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Abstract. The normal inverse Gaussian distributions are used to in-
troduce the class of multivariate normal α-stable distributions. Some
fundamental properties of these new distributions are established. We
give the expression of the variance function of the generated natural
exponential family and we use the Lévy–Khintchine representation to
determine the associated Lévy measure. We also study the relation-
ship between these distributions and the multivariate inverse Gaussian
ones.
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1. Introduction

The natural exponential families (NEFs) represent a very important class
of distributions in probability and statistical theory. In the last decades, it
has drawn considerable attention of researchers and numerous works have
been realized on their different aspects. For example, several characteristic
properties of this class of distributions have been established (see Brown [4]
and Louati [17]) and many classifications of the NEFs according to the form
of their variance functions have been realized (see, for instance, Letac and
Mora [15]).

The importance of the variance function can be explained as follows:
on the one hand, it is a function of the mean, and on the other hand, it
characterizes the family F within the class of all NEFs (see Tweedie [23]).
Furthermore, for many common NEFs, the variance function takes a very
simple form (see Kokonendji and Masmoudi [13,14]).

An interesting class of NEFs is so called the stable one introduced by
Paul Lévy in 1924. It is a rich class of probability distributions which has
several mathematical properties. The stable distributions play a constantly
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increasing role. They are particularly important in probability because of
their role as a natural generalization of the normal distribution and also in
the practical work of the statisticians in the analysis of data in several ar-
eas of applications. That is why, several monographs have focused on stable
models and have described the basic properties of the stable distributions,
with an emphasis on practical applications. This class of probability distrib-
utions can be especially used as a model of different kinds of financial data.
In fact, it is considered as a class of Lévy processes with stable distributions
and used in financial applications: stock exchange, variation of stock mar-
ket, financial returns, etc. (see Feller [6], McCulloch [18], Nolan [20,21] and
Zolotarev [25]). Recently, Seshadri [22] gave a complete description of the
class of univariate stable families, and Hassairi and Louati [10] characterized
the multivariate stable exponential families by a homogeneous property of
the variance function.

In 1997, Barndorff-Nielsen [2] defined the normal inverse Gaussian dis-
tribution by taking a random vector (Y1, Y ) on ]0,+∞[×R

d−1 such that Y1

is an inverse Gaussian distributed, and the conditional distribution of Y ,
given Y1 = y1, is a centred normal random vector on R

d−1 with a variance–
covariance matrix y1Id−1, where Id−1 denotes the identity matrix of Rd−1. It
follows that the random vector Y is a normal inverse Gaussian distributed.
Many papers have used this distribution to determine a Lévy process, which
is representable through subordination of Brownian motion by the inverse
Gaussian process. Some of them applied this Lévy process in a stochastic
volatility modelling (see Barndorff-Nielsen [2]) and used it to construct a
market model for financial assets (see Jönsson et al. [12]).

Motivated by the definition of normal inverse Gaussian distribution
given by Barndorff-Nielsen [2], in the present paper, we introduce a class of
distributions called the class of normal α-stable distributions with α ∈]0, 1[.
This class represents an extension of the inverse Gaussian one (α = 1

2 )
from taking the random vector (Y1, Y ) on ]0,+∞[×R

d−1 with distribution
μα,β such that Y1 is drifted α-stable distributed with Laplace transform
Lπα,β

(s) = e1−(1−βs)α

, and the conditional distribution of Y , given Y1 = y1,

is a centred normal random vector on R
d−1 with a variance–covariance matrix

y1Id−1. Hence, the distribution μα,β of Y is called normal α-stable distribu-
tion. In this work, we explicit the expression of the variance functions of the
NEFs generated respectively by μα,β and μα,β . Since the distribution μα,β of
(Y1, Y ) and the normal α-stable distribution of Y are infinitely divisible, we
determine their associated Lévy measures.

This paper is structured as follows. After recalling some properties of
the NEFs and defining the normal α-stable distribution in Sect. 2, we deter-
mine the variance function of the NEF generated by the distribution μα,β and
the variance function of the NEF generated by the normal α-stable distribu-
tion in Sect. 3. In Sect. 4, we use the Lévy–Khintchine representation of the
distribution μα,β and the normal α-stable distribution μα,β to determine the
Lévy measures of these distributions. Our work will be illustrated by some
examples immediately followed by a conclusion.
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2. Natural Exponential Families and Normal α-Stable
Random Vector

2.1. Natural Exponential Families on R
d

To clarify the results of this paper, we need to introduce some basic notations
and definitions. Our notations are the ones used by Letac and Mora [15].

Let μ be a positive random measure on R
d. We denote its Laplace

transform by

Lμ(θ) =
∫
Rd

e〈θ,x〉μ(dx),

where 〈θ, x〉 is the ordinary scalar product on R
d. Moreover, the set Θ(μ) is

defined by

Θ(μ) = interior{θ ∈ R
d; Lμ(θ) < ∞}.

The set M(Rd) is now defined as the set of positive measures μ such that μ
is not concentrated on an affine hyperplane and Θ(μ) is not empty. For each
μ ∈ M(Rd) and θ ∈ Θ(μ), we define the cumulant function of μ by

kμ(θ) = ln (Lμ(θ)) .

The probability set

F = F (μ) = {P (θ, μ)(dx) = e〈θ,x〉−kμ(θ)μ(dx); θ ∈ Θ(μ)}
is called the NEF generated by μ.

It is well known that the mean of P (θ, μ) is

k′
μ(θ) =

∫
Rd

xP (θ, μ)(dx). (2.1)

The first derivative k′
μ defines a diffeomorphism between Θ(μ) and its image

MF (μ), called the domain of the means of F (μ), and we denote its inverse
function by ψμ : MF (μ) −→ Θ(μ).

The covariance operator k′′
μ(θ) of P (θ, μ) is symmetric positive definite.

It is given by

k′′
μ(θ) =

∫
Rd

x ⊗ xP (θ, μ)(dx) − k′
μ(θ) ⊗ k′

μ(θ),

where, for all vectors u and v in R
d, (x ⊗ x)(u, v) = 〈x, u〉〈x, v〉.

The map defined on MF (μ) by m �−→ VF (μ)(m) = k′′
μ(ψμ(m)) is called

the variance function of the NEF F (μ). The importance of this function stems
from the fact that it characterizes the family F (μ).
Finally, the set

Λ(μ) = {λ > 0; ∃ μλ such that kμλ
(θ) = λkμ(θ),∀θ ∈ Θ(μλ) = Θ(μ)}

is called the Jørgensen set of μ and the probability measure μλ is its λth
power of convolution. The measure μ is infinitely divisible, if the set Λ(μ)
is equal to ]0,+∞[ (see Seshadri [22, p. 155]). Recall that if a measure μ is
infinitely divisible on R

d, then it satisfies the Lévy–Khintchine representation

k′′
μ(θ) = Σ +

∫
Rd\{0}

x ⊗ xe〈θ,x〉ν(dx),
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where Σ is a symmetric positive matrix and the measure ν satisfies the condi-
tion

∫
Rd\{0} min(1, ‖x‖2)ν(dx) < +∞. The measure ν is called Lévy measure.

It is important to notice that Seshadri has given, in one dimension, the Lévy
measure associated to the class of stable distributions (see Seshadri [22, p.
163]).

In what follows, we denote by (e1, . . . , ed) an orthonormal basis of Rd

and each element x of Rd is represented as x = (x1, x) ∈ R × R
d−1.

2.2. Normal α-Stable Random Vector

Let α be an element of ]0, 2]. A random variable X on R is α-stable if, for
each n ≥ 2, there exist fn ∈ R and n independent copies X1,X2, . . . , Xn of
X, such that

X1 + X2 + · · · + Xn =d n1/αX + fn, (2.2)
where =d denotes the equality in distribution. Moreover, X is strictly stable
if (2.2) holds with fn = 0. Note that the case α = 2 corresponds to a Gaussian
random variable.

Let us consider α ∈]0, 1[. A positive random variable X has a standard
positive stable distribution with index α, if there exists c > 0 such that, for
all θ1 ≤ 0, we have

LX(θ1) = E(eθ1X) = e−c(−θ1)
α

. (2.3)

We say that a random variable Z has a drifted positive stable distribution
(see Hougaard [11]), if there exists θ0 < 0 such that, for all θ1 ≤ −θ0, we
have

LZ(θ1) = E(eθ1Z) = e−c(−θ1−θ0)
α+c(−θ0)

α

. (2.4)

Remarks 2.1. 1. Note that the drifted distribution belongs to the expo-
nential family generated by the standard one. In fact, according to (2.3)
and (2.4), we can write, for all θ1 ≤ −θ0,

LZ(θ1) = ec(−θ0)
α

e−c(−θ1−θ0)
α

= ec(−θ0)
α

LX(θ1 + θ0).

This implies that the distribution PZ of Z is an element of the NEF
generated by PX :

PZ(dz) =d eθ0z+c(−θ0)
α

PX(dz).

2. The Laplace transform of a drifted positive stable random variable Z
has the following form

LZ(θ1) = e−c(−θ1−θ0)
α+c(−θ0)

α

= e
c(−θ0)

α
(
1−

(
1+

θ1
θ0

)α)

= et(1−(1−βθ1)
α), for all θ1 <

1
β

,

where β = − 1
θ0

> 0 and t = c(−θ0)α > 0. Note that, without loss of
generality, we can take t = 1.

Let Y = (Y1, Y ) be a random vector on ]0,+∞[×R
d−1 such that Y1

is a drifted α-stable random variable on ]0,+∞[ with a distribution πα,β

(0 < α < 1) and the conditional distribution of Y , given Y1 = y1, is a centred
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normal random vector on R
d−1 with a variance–covariance matrix y1Id−1,

where Id−1 represents the identity matrix of order d − 1. We denote the
distribution of Y = (Y1, Y ) by

μα,β(dy1,dy) = N(0, y1Id−1)(dy) ⊗ πα,β(dy1). (2.5)

Let Fα,β = F (μα,β) be the NEF generated by μα,β . Suppose that there exists
β > 0 such that the Laplace transform of the drifted α-stable random variable
Y1 is defined by

Lπα,β
(θ1) = e1−(1−βθ1)

α

, ∀θ1 < 1/β. (2.6)

Next, we characterize the distribution μα,β of the random vector Y . More
precisely, we have the following result.

Proposition 2.2. The distribution μα,β of Y is called the normal α-stable
distribution on R

d−1, and for all θ ∈ Bd−1(0,
√

2/β), its Laplace transform
is given by

Lμα,β
(θ) = e

1−
(
1−β ‖θ‖2

2

)α

,

where Bd−1(0,
√

2/β) is the ball in R
d−1 centred at 0, with a radius

√
2/β.

Proof. Using (2.5) and (2.6), we get, for all θ ∈ {(θ1, θ) ∈ R × R
d−1 ; θ1 +

‖θ‖2

2 < 1/β},

Lμα,β
(θ) = E(e〈θ,Y 〉) = E(eθ1Y1+〈θ,Y 〉)

=
∫ +∞

0

∫
Rd−1

eθ1y1e〈θ,y〉N(0, y1Id−1)(dy) ⊗ πα,β(dy1)

=
∫ +∞

0

eθ1y1

(∫
Rd−1

e〈θ,y〉N(0, y1Id−1)(dy)
)

πα,β(dy1)

=
∫ +∞

0

eθ1y1e
y1‖θ‖2

2 πα,β(dy1)

=
∫ +∞

0

e
y1

(
θ1+

‖θ‖2

2

)
πα,β(dy1)

= Lπα,β

(
θ1 +

‖θ‖2
2

)

= e
1−

(
1−β

(
θ1+

‖θ‖2

2

))α

. (2.7)

Taking θ1 = 0 in (2.7), we deduce that for all θ = (0, θ) such that θ ∈
Bd−1(0,

√
2/β), we get

Lμα,β
(θ) = E

(
e〈θ,Y 〉

)
= Lμα,β

(0, θ) = e
1−

(
1−β ‖θ‖2

2

)α

. (2.8)

�

It is important to notice that when α = 1/2, μ1/2,β corresponds to the
normal inverse Gaussian distribution (see Barndorff-Nielsen [2]), and (2.8)
becomes
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Lμ1/2,β
(θ) = e1−

√
1−β ‖θ‖2

2 .

The class of normal inverse Gaussian distributions is absolutely continuous
probability distribution that is defined as the normal variance–mean mix-
ture where the mixing density is the inverse Gaussian distribution. It is well
known that this class is infinitely divisible. In terms of processes, this dis-
tribution defines a Lévy process, which is determined through subordination
of Brownian motion by the inverse Gaussian process (see Barndorff-Nielsen
[1]).

3. Variance Function

In this section, we determine explicitly the expression of the variance func-
tion of the NEF F (μα,β) generated by the normal α-stable distribution. The
importance of the variance function comes from the fact that it characterizes
the NEF and can be written as a function of the mean parameter m. Many
characteristic properties of classes of distributions have been established us-
ing variance function (see Hassairi and Zarai [9], Letac and Mora [15] and
Morris [19]). For this purpose, we give the expression of the Hessian of the
cumulant function of μα,β .

Proposition 3.1. 1. The covariance operator k′′
μα,β

(θ1, θ) of μα,β is given
by

k′′
μα,β

(θ1, θ) =
α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α (1, θ) ⊗ (1, θ)

+
αβ(

1 − β
(
θ1 + ‖θ‖2

2

))1−α (Id − e1 ⊗ e1) ,

where θ is an element of Θ(μα,β) = {(θ1, θ) ∈ R
d ; θ1 + ‖θ‖2

2 < 1/β}.
2. The covariance operator k′′

μα,β
(θ) of μα,β is given by

k′′
μα,β

(θ) =
αβ(

1 − β ‖θ‖2

2

)1−α Id−1 +
α(1 − α)β2

(
1 − β ‖θ‖2

2

)2−α θ ⊗ θ,

where θ is an element of Θ(μα,β) = Bd−1(0,
√

2/β).

Proof.

1. According to (2.7), we have, for all θ ∈ {(θ1, θ) ∈ R
d; θ1 + ‖θ‖2

2 < 1/β},

kμα,β
(θ) = kμα,β

(θ1, θ) = 1 −
(

1 − β

(
θ1 +

‖θ‖2
2

))α

. (3.9)

The derivatives of kμα,β
(θ) with respect to θ1 and θ are given by

∂kμα,β
(θ1, θ)

∂θ1
= αβ

(
1 − β

(
θ1 +

‖θ‖2
2

))α−1

, (3.10)
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and
∂kμα,β

(θ1, θ)

∂θ
= αβ

(
1 − β

(
θ1 +

‖θ‖2
2

))α−1

θ. (3.11)

Differentiating these with respect to θ1 and θ, we get

∂2kμα,β
(θ1, θ)

∂θ21
=

α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α , (3.12)

∂2kμα,β
(θ1, θ)

∂θ1∂θ
=

α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α θ, (3.13)

and

∂2kμα,β
(θ1, θ)

∂θ
2 =

αβ(
1 − β

(
θ1 + ‖θ‖2

2

))1−α Id−1

+
α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α θ ⊗ θ.

(3.14)

Therefore,

k′′
μα,β

(θ1, θ) =
α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α

(
1 θ

θ
′

θ ⊗ θ

)

+
αβ(

1 − β
(
θ1 + ‖θ‖2

2

))1−α

(
0 0
0 Id−1

)
,

(3.15)

where θ
′
denotes the vector transpose of θ. This implies that the covari-

ance operator k′′
μα,β

(θ1, θ) is equal to

α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α (1, θ) ⊗ (1, θ)

+
αβ(

1 − β
(
θ1 + ‖θ‖2

2

))1−α (Id − e1 ⊗ e1) .

2. Using (3.9) and the fact that

kμα,β
(θ) = kμα,β

(0, θ), (3.16)

we deduce that, for all θ ∈ Bd−1(0,
√

2/β), we have

kμα,β
(θ) = 1 −

(
1 − β

‖θ‖2
2

)α

.

Differentiating this twice with respect to θ, we get the desired result �
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Remark 3.2. The random vector
Y√
αβ

is standard normal α-stable distrib-

uted. In fact, using (3.11) and (3.16), we get E( Y√
αβ

) =
k′

μα,β
(0)

√
αβ

= 0. Fur-

thermore, using (3.15), we deduce that the variance of the random variable
Y√
αβ

is

Var
(

Y√
αβ

)
=

k′′
μα,β

(0)

αβ
= Id−1.

Next, we give the variance function of the NEF F (μα,β) generated by
μα,β .

Theorem 3.3. For all m = (m1,m) ∈ MF (μα,β) =]0,∞[×R
d−1, the variance

function of F (μα,β) is given by

VF (μα,β)(m1,m) = α
1

α−1 (1−α)β
α

α−1 m
α

1−α

1 m⊗m+m1 (Id − e1 ⊗ e1) . (3.17)

Proof. Since

k′
μα,β

(θ1, θ) =

(
∂kμα,β

(θ1, θ)
∂θ1

,
∂kμα,β

(θ1, θ)

∂θ

)
= m = (m1,m) ∈]0,∞[×R

d−1,

using (3.10), we deduce that

1 − β

(
θ1 +

‖θ‖2
2

)
=

(
m1

αβ

) 1
α−1

,

and according to (3.11), we have

θ =
m

m1
.

Inserting this in (3.15), we get

VF (μα,β)(m1,m) = α
1

α−1 (1−α)β
α

α−1 m
α

1−α

1

(
m2

1 m1m
m1m

′ m ⊗ m

)
+m1

(
0 0
0 Id−1

)
.

(3.18)

Then, the variance function of F (μα,β), for all m = (m1,m) ∈]0,∞[×R
d−1,

is given by

VF (μα,β)(m) = α
1

α−1 (1 − α)β
α

α−1 m
α

1−α

1 m ⊗ m + m1 (Id − e1 ⊗ e1) .

�

Remark 3.4. Note that the case where α = 1/2 corresponds to the inverse
Gaussian family given by Hassairi [8]. In fact, let Y = (Y1, Y ) be a random
vector such that Y1 is an inverse Gaussian distributed and Y is a normal
inverse Gaussian distributed. Taking α = 1/2 in (3.17), we obtain, for all
m = (m1,m) ∈]0,∞[×R

d−1,

VF (μ1/2,β)(m1,m) =
2
β

m1m ⊗ m + m1(Id − e1 ⊗ e1).
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This corresponds to a multivariate cubic variance function (Hassairi and
Zarai [9]).

Next, we characterize the natural exponential family F (μα,β) generated
by the normal α-stable distribution by means its variance function. More
precisely, we have the following theorem.

Theorem 3.5. For all m ∈ MF (μα,β)
= R

d−1, the variance function of F (μα,β)
is given by

VF (μα,β)
(m) = ξ(m)Id−1 + α

1
α−1 (1 − α)β

α
α−1 ξ(m)

α
1−α m ⊗ m,

where ξ(m) is the unique solution of the equation

(αβ)
1

1−α s
2α−1
α−1 − s2 +

β‖m‖2
2

= 0, ∀s > 0.

Before starting the proof of Theorem 3.5, we need to study and prove
the two following technical lemmas.

Lemma 3.6. Let α be an element of ]0; 1[ and β be a strictly positive real.
Then, the function φ defined on ]0,+∞[ by

φ(x) = (αβ)
1

1−α x
2α−1
α−1 − x2 +

β‖m‖2
2

(3.19)

admits a unique positive solution ξ(m).

Proof of Lemma 3.6. Differentiating φ with respect to x, we obtain, for all
x > 0,

φ′(x) = (αβ)
1

1−α
2α − 1
α − 1

x
α

α−1 − 2x. (3.20)

We distinguish three cases.

Case 1: α = 1/2

In this case, φ is strictly decreasing from ]0,+∞[ to φ(]0,+∞[) =]−∞, β2

4 +
β‖m‖2

2 [. Since β2

4 + β‖m‖2

2 > 0, we deduce that φ admits a unique positive zero.

Case 2: 0 < α < 1/2

In this case,

φ′(x) = 0 ⇔ x = x0 = αβ

(
2α − 1
2α − 2

)1−α

> 0.

Using the fact that φ′ admits a unique zero x0 in ]0,+∞[, limx�→0 φ′(x) = +∞
and limx�→+∞ φ′(x) = −∞, we deduce that

φ′(x) > 0, ∀x ∈]0, x0[

and

φ′(x) < 0, ∀x ∈]x0,+∞[.

This implies that the function φ is strictly increasing on ]0, x0[ and strictly
decreasing on ]x0,+∞[. Furthermore, since φ(0) = β‖m‖2

2 > 0, φ(x0) > 0,
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and since lim
x�→+∞ φ(x) = −∞, we conclude that φ has a unique positive zero

ξ(m) > x0.

Case 3: 1/2 < α < 1

Using (3.20), we deduce that φ is strictly decreasing from ]0,+∞[ to
φ(]0,+∞[) = R. It follows that the equation φ(x) = 0 admits a unique
solution. �

Lemma 3.7. For all θ ∈ Bd−1(0,
√

β/2), one has

k′
μα,β

(0, θ) =

(
∂kμα,β

(0, θ)
∂θ1

, k′
μα,β

(θ)

)
,

and

k′′
μα,β

(0, θ) =

⎛
⎜⎝

∂2kμα,β
(0,θ)

∂θ2
1

∂2kμα,β
(0,θ)

∂θ∂θ1(
∂2kμα,β

(0,θ)

∂θ1∂θ

)′
k′′

μα,β
(θ)

⎞
⎟⎠ .

Proof of Lemma 3.7. According to (2.1), we have for all θ ∈ {(θ1, θ) ∈ R ×
R

d−1 ; θ1 + ‖θ‖2

2 < 1/β}

k′
μα,β

(θ1, θ) =
∫ +∞

0

∫
Rd−1

(y1, y)P ((θ1, θ), μα,β)(dy1,dy) (3.21)

It follows that for all θ = (θ1, θ) ∈ Θ(μα,β) = {(θ1, θ) ∈ R×R
d−1 ; θ1+

‖θ‖2

2 <
1/β},

k′
μα,β

(θ1, θ) =
(∫ +∞

0

∫
Rd−1

y1P ((θ1, θ), μα,β)(dy1,dy),

×
∫ +∞

0

∫
Rd−1

yP ((θ1, θ), μα,β)(dy1,dy)
)

.

By setting θ1 = 0 and using the fact that

P ((0, θ), μα,β)(dy1,dy) = e〈θ,y〉−kμα,β
(θ)μα,β(dy1,dy),

we deduce that for all θ ∈ Bd−1(0,
√

β/2), we have

∂kμα,β
(0, θ)

∂θ
=

∫ +∞

0

∫
Rd−1

yP ((0, θ), μα,β)(dy1,dy)

=
∫ +∞

0

∫
Rd−1

ye〈θ,y〉−kμα,β
(θ)μα,β(dy1,dy)

=
∫
Rd−1

ye〈θ,y〉−kμα,β
(θ)μα,β(dy)

= k′
μα,β

(θ). (3.22)
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Inserting this in (3.21), we conclude that for all θ ∈ Bd−1(0,
√

β/2), we have

k′
μα,β

(0, θ) =
(∫ +∞

0

∫
Rd−1

y1P ((0, θ), μα,β)(dy1,dy),

×
∫ +∞

0

∫
Rd−1

yP ((0, θ), μα,β)(dy1,dy)
)

=
(∫ +∞

0

∫
Rd−1

y1P ((0, θ), μα,β)(dy1,dy), k′
μα,β

(θ)
)

=

(
∂kμα,β

(0, θ)
∂θ1

, k′
μα,β

(θ)

)
.

Furthermore, by differentiating (3.22) with respect to θ, we can write

k′′
μα,β

(θ) =
∫ +∞

0

∫
Rd−1

y ⊗ yP ((0, θ), μα,β)(dy1,dy) − k′
μα,β

(θ) ⊗ k′
μα,β

(θ)

=
∂2kμα,β

(0, θ)

∂θ
2 .

This represents the desired result. �

Now, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. Using (3.10) and (3.11), we deduce that for a fixed
θ1 = 0 and for θ ∈ Bd−1(0,

√
2/β), there exist m1(0, θ) ∈]0,+∞[ and m ∈

R
d−1, such that

∂kμα,β
(0, θ)

∂θ1
= αβ

(
1 − β

‖θ‖2
2

)α−1

= m1(0, θ) = m1 > 0,

and

∂kμα,β
(0, θ)

∂θ
= αβ

(
1 − β

‖θ‖2
2

)α−1

θ = m(0, θ) = m ∈ R
d−1.

Therefore,

m1 = αβ

(
1 − β

‖m‖2
2m2

1

)α−1

.

It follows that

(αβ)
1

1−α m
2α−1
α−1
1 − m2

1 +
β‖m‖2

2
= 0. (3.23)

Hence, m1 is a positive zero of the function φ defined in (3.19). This, together
with Lemma 3.6, implies that

m1 = ξ(m) (3.24)

Furthermore, by combining Lemma 3.7 with the equality (3.18), we have

k′′
μα,β

(θ) = VF (μα,β)
(m) = m1Id−1 + α

1
α−1 (1 − α)β

α
α−1 m

α
1−α

1 m ⊗ m. (3.25)
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Inserting (3.24) in (3.25), we get for all m ∈ R
d−1,

VF (μα,β)
(m) = ξ(m)Id−1 + α

1
α−1 (1 − α)β

α
α−1 ξ(m)

α
1−α m ⊗ m. (3.26)

�

Remark 3.8. Note that, if α = 1/2, then the solution of (3.23) is ξ(m) =√
β‖m‖2

2 + β2

4 . In this case (3.26) becomes

VF (μ1/2,β)
(m) =

√
β‖m‖2

2
+

β2

4

(
Id−1 +

2
β

m ⊗ m

)
, for all m ∈ R

d−1.

Then, F (μ1/2,β) is the normal inverse Gaussian family on R
d−1.

4. Lévy Measures

In this section, we determine the Lévy measures of the distribution μα,β and
the normal α-stable distribution μα,β which are infinitely divisible (see Letac
and Seshadri [16]). For this purpose, we use the Lévy–Khintchine represen-
tation (see Barndorff-Nielsen and Hubalek [3] and Burnaev [5]).

Lemma 4.1. There exists a Lévy measure να,β such that

k′′
μα,β

(θ1, θ) =
∫
Rd\{0}

(y1, y) ⊗ (y1, y)eθ1y1+〈θ,y〉να,β(dy1,dy).

Proof. Using Proposition 3.1, we have for all θ ∈ {(θ1, θ) ∈ R × R
d−1 ; θ1 +

‖θ‖2

2 < 1/β},

k′′
μα,β

(θ1, θ) =
α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α (1, θ) ⊗ (1, θ)

+
αβ(

1 − β
(
θ1 + ‖θ‖2

2

))1−α (Id − e1 ⊗ e1).

It follows that
lim

θ1 �→−∞
k′′

μα,β
(θ1, θ) = 0. (4.27)

Furthermore, since μα,β is infinitely divisible, and according to Lévy–
Khintchine representation, there exist a symmetric positive matrix Σ and
a positive measure να,β such that

k′′
μα,β

(θ1, θ) = Σ +
∫
Rd\{0}

(y1, y) ⊗ (y1, y)eθ1y1+〈θ,y〉να,β(dy1,dy). (4.28)

This, combined with (4.27), implies that

0 = lim
θ1 �→−∞

k′′
μα,β

(θ1, θ) = Σ + lim
θ1 �→−∞

∫
Rd\{0}

(y1, y) ⊗ (y1, y)eθ1y1+〈θ,y〉

να,β(dy1,dy).



Vol. 13 (2016) Multivariate Normal α-Stable. . . 1319

Since Σ and
∫
Rd\{0}(y1, y)⊗ (y1, y)eθ1y1+〈θ,y〉να,β(dy1,dy) are positive matri-

ces,

Σ = 0.

By inserting this in (4.28), we get the desired result. �

Next, we give the Lévy measures of μα,β and μα,β . More precisely, we
have the following theorem.

Theorem 4.2. 1. The Lévy measure of μα,β is

να,β(dy1,dy) =
αβ

y1
N(0, y1Id−1)(dy) ⊗ γ(1 − α, β)(dy1), (4.29)

where γ(1−α, β) is the real Gamma distribution with a shape parameter
1 − α > 0 and a scale parameter β > 0.

2. The Lévy measure of μα,β is

να,β(dy) =
αβ

Γ(β)2βα(2π)
d−1
2

(
2

β‖y‖2
) 2−d

4 − α
2

K 2−d
2 −α

(√
2‖y‖2/β

)
dy,

(4.30)
where K 2−d

2 −α(·) denotes the modified Bessel function of the third kind

with order 2−d
2 − α (see Seshadri [22, p. 27]).

Proof. 1. Using (3.12), we have

∂2kμα,β
(θ1, θ)

∂θ21
=

α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α

= αβ

∫ +∞

0

y1e
y1

(
θ1+

‖θ‖2

2

)
γ(1 − α, β)(dy1)

= αβ

∫ +∞

0

y1e
θ1y1

(∫
Rd−1

e〈θ,y〉N(0, y1Id−1)(dy)
)

× γ(1 − α, β)(dy1)

=
∫ +∞

0

∫
Rd−1

y2
1e

θ1y1+〈θ,y〉 αβ

y1
N(0, y1Id−1)(dy)

⊗ γ(1 − α, β)(dy1).

It follows that

∂2kμα,β
(θ1, θ)

∂θ21
=

∫
Rd\{0}

y2
1e

θ1y1+〈θ,y〉να,β(dy1,dy), (4.31)
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where the measure να,β is given by (4.29).
Moreover, according to (3.13), we have

∂2kμα,β
(θ1, θ)

∂θ1∂θ
=

α(1 − α)β2

(
1 − β

(
θ1 + ‖θ‖2

2

))2−α θ

= αβθ

∫ +∞

0

y1e
y1

(
θ1+

‖θ‖2

2

)
γ(1 − α, β)(dy1)

= αβ

∫ +∞

0

eθ1y1

(∫
Rd−1

ye〈θ,y〉N(0, y1Id−1)(dy)
)

×γ(1 − α, β)(dy1)

×
∫ +∞

0

∫
Rd−1

y1yeθ1y1+〈θ,y〉 αβ

y1
N(0, y1Id−1)(dy)

⊗ γ(1 − α, β)(dy1).

This implies that

∂2kμα,β
(θ1, θ)

∂θ1∂θ
=

∫
Rd\{0}

y1yeθ1y1+〈θ,y〉να,β(dy1,dy). (4.32)

Finally, using (3.14), we get

∂2kμα,β
(θ1, θ)

∂θ
2 =

αβ(
1−β

(
θ1+ ‖θ‖2

2

))1−α Id−1 +
α(1 − α)β2

(
1−β

(
θ1+ ‖θ‖2

2

))2−α θ ⊗ θ

= αβ

∫ +∞

0

e
y1

(
θ1+

‖θ‖2

2

)
γ(1 − α, β)(dy1)Id−1

+αβ

∫ +∞

0

y1e
y1

(
θ1+

‖θ‖2

2

)
γ(1 − α, β)(dy1)θ ⊗ θ

= αβ

∫ +∞

0

e
y1

(
θ1+

‖θ‖2

2

)
(Id−1 + y1θ ⊗ θ)γ(1 − α, β)(dy1)

= αβ

∫ +∞

0

1
y1

eθ1y1

(∫
Rd−1

y ⊗ ye〈θ,y〉N(0, y1Id−1)(dy)
)

× γ(1 − α, β)(dy1)

=
∫ +∞

0

∫
Rd−1

y ⊗ yeθ1y1+〈θ,y〉 αβ

y1
N(0, y1Id−1)(dy)

⊗ γ(1 − α, β)(dy1).

Hence,

∂2kμα,β
(θ1, θ)

∂θ
2 =

∫
Rd\{0}

y ⊗ yeθ1y1+〈θ,y〉να,β(dy1,dy). (4.33)

Consequently, (4.31), (4.32) and (4.33) give

k′′
μα,β

(θ1, θ) =
∫
Rd\{0}

(y1, y) ⊗ (y1, y)eθ1y1+〈y,θ〉 αβ

y1
N(0, y1Id−1)(dy)

⊗ γ(1 − α, β)(dy1).
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2. According to Lemmas 3.7 and 4.1, we have for θ1 = 0,

k′′
μα,β

(θ) =
∫
Rd\{0}

y ⊗ ye〈θ,y〉να,β(dy1, y).

Combined with (4.29), this gives

k′′
μα,β

(θ) =
∫
Rd\{0}

y ⊗ ye〈θ,y〉 αβ

y1
N(0, y1Id−1)(dy) ⊗ γ(1 − α, β)(dy1)

=
∫
Rd−1

y ⊗ ye〈θ,y〉

⎛
⎝ αβ

Γ(β)βα(2π)
d−1
2

∫ +∞

0

e− ‖y‖2

2y1 e− y1
β

y
d+1
2 +α

1

dy1

⎞
⎠ dy

=
∫
Rd−1

y ⊗ ye〈θ,y〉 αβ

Γ(β)2βα(2π)
d−1
2

(
2

β‖y‖2
)− d−2

4 − α
2

×K 2−d
2 −α

(√
2‖y‖2/β

)
dy.

Therefore,

k′′
μα,β

(θ) =
∫
Rd−1

y ⊗ ye〈θ,y〉να,β(dy),

where the measure να,β is defined in (4.30). This represents the desired
result. �

Finally, we illustrate the result of the previous theorem by an example.
Example. For α = 1/2, the Lévy measure of the distribution μ1/2,β is

given by

ν1/2,β(dy1,dy) =
β

2y1
N(0, y1Id−1)(dy) ⊗ γ(1/2, β)(dy1)

and the Lévy measure of the normal inverse Gaussian distribution μ1/2,β is
given by

ν1/2,β(dy) =
√

β

4Γ(β)(2π)
d−1
2

(
2

β‖y‖2
) 3−d

4

K 3−d
2

(√
2‖y‖2/β

)
dy.

5. Conclusion

In this paper, we have introduced a family of distributions called the multi-
variate normal α-stable family. It can be defined as the normal variance–mean
mixtures where the mixing densities are the drifted α-stable distributions. It
is important to notice that this family extends the normal inverse Gaussian
one (α = 1/2). So, as results, we have studied some important characteristic
properties of this extended class of distributions. In fact, we have character-
ized the NEF generated by the normal α-stable distribution by its variance
function which is explicitly written as a function of the mean. Furthermore,
since the normal α-stable distribution is infinitely divisible and this property
is strongly related to the Lévy measure which is important in mathemat-
ical finance and it is useful in the Ito–Lévy decomposition, we have given
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the Lévy measure associated to the normal α-stable distribution using the
Lévy–Khintchine representation.

Since the normal inverse Gaussian distribution is used as a model in
several works such as the GARECH-NIG model of Forsberg and Bollerslev
[7] and the NIG-ACD model given by Wilhelmsson [24], so we will investigate
these models (GARECH-NIG and NIG-ACD) to have the natural extension
based on the normal α-stable distribution. Furthermore, we will estimate the
parameters of this distribution using the maximum likelihood approach of
the EM type.
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