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Abstract. Consider the Banach space m of real bounded sequences, x,
with ‖x‖ = supk |xk|. A positive linear functional L on m is called an
S-limit if L(χK) = 0 for every characteristic sequence χK of sets, K, of
natural density zero. We provide regular sublinear functionals that both
generate as well as dominate S-limits. The paper also shows that the
set of S-limits and the collection of Banach limits are distinct but their
intersection is not empty. Furthermore, we show that the generalized
limits generated by translative regular methods is equal to the set of
Banach limits. Some applications are also provided.
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1. Introduction

Let m and c be the spaces of all bounded and convergent real sequences
x = (xk) normed by ‖x‖ = supn |xn|, respectively. Let B be the class of
(necessarily continuous) linear functionals β on m which are nonnegative
and regular, that is, if x ≥ 0, (i.e., xk ≥ 0 for all k ∈ N := {1, 2, . . .}) then
β(x) ≥ 0, and β(x) = limk xk, for each x ∈ c. If β has the additional property
that β(σ(x)) = β(x) for all x ∈ m, where σ is the left shift operator, defined
by σ(x1, x2, . . .) = (x2, x3, . . .) then β is called a Banach limit. The existence
of Banach limits has been shown by Banach [2,17,19], and another proof may
be found in [3]. It is well known [21] that the space of all almost convergent
sequences can be represented as the set of all x ∈ m which have the same
value under any Banach limit. In the paper, we study some generalized limits
so that the space of all bounded statistically convergent sequences can be
represented as the set of all bounded sequences which have the same value
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under any such limit. It is proved that the set of such limits and the set of
Banach limits are distinct but their intersection is not empty. The sublinear
functionals that generate or dominate these limits are also examined.

We pause to collect some notation. Let A = [ank] be an infinite sum-
mability matrix. Given a sequence x the A-transform of x, denoted as
Ax = ((Ax)n), is given by (Ax)n =

∑
k ank xk provided that the series con-

verges for each n. Let limA x := limn(Ax)n whenever the limit exists. By cA

we denote the summability domain of A, i. e., cA = {x : limA x exists} . We
say that A is regular [4,25] if limn(Ax)n = limk xk for each x ∈ c. For any
nonnegative such matrix A we define the A-density of a set K ⊆ N, denoted
as δA(K) as

δA(K) = lim
n

∑

k

ank χK(k) = lim
n

(AχK)n,

provided that the limit exists, where χK denotes the characteristic sequence
of the set K. When A is the Cesàro matrix, C1, the resulting C1-density is
called the natural density, which we will denote by δ(K). Throughout the
paper the statement δ(K) �= 0 will mean either δ(K) > 0 or that the natural
density of K does not exist.

Using a density, we say that a sequence x = (xk) is A-statistically
convergent to a number � if, for every ε > 0,

δA({k ∈ N : |xk − �| ≥ ε}) = 0.

We denote this limit by stA − lim x = �. In particular, when A = C1 , the
resulting notation is simply st − lim x = � [7,12,14,22,27]. It is well known
[6] that the space of all bounded A-statistically convergent sequences is the
same as A-strongly convergent sequences, namely

lim
n

∑

k

ank|xk − �| = 0.

Motivated by that of Freedman [13], we introduce the following:

Definition 1.1. Let L be a linear functional on m that satisfies the following
properties:

1. L(x) ≥ 0, if x ≥ 0, (positivity of L),
2. L(x) = limk xk for x ∈ c, (regularity of L),
3. For every E ⊆ N such that δA(E) = 0 implies that L(χE) = 0.

Every such L will be called an SA-limit, and denote their collection by
SLA. In the particular case when A = C1 is the Cesàro matrix, any such L
will be called an S-limit and their collection denoted by SL . Freedman [13]
proved that the space of all bounded statistically convergent sequences can
be represented as the set of all x ∈ m which have the same value under any
S-limit.

Banach [2] showed that there exist positive linear regular functionals,
L, such that L(σ(x)) = L(x) for all x ∈ m, where σ is the left shift operator.
Such functionals will be called Banach limits, and their collection will be
denoted by BL. Along this line we introduce:
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Definition 1.2. (A-Banach limits) Let L be a bounded linear functional on
m that satisfies the following conditions:

1. L(x) ≥ 0 if xk ≥ 0 for all k,
2. L(x) = limk xk if x ∈ c,
3. L(x) ≤ lim supn supj

∑
k ankxk+j for every x ∈ m.

Any such L will be called an A-Banach limit, and the collection of all such
functionals will be denoted by BLA.

When A = C1, one gets BLC1 = BL. Lorentz [21] proved that all
L ∈ BL agree on precisely the space of almost convergent sequences.

Recall that almost convergence and statistical convergence methods are
incompatible [23].

In the following sections, we will provide results concerning the proper-
ties of these generalized limits.

2. Existence of Generalized Limits

A matrix A = [ank] is called translative [25] if for any x ∈ m with limA x = �
we also get limA σ(x) = �. A necessary and sufficient condition for a regular
matrix A to be (boundedly) translative [25] is that

lim
n→∞

∑

k

|an,k+1 − ank| = 0.

It is known that the bounded convergence field of any regular summability
method cannot be equal to the set of almost convergent sequences. A regular
matrix, A, is (boundedly) translative if and only if A sums all almost conver-
gent sequences and equals their Banach limits [25]. Such methods are called
strongly regular.

Theorem 2.1. When A is a nonnegative regular matrix, both A-Banach limits
and SA-limits exist. Furthermore, the following results hold:

1. BLA ∩ SLA �= ∅.
2. BL∩SLA �= ∅ when A is boundedly translative. In particular, when an

almost convergent sequence is also A-statistically convergent then the
two limits must be the same.

3. BL = BLA if and only if A is strongly regular.

Proof. Consider the sublinear functional

QA(x) = lim sup
n

∑

k

ank xk, x ∈ m.

By the regularity of A, we see that QA(x) = limk xk for each x ∈ c. By the
Hahn–Banach theorem, there exist bounded linear functionals T over m so
that

− QA(−x) ≤ T (x) ≤ QA(x), x ∈ m. (2.1)

Denote the set of all such T by LA. We will prove a bit more than the
theorem’s statement, by showing that LA ⊆ SLA.
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It is clear that T (x) ≥ 0 for every x ≥ 0 and T (x) = �(x) = limk xk

for every x ∈ c. Next if E is a set with A-density zero, then by (2.1) we
see that 0 ≤ T (χE) ≤ QA(χE) = 0. Hence, T is an SA-limit. It is also a
member of BLA since QA(x) ≤ lim supn supj

∑
k ankxk+j , for all x ∈ m. In

fact, LA ⊆ BLA ∩ SLA.
Now we show that this T is also left shift invariant when A is strongly

regular. Indeed,

|T (σx − x)| ≤ |QA(σx − x)|

≤ lim sup
n

∣
∣
∣
∣
∣

∑

k

ank(xk+1 − xk)

∣
∣
∣
∣
∣

≤ ‖x‖ lim sup
n

∑

k

|an,k − an,k+1|

= 0, when A is strongly regular.

This gives LA ⊆ BL as well as LA ⊆ BL ∩ SLA. The consistency of these
generalized limits over the common convergence fields, therefore, follows.

(3) If L ∈ BLA, and A is strongly regular, then we get

|L(σx − x)| ≤ ‖x‖ lim
n

∑

k

|an,k+1 − an,k| = 0,

giving BLA ⊆ BL. Since the matrix A is regular it follows from [26], Theorem
19 (c), that BL ⊆ BLA.

Conversely, if L ∈ BLA = BL, then for any almost convergent sequence
x, with limit �, we must have L(x) = �. This being so for every L ∈ BLA,
this implies that

0 = lim inf
n

inf
j

∑

k

ank(xk+j − �) = lim sup
n

sup
j

∑

k

ank(xk+j − �) = 0.

This implies that limn

∑
k ank(xk − �) = 0. Therefore, A is strongly regular.

Note that in this case fA-convergence is equivalent to f -convergence (cf.
[21], Theorems 2 and 3). �

As we shall show later, when A is not strongly regular it is possible to
have BL ∩ SLA = ∅. As examples of translative methods, the regular Euler
and Borel matrix methods are well known. Necessary and sufficient conditions
are also known for regular Hausdorff methods to be translative (cf. [25]).

To explore further relationships between various generalized limits, we
recall the concepts of statistical limit superior and statistical limit inferior
from [8,9,16]

stA − lim supx =
{

supBx, if Bx �= ∅
−∞, if Bx = ∅,

where Bx = {b ∈ � : δA({k ∈ N : xk > b}) �= 0}. We should point out
that this concept is closely related to the concept of essential supremum of
a collection of random variables. Also the A-statistical limit inferior of x is
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given by

stA − lim inf x =
{

inf Ax, if Ax �= ∅
+∞, if Ax = ∅,

where Ax = {a ∈ � : δA({k ∈ N : xk < a}) �= 0}.

Proposition 2.2. When A is a nonnegative regular matrix, and PA(x) :=
stA − lim supx, the following results hold.
(a) −PA(−x) = stA − lim inf x, for all x ∈ m.
(b) PA(x + y) ≤ PA(x) + PA(y), for any x, y ∈ m.
(c) PA(αx) = αPA(x), for any α ≥ 0, and x ∈ m.

Proof. Part (a) follows by the fact that A is a nonnegative matrix, and

PA(−x) = sup

{

b : lim sup
n

∑

k:−xk>b

ank > 0

}

= − inf

{

−b : lim sup
n

∑

k:xk<−b

ank > 0

}

= −stA − lim inf x.

Similarly, for part (c), when α > 0, we have

PA(αx) = sup

{

b : lim sup
n

∑

k:αxk>b

ank > 0

}

= α sup

⎧
⎨

⎩

b

α
: lim sup

n

∑

k:xk>b/α

ank > 0

⎫
⎬

⎭
= αPA(x).

This gives α = 0 case as well.
For part (b), let PA(x) = �x and PA(y) = �y. By the definition, for any

ε > 0, we therefore have that

lim
n

∑

k:xk>�x+
ε
2

ank = 0, lim
n

∑

k:yk>�y+
ε
2

ank = 0.

Therefore, we have

lim
n

∑

k:xk+yk>�x+�y+ε

ank ≤ lim
n

∑

k:xk>�x+
ε
2

ank + lim
n

∑

k:yk>�y+
ε
2

ank = 0.

This gives that PA(x + y) ≤ �x + �y + ε for all ε > 0. �

The connection of the above sublinear functional, PA, with SLA is made
clearer in the following section.

3. Functionals that Dominate or Generate Generalized Limits

Following Simons [26], we recall the definitions of functionals that generate
and/or dominate generalized limits. By m∗, we denote the algebraic dual of
m.
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Definition 3.1. Let R and T be sublinear functionals on m and let L be a
collection of bounded linear functionals on m.

(i) We say that R generates L if for any L ∈ m∗ and L(x) ≤ R(x) for all
x ∈ m together imply that L ∈ L.

(ii) We say that T dominates L if for every L ∈ L we have L(x) ≤ T (x) for
all x ∈ m.

A sublinear functional, R, on m generates L if and only if R(x) ≤ W (x)
for all x, where

W (x) := sup{L(x) : L ∈ L}, for all x ∈ m.

Trivially a sublinear functional, R, dominates L if and only if R(x) ≥ W (x)
for all x ∈ m. Combining these two statements, a sublinear functional R on
m generates as well as dominates L-limits if and only if it equals W . The
following theorem shows that PA both generates and dominates SLA-limits.

Theorem 3.2. Let A = [ank] be a nonnegative regular matrix. Then the fol-
lowing results hold.

(i) PA both generates and dominates SLA. Therefore,

PA(x) = sup{L(x) : L ∈ SLA}, for all x ∈ m.

(ii) QA generates SLA. However, QA cannot dominate SLA when A sums
a divergent 0, 1 sequence to a number � ∈ (0, 1).

(iii) When I is the identity matrix, QI dominates SLA. However, QI cannot
generate SLA when A sums a divergent 0, 1 sequence to zero.

Proof. Let L ∈ SLA. If there exists a sequence x ∈ m so that L(x) >
PA(x), then without loss of generality we may assume that xk ≥ 0 for all
k. Then take p ∈ (PA(x), L(x)) and take E = {k : xk > p}. This implies that
lim supn

∑
k:k∈E ank = 0. Hence, δA(E) = 0. Therefore, we have

L(x) = L(xχE) + L(xχEc)
≤ ‖x‖L(χE) + pL(χEc)
≤ pL(e) = p < L(x)

where e = (1, 1, 1, ...). This contradiction shows that L(x) ≤ PA(x) for all
x ∈ m. Hence, PA dominates SLA. The fact that PA generates SLA follows
by an identical proof as that of part (1) of Theorem 2.1. We omit the details
here.

(ii) We already know that QA generates SLA, by part (1) of Theorem
2.1. To show that QA need not dominate SLA, find a sequence, x, of zeros
and ones which A sums to a number � ∈ (0, 1). Let E ⊆ N so that χE = x.
Note that PA(χE) = 1. Furthermore,

QA(χE) = lim
n

∑

k:k∈E

ank = � < 1 = PA(χE) = sup{L(χE) : L ∈ SLA}.

The last equality by part (i). Therefore, QA cannot dominate SLA.
(iii) Since PA(x) ≤ QI(x) for all x ∈ m, and PA dominates SLA, it

must be that QI dominates SLA. To show that QI cannot generate SLA, we
produce a positive regular functional T so that T (x) ≤ QI(x) for all x ∈ m
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but T �∈ SLA. In this regard, let E ⊆ N be an infinite set so that δA(E) = 0.
Denote the members of E as j1 < j2 < · · · . Define a new nonnegative regular
matrix B = [bnk] where bnk = 1 when k = jn and bnk = 0 for other values
of k. Using the resulting QB , and the linear functional limB on m ∩ cB ,
by the Hahn–Banach theorem, we obtain a bounded linear functional, T ,
on m so that T (x) = limB x on m ∩ cB . Certainly, QB(x) ≤ QI(x), and
hence T (x) ≤ QI(x) for all x ∈ m. However, T (χE) = limB χE = 1. On the
other hand, δA(E) = 0 which implies that for every L ∈ SLA we must have
L(χE) = 0. Hence, T �∈ SLA. �

Several sufficient conditions are known for a matrix to sum a divergent
sequence of 0, 1 to a number � ∈ (0, 1). The most famous being those methods
that have the Borel property ([18]). Also a sufficient condition for a regular
matrix in order to sum a divergent 0, 1 sequence to 0 is limn supk ank = 0 ([1]).

The next example shows how we can estimate the generalized limits
that are bounded by certain sublinear functionals.

Example. Following Osikiewicz [24] and Unver et. al. [28], we recall the def-
inition of a splice. Let K1,K2, . . . be a countable partition of N. Denote
the elements of Ki by θi(1) < θi(2) < · · · . Let x1, x2, . . . be a sequence of
sequences such that limj xi

j = αi for each i = 1, 2, . . .. A splice x, made by
this sequence of sequences and the partition K1,K2, . . ., is the sequence for
which xk = xi

j where k = θi(j). By definition, here a splice is taken to be
a bounded sequence. When A is nonnegative regular matrix with row sums
being equal to 1, Unver et. al. [28] show that limA x =

∫
X

tdF (t) for any
splice x of sequences taking values in a Banach space X, where the integral
is in the sense of Bochner with respect to a probability measure F and can
be written as

limA x =
∞∑

i=1

αi δA(Ki),

provided δA(Ki) exist and
∑

i δA(Ki) = 1.
As a special case of this result we see that, when x is a splice and δA(Ki)

exist with
∑

i δA(Ki) = 1, then

L(x) =
∑

i

αi δA(Ki),

for all positive linear functionals L for which L(x) ≤ QA(x) for all x ∈ m.
The issue is what can be said for those situations when either δA(Ki) do not
exist or that

∑
i δA(Ki) �= 1. When x is a finite splice (i.e., made up of a finite

partition, K1,K2, . . . ,Km), we can estimate the value of L(x) as follows,

L(x) ≤
∑

i:αi>0

αi QA(χKi
) −

∑

i:αi<0

αi QA(−χKi
),

L(x) ≥ −
∑

i:αi>0

αi QA(−χKi
) +

∑

i:αi<0

αi QA(χKi
).

When an infinite splice is a strong limit (i.e., the limit with respect to the
norm topology) of a sequence of finite splices, then the above expression will
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continue to hold. Similarly estimates can be made for all generalized lim-
its that are bounded by the sublinear functional lim supn supj

∑
k ankxk+j .

However, when L(x) ≤ PA(x) , due to the fact that PA(χK) is either 0 or 1,
we can estimate the value of L(x) as follows,

L(x) ≤
∑

i:αi>0

αi PA(χKi
) −

∑

i:αi<0

αi PA(−χKi
) =

∑

i:δA(Ki) �=0

αi,

L(x) ≥ −
∑

i:δA(Ki) �=0

αi.

Since statistical convergence has been characterized by a collection of
summability matrices, it is natural to ask how their sublinear functionals
relate. First we recall a few definitions from Fridy and Miller [15].

Let A be a nonnegative regular summability matrix for which each row
adds up to one. The collection, τA, consists of those B = [bnk] such that

(i) B is lower triangular nonnegative.
(ii)

∑
k bnk = 1 for each n.

(iii) For every E ⊆ N with δA(E) = 0 implies that δB(E) = 0.
The class of Fridy and Miller, denoted as τ , is obtained when A is taken to
be the Cesàro matrix C1, namely τ = τC1 .

A larger class, τ∗
A, consists of those B = [bnk] such that

(i) B is nonnegative.
(ii) limn

∑
k bnk = 1.

(iii) For every E ⊆ N with δA(E) = 0 implies that δB(E) = 0.

Theorem 3.3. Let A be a nonnegative regular matrix and let B = [bnk] be a
nonnegative summability matrix with supn

∑
k bnk < ∞. Then the following

results hold.
(i) QB generates SLA if and only if B ∈ τ∗

A.
(ii) QB does not dominate SL for any B ∈ τ∗

A.
(iii) If QB dominates SLA then lim infn

∑
k bnk ≤ 1 ≤ lim supn

∑
k bnk.

Proof. (i) Assume B ∈ τ∗
A, and let L ∈ m∗ so that L(x) ≤ QB(x) for

all x ∈ m. Since B is nonnegative, L is positive. Since QB(e) = 1, we
have L(e) = 1 as well. Also, for every E ⊆ N for which δA(E) = 0, we
have δB(E) = 0. This gives that L(χE) = 0. Note that when E is a
finite set then δA(E) = 0, since A is regular. Therefore, QB(χE) = 0,
making B a regular matrix. This makes L is regular, and hence for x ∈ c
with � = limk xk we have L(x) = limk xk. That is, QB generates SLA.
Conversely, assume that QB generates SLA. Hence, it must be that
QB(x) ≤ PA(x) for all x ∈ m. This gives that limn

∑
k bnk = 1. Also, if

E ⊆ N such that δA(E) = 0, then

0 = −PA(−χE) ≤ −QB(−χE) ≤ QB(χE) ≤ PA(χE) = 0.

That is, δB(E) = 0. Hence, B ∈ τ∗
A.

(ii) If for some B ∈ τ∗
A the functional QB did dominate SL then, by part

(i), it will be that QB(x) = PA(x) for all x ∈ m, where A = C1. By a
result of Connor et. al. [8], this is impossible.
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(iii) This follows easily from PA(e) = 1 and PA(x) ≤ QB(x) for all x ∈ m.
�

At the moment, we should remark, that it remains open if part (ii) of
the above theorem the set SL could be replaced by SLA for some A.

It is shown in [10] (see also [5]) that among two nonnegative regular
matrices, A,B, the matrix B is statistically stronger than A if and only if for
every E ⊆ N with δA(E) = 0 implies that δB(E) = 0. By the last theorem
this is equivalent to SLB ⊆ SLA. This is further equivalent to PB(x) ≤ PA(x)
for all x ∈ m. Hence, A and B are statistically equivalent on m if and only
if PA(x) = PB(x) for all x ∈ m. We should point out, however, that by no
means this implies that A should be equal to B.

4. Comparison of SLA and BLA

In this section, we investigate the distinctive features of the two types of gen-
eralized limits. We have already shown earlier that, when A is a nonnegative
regular matrix,

LA ⊆ SLA ∩ BLA

regardless of A being translative or not, implying that if a sequence is both A-
statistically convergent and A-almost convergent then their respective limits
must equal limA x.

Theorem 4.1. When A is a nonnegative strongly regular matrix then neither
SLA nor BLA contains the other.

Proof. Define x = (xk) as follows:

xk =
{

1; k even
0; k odd .

Observe that x and σx are almost convergent to 1
2 , and also y = x − σx is

almost convergent to 0. Since

lim
n

∑

k

ank |yk − 0| = lim
n

∑

k

ank = 1,

y is not strongly A-summable to 0 therefore y is not A -statistically convergent
to 0. This implies that there exists a functional Ψ in SLA such that Ψ(y) �= 0,
implying that this Ψ �∈ BLA = BL. Hence BL does not contain SLA.

To show that SLA does not contain BLA, consider a sequence y = (yn)
of zeros and ones of the following form

(yn) = (1, 0, . . . , 0, 1, 1, 0, . . . , 0, 1, 1, 1, 0, . . . , 0, 1, 1, 1, 1, 0, . . .)

in which larger and larger sized batches of zeros are inserted so that the
resulting counting function of the sequence remains below the counting func-
tion of the first kind for the summability matrix A. Such a sequence is non-
negative, and hence automatically A-strongly summable to zero, making it
A-statistically convergent to 0. However, it is easy to see that this sequence
is not almost convergent, which implies that it is not A-almost convergent
either. Hence, SLA does not contain BLA. �
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Corollary 4.2. For any strongly regular matrix we have the following results.
(i) There exists a sublinear functional that generates SA-limits but does

not generate Banach limits. There exists a sublinear functional which
generates Banach limits but does not generate SA-limits.

(ii) There exists a sublinear functional that dominates SA-limits but does
not dominate Banach limits. There exists a sublinear functional which
dominates Banach limits but does not dominate SA-limits.

Example. To show that BL and SLA sets can be mutually exclusive, consider
A = [ank] for which the first row is (12 , 0, 1

2 , 0, . . .). The n-th row of A has
first 4(n− 1) entries equal to 0. The 4(n− 1)+1-th to 4(n− 1)+3-rd entries
are 1

2 , 0, 1
2 , respectively. The rest of the row is zero. Clearly the matrix is reg-

ular. When x = (1, 0, 1, 0, 1, 0, . . .) then limA x = 1. However, limA σ (x) = 0,
showing that A is not strongly regular. Note that x is A-statistically con-
vergent to 1 since, for small ε, the set {k : |xk − 1| > ε} consists of even
numbers whose A-density is zero. Similarly, σ(x) is A-statistically convergent
to 0, since, for small ε, the set {k : |σ(x)k − 0| > ε} consists of even numbers
whose A-density is zero.

Note that for any L ∈ BL we have L(1,−1, 1,−1, . . .) = 0. Now to see
that no L ∈ SLA can be in BL, if there exists an L ∈ SLA as well as L ∈ BL
then

1 − 0 = L(x − σx) = L(1,−1, 1,−1, . . .) = 0.

Hence, in this case

BL ∩ SLA = ∅.

As Theorem 2.1 shows BLA∩SLA contains LA. However, the above argument
also shows that the sets BLA and SLA are distinct, since the A-statistically
convergent sequence (1, 0, 1, 0, . . .) is not A-almost convergent. Hence, there
must exist L1, L2 ∈ BLA for which L1(x) �= L2(x), making at least one of
them not in SLA.

By Theorem 2.1, we automatically get that BLA �= BL, since A is not
strongly regular. However, A being a regular matrix, we have BL ⊂ BLA

where the inclusion must, therefore, be strict.
A simple example can also be constructed for strict inclusion. Take

xk = 0 for k even, xk = 1 for k odd and k+1
2 odd, and xk = 2 for k odd and

k+1
2 even. This sequence is almost convergent to 3

4 . However, this sequence
is not A-almost convergent. Hence, there must exist L1, L2 ∈ BLA for which
L1(x) �= L2(x), making at least one of them not in BL.

It is interesting to note that Duran [11] gave a fundamental lemma
by proving that, for any given x ∈ m, there exist strongly regular positive
matrices B1 and B2 such that

sup{T (x), T ∈ BL} = lim
n

(B2x)n, inf{T (x), T ∈ BL} = lim
n

(B1x)n.

Without loss of generality we may further assume that each row sum of
these matrices, A, B, is one. Note that BL = BLC1 , and the intersection
of the convergence fields of all strongly regular summability matrices gives
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the space of almost convergent sequences. Similarly, the intersection of the
bounded convergence fields of all the members of τC1 gives the space of all
bounded statistically convergent sequences. In light of Duran’s lemma, one
may raise the question if one could find matrices, B1, B2, in τC1 so that

sup{L(x), L ∈ SL} = lim
n

(B2x)n, inf{L(x), L ∈ SL} = lim
n

(B1x)n.

The following proposition shows that this is not possible, even though it is
known [20] that there exists a single matrix in τC1 whose bounded convergence
field is precisely the set of all bounded statistically convergent sequences.

Theorem 4.3. There are no matrices A and B in τ such that

sup {G(x) : G ∈ SL} = lim(Ax)n

and

inf {G(x) : G ∈ SL} = lim(Bx)n.

Proof. Consider the following sequence x = (xn),

xn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, n is odd
1/2, n = 2, 6, 10, . . .
3/4, n = 4, 12, 20, . . .
7/8, n = 8, 24, 40, . . .

15/16, n = 16, 48, 80, . . .
. . . . . .

.

Concretely, x = (xn) is given by

xn = 0, n is odd and

x2n+k2n+1 =
2n − 1

2n
, n = 1, 2, 3, . . . and k = 1, 2, 3, . . . .

For this sequence st-lim sup x = 1 and recall that sup {G(x) : G ∈ SL} =
st- lim sup x. Now we show that if A is a nonnegative, lower triangular matrix
summability method satisfying (ii) and Ax converges to 1, then A does not
satisfy the condition (iii) in τ . To show this, we find a set K with δ(K) = 0
such that

∑
k∈K ank does not converge to 0. Pick m1 large enough so that

m1∑

i=1

am1,ixi ≥ 0.99.

Therefore
m1∑

i=1
xi≤0.98

am1,ixi +
m1∑

i=1
xi>0.98

am1,ixi ≥ 0.99.

Let

I1 = {i : i ≤ m1 and xi ≤ 0.98} ,

II1 = {i : i ≤ m1 and xi > 0.98}
and

t1 =
∑

i∈I1

am1,i and s1 =
∑

i∈II1

am1,i.



1146 T. Yurdakadim et al. MJOM

Then

t1 + s1 = 1

and

0.98t1 + 1s1 ≥
m1∑

i=1
xi≤0.98

am1,ixi +
m1∑

i=1
xi>0.98

am1,ixi ≥ 0.99

which implies

t1 ≤ 1
2

and s1 ≥ 1
2
.

Now pick m2, much larger than m1 such that

xi < 0.999 . . . 98 for every i ∈ II1

and
m2∑

i=1

am2,ixi ≥ 0.999 . . . 99.

Note that the numbers 0.999 . . . 98 and 0.999 . . . 99 have the same number of
digits. Then as above

m2∑

i=1
xi≤0.999...98

am2,ixi +
m2∑

i=1
xi>0.999...98

am2,ixi ≥ 0.999 . . . 99.

Let

I2 = {i : i ≤ m2, xi ≤ 0.999 . . . 98} ,

II2 = {i : i ≤ m2, xi > 0.999 . . . 98} ,

t2 =
∑

i∈I2

am2,i and s2 =
∑

i∈II2

am2,i.

Then

t2 + s2 = 1

and

0.999 . . . 98t2 + 1s2 ≥
m2∑

i=1
xi≤0.999...98

am2,ixi +
m2∑

i=1
xi>0.999...98

am2,ixi ≥ 0.999 . . . 99

which implies

t2 ≤ 1
2

and s2 ≥ 1
2
.

Now pick m3, much larger than m2 such that

xi < 0.9999 . . . 998 for every i ∈ II1 ∪ II2

and
m3∑

i=1

am3,ixi ≥ 0.9999 . . . 999.
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Proceed as in steps 1 and 2 and noting that the number of digits in this step
is taken to be much larger than the number of digits in step 2. Let

I3 = {i : i ≤ m3, xi ≤ 0.9999 . . . 998} ,

II3 = {i : i ≤ m3, xi > 0.9999 . . . 998} .

Define t3 and s3 as before. Then we can argue again that t3 ≤ 1
2 and s3 ≥ 1

2 .
By continuing this process we obtain {IIi}∞

i=1 . Let

K := II1 ∪ II2 ∪ II3 ∪ . . . .

Notice that, by construction, these sets are pairwise disjoint. Observe that for
each n, sn ≥ 1

2 so
{∑

k∈K ank

}
does not converge to 0. To see that δ(K) = 0

suppose m ∈ [mn,mn+1) and let Sm := 1
m

m∑

i=1

χK(i). We have that

Sm =
1
m

mn−1∑

i=1

χK(i) +
1
m

m∑

i=mn−1+1

χK(i)

≤ mn−1

mn
+

1
m

m∑

i=mn−1+1

χK(i). (4.1)

By the choice of m1,m2,m3, . . . we can make the term
mn−1

mn
small enough,

i.e., this term goes to zero. Let x̄1 := 0.98, x̄2 := 0.999 . . . 98, x̄3 :=
0.9999 . . . 998, . . .. Note that each x̄n has more digits than x̄n−1. If i ∈ II1
then we have xi > x̄1 similarly if i ∈ II2 then we have xi > x̄2, . . .. By the
construction of (xi) and {IIi}∞

i=1 , it is clear that the percentage of i ∈ K
with i ∈ (mn−1,m] is very small, that is

∑m
i=mn−1+1 χK(i) < mpn where pn

goes to zero and x̄n goes to one as n goes to infinity. Hence, it follows from
(4.1) that Sm → 0 as m → ∞. This proves that δ(K) = 0. �

If one restricts the attention only on the convergence fields associated
with the functional, PA, then several characterizations are known. If τ is the
Fridy–Miller collection then it is known that bounded statistically convergent
sequences are the same as B summable sequences for all B ∈ τ and to the
same limit.
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Tandoğan, 06100 Ankara, Turkey
e-mail: tugbayurdakadim@hotmail.com

M. K. Khan
Department of Mathematics
Kent State University
Kent, OH 44242
USA
e-mail: kazim@math.kent.edu

H. I. Miller
Faculty of Engineering and Natural Sciences
International University of Sarajevo
Sarajevo 71000, Bosnia-Herzegovina
e-mail: himiller@hotmail.com

C. Orhan
Ankara University
Faculty of Science
Department of Mathematics
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