive matrix ¥ and
a positive measure v, g such that

k. ,(01,0) =2+ / (1, 9) ® (g1, e 0Py, g(dyy, dg).  (4.28)
o7 R4\ {0}
This, combined with (4.27), implies that
0= lim kga,ﬁ (6175) =X+ lim (yla@) ® (ylay)891y1+<§7§>

01+——0o0 01——0c0 R4\ {0}
Va,p (dyla dy)
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Since ¥ and fRd\{O} (yl R y) X (yl y) 01y1+<§ ) Va3 (dyla dy) are positive matri-
ces,

Y =0.

By inserting this in (4.28), we get the desired result. O

Next, we give the Lévy measures of 14,5 and 1z, 5. More precisely, we
have the following theorem.

Theorem 4.2. 1. The Lévy measure of jia,3 15

Ve (dys, dF) = z—fmo, plo)(dp) @ 4(1— o, B)(dy),  (4.29)

where y(1—q, B) is the real Gamma distribution with a shape parameter
1 —a >0 and a scale parameter 5 > 0.
2. The Lévy measure of fi, 5 s

_ _ af 2 =4-% - 7
7o) = L g e <ﬁ||y||2> Kiza—o (VIIFT7) ?y )
4.30

where K¥7Q(-) denotes the modified Bessel function of the third kind
with order 254 — a (see Seshadri [22, p. 27]).

Proof. 1. Using (3.12), we have

0k, ,(01,0) a(l — )82

007 (1-5 (6 + |9|2)2 -

12

“+o00
:aﬁ/ y1€y1 61+ 2 )7(1_a7ﬁ)(dy1)
0

+oo _
:045/ yrefon / 6<9’y>N(07y11d—1)(dy)>
Rd—1
x (1 = a, B)(dy1)

—+00
/ / y2efrviH (0.7 aﬁ N(0,y114-1)(dy)
Rd—1 yl
®"}/ ]- - O‘aﬂ)(dyl)

It follows that

0%k 01,0
% :/ y2691y1+< ’y>Va,ﬁ(dy1,d§), (4.31)
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where the measure v, g is given by (4.29).
Moreover, according to (3.13), we have

32]{:#&,5 (61,0) B a(l —a)p? g

06,00 (1 _5(01 R @ )2704

+oo 912
= aff /0 e )0 o, ) ()

+oo _
= 045/ e </ yew’mN(anlId—l)(dy))
Rd—1

xy(1 —a, 8)(dyy)
e 01y1+(0,5) &P af I
y17e N(0,y11a-1)(d7)
Rd—1 Y1

®7 (1= a,B)(dyy).
This implies that

) _
W = /]Rd\{o} ylﬂeelyﬁ(g@y&,ﬁ(dyhd@). (4.32)
Finally, using (3.14), we get
%ky,, ,(61,0) _ af a(l —a)p? ey
90" (1-5 (o +||@u2)) (14 (01+”5¥))2_
Cap [ o) g
—an[ e 71— @, B)(dy) o

“+oo 9112
o / e )0 a8y ()T @ 8
0

Foo 192 _
aﬂ/ o (0113 )([d—l + 310 ® 0)y(1 — o, B)(dy1)
0
+o0 1 .
aﬁ/ 76011/1 (/ y®y€<9’y>N(0aylfd1)(dy))
Rd—1

xy(l —« 6 )(dyr)
+oo ﬁ B
/ / 7@ g 0N 2EN(0, yi Iy 1)(dg)
Rd—1 W
@71 —a,B)(dyr).

Hence,

02k, (61,0 .
Méggl) B /]Rd\{o}y(@yeewlﬂg’y) Va,8(dy1, d7). (4.33)

Consequently, (4.31), (4.32) and (4.33) give
k.. ,(01,0) :/ 1,7 ® (., D+ TP L N0 1, ) dp)
R\ {0} Y1

@(1 — a, B)(dy1).



Vol. 13 (2016) Multivariate Normal a-Stable. .. 1321

2. According to Lemmas 3.7 and 4.1, we have for 6; = 0,

kga,ﬁ 0) = / ve ?€<iy> Va,ﬁ(dyl,@)~
R4\ {0}
Combined with (4.29), this gives
— 5
b0 = [ 5o CN L)) 80 - a8)(dn)
’ R4\ {0} Y1

7 - Q T T T g7 A
Z/ 7 '’V —ﬁﬂ/ —x——dy | dy
Rd—1 rp)s«2r) = Jo

_ ) af ( 2 >_d4_2
/R vy r(8)28(2r)= \ Bl
x Koa_, (V2I5I7/B) dg.

Therefore,

k%a,ﬁ (?) - /]Rd—l ye yew@yaﬁ (dy),

where the measure 7, g is defined in (4.30). This represents the desired
result. O

Finally, we illustrate the result of the previous theorem by an example.
Ezample. For a = 1/2, the Lévy measure of the distribution p;/5 5 is
given by

1 2.5 (dyn, ) = %N(O,yﬂdm(dy) ©(1/2,6)(dy)

and the Lévy measure of the normal inverse Gaussian distribution 7, /5 5 is
given by

a0 = ﬁ)@ = ( 5”3”2) " Kt (VERTETR) a.

5. Conclusion

In this paper, we have introduced a family of distributions called the multi-
variate normal a-stable family. It can be defined as the normal variance-mean
mixtures where the mixing densities are the drifted a-stable distributions. It
is important to notice that this family extends the normal inverse Gaussian
one (o = 1/2). So, as results, we have studied some important characteristic
properties of this extended class of distributions. In fact, we have character-
ized the NEF generated by the normal a-stable distribution by its variance
function which is explicitly written as a function of the mean. Furthermore,
since the normal a-stable distribution is infinitely divisible and this property
is strongly related to the Lévy measure which is important in mathemat-
ical finance and it is useful in the Ito-Lévy decomposition, we have given
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the Lévy measure associated to the normal a-stable distribution using the
Lévy—Khintchine representation.

Since the normal inverse Gaussian distribution is used as a model in
several works such as the GARECH-NIG model of Forsberg and Bollerslev
[7] and the NIG-ACD model given by Wilhelmsson [24], so we will investigate
these models (GARECH-NIG and NIG-ACD) to have the natural extension
based on the normal a-stable distribution. Furthermore, we will estimate the
parameters of this distribution using the maximum likelihood approach of
the EM type.
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