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Abstract. In this paper, we investigate the existence, uniqueness and
stability of pseudo almost periodic mild solution to nonautonomous im-
pulsive integro-differential equations in Banach space. The working tools
are based on the fixed point theorems and Gronwall–Bellman inequality.
To illustrate our main results, we study pseudo almost periodic solution
of the heat equations with Dirichlet conditions.
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1. Introduction

The study of the existence of almost periodic solution is one of the most inter-
esting and important topics in the qualitative theory of differential equations.
Many authors have made important contributions to this theory. On the other
hand, pseudo almost periodic function was introduced by Zhang as a natural
generalization of almost periodic function in [1,2]. Since then, this notion
has been attracted the attention of many researchers, the generalization of
pseudo almost periodic function and its applications in ordinary differential
equations, function differential equations, integral equations are studied. For
more details about this topics, one can see [3–8] for more details.

The impulsive differential equations arise from the real-world problems
to describe the dynamics of processes in which sudden, discontinuous jumps
occur. In the past several years, the theory of impulsive differential equations
has received much attention in recent years due to their wide applications in
population dynamics, ecology, biological systems, neural networks, industrial
robotics, and economics. The asymptotic properties of solutions of impulsive
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differential equations have been studied from different points, such as almost
periodicity [9–12], pseudo almost periodicity [13,14], asymptotic stability [15],
asymptotic equivalence [16] and so on.

Motivated by the above-mentioned papers, in this paper, we investi-
gate the existence, uniqueness, and stability of pseudo almost periodic mild
solution of abstract nonautonomous impulsive integro-differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′(t) = A(t)u(t) + f(t, u(t), (Ku)(t)), t ∈ R, t �= ti, i ∈ Z,

(Ku)(t) =

t∫

−∞
k(t − s)g(s, u(s))ds,

Δu(ti) = u(t+i ) − u(t−i ) = Ii(u(ti)),

(1.1)

where A(t) : X → X are closed linear operators on Banach space X, f, Ii, ti
satisfy suitable conditions which will be established later. u(t+i ), u(t−i ) repre-
sent the right-hand side and the left-hand side limits of u(·) at ti, respectively.

In (1.1), if A(t) = A is constant and without impulsive effects, some
recent contributions on asymptotic properties of solutions are well studied,
such as almost periodicity, almost automorphy, pseudo almost periodicity,
pseudo almost automorphy [17–22]. However, for the nonautonomous case
and with impulsive effects, i.e., (1.1), the study of asymptotic behavior of
solution is rare, particularly for the pseudo almost periodicity of (1.1), it is
an untreated topic and this is the main motivation of this paper. We will
make use of the fixed point theorems and Gronwall–Bellman inequality to
derive some sufficient conditions to the existence, uniqueness and exponential
stability of pseudo almost periodic mild solution to (1.1).

The paper is organized as follows. In Sect. 2, we recall some fundamental
results about the notion of piecewise pseudo almost periodic function includ-
ing composition theorem. Section 3 is devoted to the existence, uniqueness
and stability of mild solution to nonautonomous impulsive integro-differential
equations in Banach space. In Sect. 4, an application to heat equations with
Dirichlet conditions is given.

2. Preliminaries and Basic Results

Let (X, ‖ · ‖), (Y, ‖ · ‖) be Banach spaces, Ω be a subset of X and N, Z,
R, and C stand for the set of natural numbers, integers, real numbers, and
complex numbers, respectively. For A being a linear operator on X, D(A),
ρ(A), R(λ,A), σ(A) stand for the domain, the resolvent set, the resolvent and
spectrum of A. Let T be the set consisting of all real sequences {ti}i∈Z such
that α = infi∈Z(ti+1 − ti) > 0. It is immediate that this condition implies
that limi→∞ ti = ∞ and limi→−∞ ti = −∞.

To facilitate the discussion below, we further introduce the following
notations:

• C(R,X) (resp. C(R× Ω,X)): the set of continuous functions from R to
X (resp. from R × Ω to X).
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• BC(R,X) (resp. BC(R×Ω,X)): the Banach space of bounded continu-
ous functions from R to X (resp. from R×Ω to X) with the supremum
norm.

• PC(R,X) : the space formed by all piecewise continuous functions f :
R → X such that f(·) is continuous at t for any t /∈ {ti}i∈Z, f(t+i ),
f(t−i ) exists and f(t−i ) = f(ti) for all i ∈ Z.

• PC(R× Ω,X) : the space formed by all piecewise continuous functions
f : R×Ω → X such that for any x ∈ Ω, f(·, x) ∈ PC(R,X) and for any
t ∈ R, f(t, ·) is continuous at x ∈ Ω.

• L(X,Y ): the Banach space of bounded linear operators from X to Y
endowed with the operator topology. In particular, we write L(X) when
X = Y .

• l∞(Z,X) = {x : Z → X : ‖x‖ = supn∈Z
‖x(n)‖ < ∞}.

2.1. Piecewise Pseudo Almost Periodicity

Definition 2.1 [23]. A function f ∈ C(R,X) is said to be almost periodic if
for each ε > 0, there exists an l(ε) > 0, such that every interval J of length
l(ε) contains a number τ with the property that ‖f(t + τ) − f(t)‖ < ε for all
t ∈ R. Denote by AP (R,X), the set of such functions.

Definition 2.2 [24]. A sequence {xn} is called almost periodic if for any ε > 0,
there exists a relatively dense set of its ε-periods, i.e., there exists a natural
number l = l(ε), such that for k ∈ Z, there is at least one number p in
[k, k + l], for which inequality ‖xn+p − xn‖ < ε holds for all n ∈ N. Denote
by AP (Z,X), the set of such sequences.

Define

PAP0(Z,X) =

{

x ∈ l∞(Z,X) : lim
n→∞

1
2n

n∑

k=−n

‖x(k)‖ = 0

}

.

Definition 2.3 [25]. A sequence {xn}n∈Z ∈ l∞(Z,X) is called pseudo almost
periodic if xn = x1

n + x2
n, where x1

n ∈ AP (Z,X), x2
n ∈ PAP0(Z,X). Denote

by PAP (Z,X) the set of such sequences.

For {ti}i∈Z
∈ T ,

{
tji

}
defined by

{
tji = ti+j − ti

}
, i ∈ Z, j ∈ Z.

It is easy to verify that the numbers tji satisfy

tji+k − tji = tki+j − tki , tji − tki = tj−k
i+k for i, j, k ∈ Z.

Definition 2.4 [24]. A function f ∈ PC(R,X) is said to be piecewise almost
periodic if the following conditions are fulfilled:

(1)
{

tji = ti+j − ti

}
, i, j ∈ Z are equipotentially almost periodic, that is,

for any ε > 0, there exists a relatively dense set in R of ε-almost periods
common for all of the sequences {tji}.
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(2) For any ε > 0, there exists a positive number δ = δ(ε) such that if
the points t′ and t′′ belong to the same interval of continuity of f and
|t′ − t′′| < δ, then ‖f(t′) − f(t′′)‖ < ε.

(3) For any ε > 0, there exists a relatively dense set Ωε in R such that if
τ ∈ Ωε, then

‖f(t + τ) − f(t)‖ < ε

for all t ∈ R which satisfy the condition |t − ti| > ε, i ∈ Z.

We denote by APT (R,X) the space of all piecewise almost periodic func-
tions. Obviously, APT (R,X) endowed with the supremum norm is a Banach
space. Throughout the rest of this paper, we always assume that {tji} are
equipotentially almost periodic. Let UPC(R,X) be the space of all functions
f ∈ PC(R,X) such that f satisfies the condition (2) in Definition 2.4.

Lemma 2.1 [24]. If the sequences {tji} are equipotentially almost periodic, then
for each j > 0, there exists a positive integer N such that on each interval of
length j, there are no more than N elements of the sequence {ti}, i.e.,

i(t, s) ≤ N(t − s) + N,

where i(t, s) is the number of the points {ti} in the interval [s, t].

Definition 2.5. f ∈ PC(R × Ω,X) is said to be piecewise almost periodic
in t uniformly in x ∈ Ω if for each compact set K ⊆ Ω, {f(·, x) : x ∈ K}
is uniformly bounded, and given ε > 0, there exists a relatively dense set
Ωε such that ‖f(t + τ, x) − f(t, x)‖ ≤ ε for all x ∈ K, τ ∈ Ωε and t ∈ R,
|t − ti| > ε. Denote by APT (R × Ω,X) the set of all such functions.

Define

PC0
T (R,X) =

{
f ∈ PC(R,X) : lim

t→∞ ‖f(t)‖ = 0
}

,

PAP 0
T (R,X) =

⎧
⎨

⎩
f ∈ PC(R,X) : lim

r→∞
1
2r

r∫

−r

‖f(t)‖dt = 0

⎫
⎬

⎭
,

PAP 0
T (R × Ω,X) =

⎧
⎨

⎩
f ∈ PC(R × Ω,X) : lim

r→∞
1
2r

r∫

−r

‖f(t, x)‖dt = 0

uniformly with respect to x ∈ K, where K is an

arbitrary compact subset of Ω{
⎫
⎬

⎭
.

Definition 2.6. A function f ∈ PC(R,X) is said to be piecewise asymp-
totically almost periodic if it can be decomposed as f = g + ϕ, where
g ∈ APT (R,X) and ϕ ∈ PC0

T (R,X). Denote by AAPT (R,X) the set of
all such functions.

Definition 2.7 [14]. A function f ∈ PC(R,X) is said to be piecewise pseudo
almost periodic if it can be decomposed as f = g + ϕ, where g ∈ APT (R,X)
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and ϕ ∈ PAP 0
T (R,X). Denote by PAPT (R,X) the set of all such functions.

PAPT (R,X) is a Banach space when endowed with the supremum norm.

It follows from [1,14], one has

Remark 2.1. (i) PAP 0
T (R,X) is a translation invariant set of PC(R,X).

(ii) PC0
T (R,X) ⊂ PAP 0

T (R,X) and AAPT (R,X) ⊂ PAPT (R,X).

Similarly as the proof of [4, Lemma 2.5], one has

Lemma 2.2. Let {fn}n∈N ⊂ PAP 0
T (R,X) be a sequence of functions. If fn

converges uniformly to f , then f ∈ PAP 0
T (R,X).

Theorem 2.1 [14]. Suppose the sequence of vector-valued functions {Ii}i∈Z is
pseudo almost periodic, i.e, for any x ∈ Ω, {Ii(x), i ∈ Z} is a pseudo almost
periodic sequence. Assume that the following conditions hold:

(i) {Ii(x), i ∈ Z, x ∈ K} is bounded for every bounded subset K ⊂ Ω.
(ii) Ii(x) is uniformly continuous in x ∈ Ω uniformly in i ∈ Z.
If φ ∈ PAPT (R,X) ∩ UPC(R,X) such that R(φ) ⊂ Ω, then Ii(φ(ti)) is
pseudo almost periodic, where R(φ) is the range of φ.

Corollary 2.1 [14]. Assume that the sequence of vector-valued functions
{Ii}i∈Z is pseudo almost periodic, and there exists a constant L1 > 0 such
that

‖Ii(u) − Ii(v)‖ ≤ L1‖u − v‖, for all u, v ∈ Ω, i ∈ Z.

if φ ∈ PAPT (R,X) ∩ UPC(R,X) such that R(φ) ⊂ Ω, then Ii(φ(ti)) is
pseudo almost periodic.

Definition 2.8 [14]. Let PAPT (R×Ω,X) consist of all functions f ∈ PC(R×
Ω,X) such that f = g + ϕ, where g ∈ APT (R × Ω,X) and ϕ ∈ PAP 0

T (R ×
Ω,X).

Similarly as the Definition 2.8, one can define the space PAPT (R×Ω1×
Ω2,X). Similarly as the proof of [14, Theorem 3.1], the composition theorems
hold for piecewise pseudo almost periodic function.

Theorem 2.2. Suppose f ∈ PAPT (R×Ω1×Ω2,X). Assume that the following
conditions hold:

(i) {f(t, u, v) : t ∈ R, u ∈ K1, v ∈ K2} is bounded for every bounded subset
K1 × K2 ⊆ Ω1 × Ω2.

(ii) f(t, ·, ·) is uniformly continuous in each bounded subset of Ω1 × Ω2 uni-
formly in t ∈ R.

If ϕ1 ∈ PAPT (R,X), ϕ2 ∈ PAPT (R,X) such that R(ϕ1)×R(ϕ2) ⊂ Ω1×Ω2,
then f(·, ϕ1(·), ϕ2(·)) ∈ PAPT (R,X), where R(ϕ1), R(ϕ2) is the range of ϕ1,
ϕ2, respectively.

Corollary 2.2. Let f ∈ PAPT (R × Ω1 × Ω2,X), ϕ1 ∈ PAPT (R,X), ϕ2 ∈
PAPT (R,X) and R(ϕ1) × R(ϕ2) ⊂ Ω1 × Ω2. Assume that there exists a
constant Lf > 0 such that
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‖f(t, u1, v1) − f(t, u2, v2)‖
≤ Lf (‖u1 − u2‖ + ‖v1 − v2‖), t ∈ R, u1, u2 ∈ Ω1, v1, v2 ∈ Ω2,

then f(·, ϕ1(·), ϕ2(·)) ∈ PAPT (R,X).

2.2. Gronwall–Bellman Inequality and Compactness Criterion

First, we recall the definition of strong continuous evolution family and gen-
eralized Gronwall–Bellman inequality which will be used in the later.

Definition 2.9 [26]. A family of bounded linear operators (U(t, s))t≥s on a
Banach space X is called a strong continuous evolution family if

(i) U(t, r)U(r, s) = U(t, s) and U(s, s) = I for all t ≥ r ≥ s and t, r, s ∈ R.
(ii) The map (t, s) → U(t, s)x is continuous for all x ∈ X, t ≥ s and t, s ∈ R.

Lemma 2.3 ([24] Generalized Gronwall–Bellman inequality). Let a nonnega-
tive function u(t) ∈ PC(R,X) satisfy for t ≥ t0

u(t) ≤ C +

t∫

t0

v(τ)u(τ)dτ +
∑

t0<ti<t

βiu(τi),

where C ≥ 0, βi ≥ 0, v(τ) > 0 and τi are the first-kind discontinuity points of
the functions u(t). Then, the following estimate holds for the function u(t),

u(t) ≤ C
∏

t0<ti<t

(1 + βi)e
∫ t
t0

v(τ)dτ
.

Next, we recall a useful compactness criterion on PC(R,X).
Let h : R → R

+ be a continuous function such that h(t) ≥ 1 for all
t ∈ R and h(t) → ∞ as |t| → ∞. Define

PC0
h(R,X) :=

{

f ∈ PC(R,X) : lim
|t|→∞

f(t)
h(t)

= 0
}

endowed with the norm ‖f‖h = sup
t∈R

‖f(t)‖
h(t)

, it is a Banach space.

Lemma 2.4 [14]. A set B ⊆ PC0
h(R,X) is relatively compact if and only if it

verifies the following conditions:

(1) lim|t|→∞
‖f(t)‖
h(t)

= 0 uniformly for f ∈ B.

(2) B(t) = {f(t) : f ∈ B} is relatively compact in X for every t ∈ R.
(3) The set B is equicontinuous on each interval (ti, ti+1) (i ∈ Z).

3. Nonautonomous Impulsive Integro-Differential Equations

In this section, we investigate the existence, uniqueness, and stability of piece-
wise pseudo almost periodic mild solution of (1.1).
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First, we make the following assumptions:

(H1) There exists constants λ0 ≥ 0, θ ∈ (
π

2
, π), L, M̃ ≥ 0 and β, γ ∈ (0, 1)

with β + γ > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t) − λ0), ‖R(λ,A(t) − λ0)‖ ≤ M̃

1 + |λ|
and

‖(A(t)−λ0)R(λ,A(t)−λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ L|t − s|β |λ|−γ

for t, s ∈ R,Σθ = {λ ∈ C\{0} : |argλ| ≤ θ}.
(H2) R(λ0, A(·)) ∈ AP (R, L(X)).
(H3) The evolution family (U(t, s))t≥s generated by A(t) is exponentially

stable, i.e., there exist constants M > 0, ω > 0 such that ‖U(t, s)‖ ≤
Me−ω(t−s), t ≥ s, t, s ∈ R.

(H4) For each x ∈ X, U(t + h, t)x → x as h → 0+ uniformly for t ∈ R.
(H5) f ∈ PAPT (R × Ω1 × Ω2,X) and there exists a constant Lf > 0 such

that

‖f(t, u1, v1) − f(t, u2, v2)‖
≤ Lf (‖u1 − u2‖ + ‖v1 − v2‖), t ∈ R, u1, u2 ∈ Ω1, v1, v2 ∈ Ω2,

(H6) g ∈ PAPT (R × Ω3,X) and there exists a constant Lg > 0 such that

‖g(t, u) − g(t, v)‖ ≤ Lg‖u − v‖, t ∈ R, u, v ∈ Ω3.

(H7) Ii ∈ PAP (Z,X) and there exists a constant L1 > 0 such that

‖Ii(u) − Ii(v)‖ ≤ L1‖u − v‖, t ∈ R, u, v ∈ Ω1, i ∈ Z.

(H8) k ∈ C(R+,R) and |k(t)| ≤ Cke−ηt for some positive constants Ck, η.

Remark 3.1. (H1) is usually called “Acquistapace-Terreni” conditions, which
was first introduced in [27] and widely used to study nonautonomous differ-
ential equations in [5,26–28]. If (H1) holds, there exists a unique evolution
family (U(t, s))t≥s on X, which governs the homogeneous version of (1.1)
[28].

Before starting our main results, we recall the definition of the mild
solution to (1.1).

Definition 3.1 [24]. A function u : R → X is called a mild solution of (1.1) if
for any t ∈ R, t > σ, σ �= ti, i ∈ Z,

u(t) = U(t, σ)u(σ)+

t∫

σ

U(t, s)f(s, u(s), (Ku)(s))ds+
∑

σ<ti<t

U(t, ti)Ii(u(ti)).

(3.1)

Note that, if (H3) holds, then (3.1) can be replaced by

u(t) =

t∫

−∞
U(t, s)f(s, u(s), (Ku)(s))ds +

∑

ti<t

U(t, ti)Ii(u(ti)).
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Lemma 3.1 [29]. Assume that (H1)–(H3) hold, then for each ε > 0 and h > 0,
there is a relatively dense set Ωε,h such that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe− ω
2 (t−s), t − s > h, t, s ∈ R, τ ∈ Ωε,h.

This property can be abbreviated by writing U ∈ AP (L(X)).

Lemma 3.2 [24]. Assume that f ∈ APT (R,X), U ∈ AP (L(X)), the sequence
{xi}i∈Z ∈ AP (Z,X), and {tji}, j ∈ Z are equipotentially almost periodic.
Then, for each ε > 0, there exist relatively dense sets Ωε of R and Qε of Z
such that

(i) ‖f(t + τ) − f(t)‖ < ε for all t ∈ R, |t − ti| > ε, τ ∈ Ωε and i ∈ Z.
(ii) ‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe− ω

2 (t−s) for all t, s ∈ R, |t − s| > 0,
|s − ti| > ε, |t − ti| > ε, τ ∈ Ωε and i ∈ Z.

(iii) ‖xi+q − xi‖ < ε for all q ∈ Qε and i ∈ Z.
(iv) |tqi − τ | < ε for all q ∈ Qε, τ ∈ Ωε and i ∈ Z.

3.1. Lipschitz Case

In this subsection, we study the existence and uniqueness of piecewise pseudo
almost periodic mild solution of (1.1) when f, g, Ii satisfy the Lipschitz con-
dition, i.e., (H5), (H6), (H7) hold.

Lemma 3.3. Assume that (H1)–(H3), (H6), (H8) hold, if u ∈ PAPT (R,X),
then

(Ku)(t) =

t∫

−∞
k(t − s)g(s, u(s))ds ∈ PAPT (R,X).

Proof. For u ∈ PAPT (R,X), it is not difficult to see that φ(·) = g(·, u(·)) ∈
PAPT (R,X) by Corollary 2.2. Let φ = φ1 + φ2, where φ1 ∈ APT (R,X),
φ2 ∈ PAP 0

T (R,X), then

(Ku)(t) =

t∫

−∞
k(t − s)φ(s)ds =

t∫

−∞
k(t − s)φ1(s)ds +

t∫

−∞
k(t − s)φ2(s)ds

:= Ψ1(t) + Ψ2(t).

(i) Ψ1 ∈ APT (R,X).
It is not difficult to see that Ψ1 ∈ UPC(R,X). Let ti < t ≤ ti+1.

For ε > 0. let Ωε be a relatively dense set of R formed by ε-periods of
φ1. For τ ∈ Ωε and 0 < h < min{ε, α/2},

‖Ψ1(t + τ) − Ψ1(t)‖ ≤
t∫

−∞
|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds

≤
i−1∑

j=−∞

tj+1−h∫

tj+h

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds
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+
i−1∑

j=−∞

tj+h∫

tj

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds

+
i−1∑

j=−∞

tj+1∫

tj+1−h

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds

+

t∫

ti

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds.

Since φ1 ∈ APT (R,X), one has

‖φ1(t + τ) − φ1(t)‖ < ε, for all t ∈ [tj + h, tj+1 − h] and j ∈ Z, j ≤ i,

then,

i−1∑

j=−∞

tj+1−h∫

tj+h

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds

≤ ε

i−1∑

j=−∞

tj+1−h∫

tj+h

|k(t − s)|ds

≤ εCk

i−1∑

j=−∞

tj+1−h∫

tj+h

e−η(t−s)ds

≤ εCk

η

i−1∑

j=−∞
e−η(t−tj+1+h)

≤ εCk

η

i−1∑

j=−∞
e−ηα(i−j−1)

≤ εCk

η(1 − e−ηα)
.

On the other hand,

i−1∑

j=−∞

tj+h∫

tj

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds

≤ 2Ck‖φ1‖
i−1∑

j=−∞

tj+h∫

tj

e−η(t−s)ds

≤ 2Ck‖φ1‖εeηh
i−1∑

j=−∞
e−η(t−tj)



1074 Z. Xia MJOM

≤ 2Ck‖φ1‖εeηhe−η(t−ti)
i−1∑

j=−∞
e−ηα(i−j)

≤ 2Ck‖φ1‖e(ηα)/2ε

1 − e−ηα
.

Similarly, one has

i−1∑

j=−∞

tj+1∫

tj+1−h

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds ≤ N1ε,

t∫

ti

|k(t − s)|‖φ1(s + τ) − φ1(s)‖ds ≤ N2ε,

where N1, N2 are some positive constants. Hence, Ψ1 ∈ APT (R,X).
(ii) Ψ2 ∈ PAP 0

T (R,X).
In fact, for r > 0, one has

1
2r

r∫

−r

‖Ψ2(t)‖ dt =
1
2r

r∫

−r

∥
∥
∥
∥
∥
∥

t∫

−∞
k(t − s)φ2(s)ds

∥
∥
∥
∥
∥
∥

dt

=
1
2r

r∫

−r

∥
∥
∥
∥
∥
∥

∞∫

0

k(s)φ2(t − s)ds

∥
∥
∥
∥
∥
∥

dt

≤ 1
2r

r∫

−r

∞∫

0

Cke−ηs ‖φ2(t − s)‖ dsdt

≤
∞∫

0

Cke−ηsΦr(s)ds,

where

Φr(s) =
1
2r

r∫

−r

‖φ2(t − s)‖dt.

Since φ2 ∈ PAP 0
T (R,X), it follows that φ2(· − s) ∈ PAP 0

T (R,X) for
each s ∈ R by Remark 2.1, hence limr→∞ Φr(s) = 0 for all s ∈ R.
Using the Lebesgue’s dominated convergence theorem, we have Ψ2 ∈
PAP 0

T (R,X). This completes the proof. �

Theorem 3.1. Assume that (H1)–(H8) hold and if

MLf (η + LgCk)
ωη

+
ML1

1 − e−ωα
< 1,

then (1.1) has a unique mild solution u ∈ PAPT (R,X).

Proof. Let Γ : PAPT (R,X) ∩ UPC(R,X) → PC(R,X) be the operator
defined by
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(Γu)(t) =

t∫

−∞
U(t, s)f(s, u(s), (Ku)(s))ds +

∑

ti<t

U(t, ti)Ii(u(ti)). (3.2)

We will show that Γ has a fixed point in PAPT (R,X) ∩ UPC(R,X) and
divide the proof into several steps.

(i) Γu ∈ UPC(R,X).
Let t′, t′′ ∈ (ti, ti+1), i ∈ Z, t′′ < t′, u ∈ PAPT (R,X)∩UPC(R,X),

(Γu)(t′) − (Γu)(t′′)

=

t′
∫

−∞
U(t′, s)f(s, u(s), (Ku)(s))ds +

∑

ti<t′
U(t′, ti)Ii(u(ti))

−
t′′
∫

−∞
U(t′′, s)f(s, u(s), (Ku)(s))ds −

∑

ti<t′′
U(t′′, ti)Ii(u(ti))

=

t′′
∫

−∞
[U(t′, s) − U(t′′, s)]f(s, u(s), (Ku)(s))ds

+

t′
∫

t′′

U(t′, s)f(s, u(s), (Ku)(s))ds +
∑

ti<t′′
[U(t′, ti) − U(t′′, ti)]Ii(u(ti)).

(3.3)

Moreover,

t′′
∫

−∞
[U(t′, s) − U(t′′, s)]f(s, u(s), (Ku)(s))ds

=

∞∫

0

[U(t′, t′′ − s) − U(t′′, t′′ − s)]f(t′′ − s, u(t′′ − s), (Ku)(t′′ − s))ds

=

∞∫

0

[U(t′, t′′)U(t′′, t′′−s)−U(t′′, t′′−s)]f(t′′−s, u(t′′−s), (Ku)(t′′−s))ds

=

∞∫

0

[U(t′, t′′) − I]U(t′′, t′′ − s)f(t′′ − s, u(t′′ − s), (Ku)(t′′ − s))ds.

By (H4), for any ε > 0, there exists 0 ≤ δ <
ε

3M‖f‖ such that if t′, t′′

belongs to a same continuity and 0 < t′ − t′′ < δ, then

‖U(t′, t′′) − I‖ ≤ min
{

ωε

3M‖f‖ ,
(1 − e−ωα)ε

3M‖Ii‖
}

,
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so
∥
∥
∥
∥
∥
∥

t′′
∫

−∞
[U(t′, s) − U(t′′, s)]f(s, u(s), (Ku)(s))ds

∥
∥
∥
∥
∥
∥

≤
∞∫

0

‖U(t′, t′′) − I‖‖U(t′′, t′′ − s)‖‖f(t′′ − s, u(t′′ − s), (Ku)(t′′ − s))‖ds

≤
∞∫

0

ωε

3M‖f‖Me−ωs‖f‖ds

<
ε

3
, (3.4)

and
∥
∥
∥
∥
∥
∥

t′
∫

t′′

U(t′, s)f(s, u(s), (Ku)(s))ds

∥
∥
∥
∥
∥
∥

≤
t′
∫

t′′

‖U(t′, s)‖‖f(s, u(s), (Ku)(s))‖ds

< δM‖f‖ <
ε

3
. (3.5)

Similarly,
∥
∥
∥
∥
∥

∑

ti<t′′
[U(t′, ti) − U(t′′, ti)]Ii(u(ti))

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

ti<t′′
[U(t′, t′′) − I]U(t′′, ti)Ii(u(ti))

∥
∥
∥
∥
∥

≤
∑

ti<t′′
‖U(t′, t′′) − I‖‖U(t′′, ti)‖‖Ii(u(ti))‖

≤
∑

ti<t′′

(1 − e−ωα)ε
3M‖Ii‖ Me−ω(t′′−ti)‖Ii‖

<
ε

3
. (3.6)

Hence, by (3.3)–(3.6), if t′, t′′ belongs to a same continuity and 0 <
t′ − t′′ < δ, then

‖(Γu)(t′) − (Γu)(t′′)‖ < ε,

which implies that Γu ∈ UPC(R,X).
(ii) Γu ∈ PAPT (R,X).

For u ∈ PAPT (R,X) ∩ UPC(R,X), by Lemma 3.3 and Corollary
2.2, h(·) = f(·, u(·), (Ku)(·)) ∈ PAPT (R,X). By (H5)–(H7), it is not
difficult to see that h(·) is bounded function and Ii(u(·)) is a bounded
sequence. Similarly as the proof of Lemma 3.3, one has

t∫

−∞
U(t, s)f(s, u(s), (Ku)(s))ds ∈ PAPT (R,X).
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It remains to show that
∑

ti<t

U(t, ti)Ii(u(ti)) ∈ PAPT (R,X).

By Corollary 2.1, Ii(u(ti)) ∈ PAP (Z,X), then let Ii(u(ti)) = βi +
γi, where βi ∈ AP (Z,X) and γi ∈ PAP0(Z,X), so
∑

ti<t

U(t, ti)Ii(u(ti)) =
∑

ti<t

U(t, ti)βi +
∑

ti<t

U(t, ti)γi := Π1(t) + Π2(t).

For any ε > 0, by Lemma 3.2, there exists relative dense sets of
real numbers Ωε and integers Qε, such that for ti < t ≤ ti+1, τ ∈ Ωε,
q ∈ Qε, |t − ti| > ε, |t − ti+1| > ε, j ∈ Z, one has

t + τ > ti + ε + τ > ti+q,

and

ti+q+1 > ti+1 + τ − ε > t + τ,

that is ti+q < t + τ < ti+q+1, then

‖Π1(t + τ) − Π1(t)‖ =

∥
∥
∥
∥
∥

∑

ti<t+τ

U(t + τ, ti)βi −
∑

ti<t

U(t, ti)βi

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

ti<t

U(t + τ, ti+q)βi+q −
∑

ti<t

U(t + τ, ti+q)βi

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∑

ti<t

U(t + τ, ti+q)βi −
∑

ti<t

U(t, ti)βi

∥
∥
∥
∥
∥

≤
∑

ti<t

‖U(t + τ, ti+q)‖‖βi+q − βi‖

+
∑

ti<t

‖U(t + τ, ti+q) − U(t, ti)‖‖βi‖

≤
∑

ti<t

Me−ω(t−ti)ε +
∑

ti<t

εMβi
e− ω

2 (t−ti)

≤ Mε

1 − e−ωα
+

Mβi
ε

1 − e− ω
2 α

,

where Mβi
= sup

i∈Z

‖βi‖. So Π1 ∈ APT (R,X).

Next, we show that Π2 ∈ PAP 0
T (R,X). For a given i ∈ Z, define

the function g(t) by

g(t) = U(t, ti)γi, ti < t ≤ ti+1,

then

lim
t→∞ ‖g(t)‖ = lim

t→∞ ‖U(t, ti)γi‖ ≤ lim
t→∞ Me−ω(t−ti)‖γi‖ = 0,

then g ∈ PC0
T (R,X) ⊂ PAP 0

T (R,X). Define gk : R → X by

gk(t) = U(t, ti−k)γi−k, ti < t ≤ ti+1, k ∈ N.
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So gk ∈ PAP 0
T (R,X). Moreover,

‖gk(t)‖ = ‖U(t, ti−k)γi−k‖ ≤ M sup
i∈Z

‖γi‖e−ω(t−ti−k)

≤ M sup
i∈Z

‖γi‖e−ω(t−ti)e−ωαk.

Therefore, the series
∑∞

k=0 gk is uniformly convergent on R. By Lemma
2.2, one has

Π2(t) =
∑

ti<t

U(t, ti)γi =
∞∑

k=0

gk ∈ PAP 0
T (R,X).

So Γu ∈ PAPT (R,X).
(iii) Γ is a contraction.

For u, v ∈ PAPT (R,X) ∩ UPC(R,X),

‖(Γu)(t) − (Γv)(t)‖

≤
t∫

−∞
‖U(t, s)‖‖f(s, u(s), (Ku)(s)) − f(s, v(s), (Kv)(s))‖ds

+
∑

ti<t

‖U(t, ti)‖‖Ii(u(ti)) − Ii(v(ti))‖

≤
t∫

−∞
Me−ω(t−s)‖f(s, u(s), (Ku)(s)) − f(s, v(s), (Kv)(s))‖ds

+
∑

ti<t

Me−ω(t−ti)‖Ii(u(ti)) − Ii(v(ti))‖

≤
⎛

⎝

t∫

−∞
Me−ω(t−s)Lf (1 +

LgCk

η
)ds +

∑

ti<t

L1Me−ω(t−ti)

⎞

⎠ ‖u − v‖

≤
(

MLf (η + LgCk)
ωη

+
ML1

1 − e−ωα

)

‖u − v‖.

Since MLf (η+LgCk)
ωη + ML1

1−e−ωα < 1, Γ is a contraction.
By (i), (ii), Γ(PAPT (R,X) ∩ UPC(R,X)) ⊂ PAPT (R,X) ∩ U

PC(R,X). Since (iii) holds, by the Banach contraction mapping princi-
ple, Γ has a unique fixed point in PAPT (R,X) ∩ UPC(R,X), which is
the unique piecewise pseudo almost periodic mild solution to (1.1). �

3.2. Non-Lipschitz Case

In this subsection, by the Schauder fixed point theorem, we study the exis-
tence of piecewise pseudo almost periodic mild solution of (1.1) when (H′

5),
(H′

6), (H′
7) hold.

Theorem 3.2. Assume that (H1)–(H4), (H8) hold and satisfy the following
conditions:
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(H′
5) f ∈ PAPT (R × Ω1 × Ω2,X) and f(t, ·, ·) is uniformly continuous in

each bounded subset of Ω1 × Ω2 uniformly in t ∈ R.
(H′

6) g ∈ PAPT (R × Ω3,X) and g(t, ·) is uniformly continuous in each
bounded subset of Ω3 uniformly in t ∈ R.

(H′
7) Ii ∈ PAP (Z,X) and Ii(x) is uniformly continuous in x ∈ Ω1 uni-

formly in i ∈ Z.
(H9) For any L, L̃ > 0, C1L = supt∈R,‖u‖≤L,‖v‖≤L̃ ‖f(t, u, v)‖ < ∞, C2L =

supt∈R,‖u‖≤L ‖g(t, u)‖ < ∞, C3L = supi∈Z,‖u‖≤L ‖Ii(u)‖ < ∞. More-

over, there exists a constant L0 > 0 such that MC1L0
ω + MC3L0

1−e−ωα ≤ L0.

(H10) For fixed t, s ∈ R, t ≥ s, the operator U(t, s) : X → X is compact.

Then, (1.1) has a mild solution u ∈ PAPT (R,X).

Proof. Let D = {u ∈ PAPT (R,X) ∩ UPC(R,X) : ‖u‖ ≤ L0}. Define the
operator Γ as in (3.2). We next show that Γ has a fixed point in D and divide
the proof into several steps.

(i) For every u ∈ D, Γu ∈ PAPT (R,X) ∩ UPC(R,X).
Since g satisfies (H ′

6), (H9), the result of Lemma 3.3 holds by
Theorem 2.2. Similarly as the proof of Theorem 3.1, one has Γu ∈
PAPT (R,X) ∩ UPC(R,X).

(ii) For every u ∈ D, ‖Γu‖ ≤ L0.
For every u ∈ D, by (H3) and (H9), one has

‖(Γu)(t)‖

≤
t∫

−∞
‖U(t, s)‖‖f(s, u(s), (Ku)(s))‖ds +

∑

ti<t

‖U(t, ti)‖‖Ii(u(ti))‖

≤
t∫

−∞
Me−ω(t−s)‖f(s, u(s), (Ku)(s))‖ds +

∑

ti<t

Me−ω(t−ti)‖Ii(u(ti))‖

≤ C1L0

t∫

−∞
Me−ω(t−s)ds + C3L0

∑

ti<t

Me−ω(t−ti)

≤ MC1L0

ω
+

MC3L0

1 − e−ωα
≤ L0,

then ‖Γu‖ ≤ L0.
Combing (i) and (ii), it follows that ΓD ⊆ D.

(iii) Γ is continuous.
Let un ⊂ D, un → u as n → ∞, then there exists a bounded subset

Ω̃ ⊆ Ω such that R(u) ⊆ Ω̃, R(un) ⊆ Ω̃, n ∈ N. By (H′
5), (H′

7), for any
ε > 0, there exists δ′ > 0 such that u, v ∈ Ω̃ and ‖u − v‖ < δ′ implies
that

‖f(t, u,Ku) − f(t, v,Kv)‖ < ε for all t ∈ R,

‖Ii(u) − Ii(v)‖ < ε for all i ∈ Z.
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For the above δ′ > 0, there exists n0 such that ‖un(t) − u(t)‖ < δ′ for
all n > n0, t ∈ R, then for n > n0, one has

‖f(t, un(t), (Kun)(t)) − f(t, u(t), (Ku)(t))‖ < ε for all t ∈ R,

‖Ii(un(ti)) − Ii(u(ti))‖ < ε for all i ∈ Z.

Hence,

‖(Γun)(t) − (Γu)(t)‖

≤
t∫

−∞
‖U(t, s)‖‖f(s, un(s), (Kun)(s)) − f(s, u(s), (Ku)(s))‖ds

+
∑

ti<t

‖U(t, ti)‖‖Ii(un(ti)) − Ii(u(ti))‖

≤
t∫

−∞
Me−ω(t−s)‖f(s, un(s), (Kun)(s)) − f(s, u(s), (Ku)(s))‖ds

+
∑

ti<t

Me−ω(t−ti)‖Ii(un(ti)) − Ii(u(ti))‖

≤
t∫

−∞
Me−ω(t−s)εds +

∑

ti<t

Me−ω(t−ti)ε

≤
(

M

ω
+

M

1 − e−ωα

)

ε,

which implies that Γ is continuous.
(iv) B(t) = {(Γu)(t) : u ∈ D} is a relatively compact subset of X in each

t ∈ R.
For each t ∈ R, 0 < ε < 1, u ∈ D, define

(Γεu)(t) :=

t−ε∫

−∞
U(t, s)f(s, u(s), (Ku)(s))ds +

∑

ti<t−ε

U(t, ti)Ii(u(ti))

= U(t, t − ε)

⎡

⎣

t−ε∫

−∞
U(t − ε, s)f(s, u(s), (Ku)(s))ds

+
∑

ti<t−ε

U(t − ε, ti)Ii(u(ti))

⎤

⎦

= U(t, t − ε)(Γu)(t − ε).

Since {(Γu)(t − ε) : u ∈ D} is bounded in X and U(t, t − ε) is compact
by (H10), so {(Γεu)(t) : u ∈ D} is a relatively compact subset of X.
Moreover,
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‖(Γu)(t) − (Γεu)(t)‖

=

∥
∥
∥
∥
∥
∥

t∫

t−ε

U(t, s)f(s, u(s), (Ku)(s))ds +
∑

t−ε<ti<t

U(t, ti)Ii(u(ti))

∥
∥
∥
∥
∥
∥

≤
t∫

t−ε

‖U(t, s)‖‖f(s, u(s), (Ku)(s))‖ds +
∑

t−ε<ti<t

‖U(t, ti)‖‖Ii(u(ti))‖

≤
t∫

t−ε

Me−ω(t−s)‖f(s, u(s), (Ku)(s))‖ds +
∑

t−ε<ti<t

Me−ω(t−ti)‖Ii(u(ti))‖

≤ εMC1L0

ω
+

εMC3L0

α
.

So {(Γu)(t) : u ∈ D} is a relatively compact subset of X in each t ∈ R.
By (i), {Γu : u ∈ D} is equipotentially continuous at each interval

(ti, ti+1) (i ∈ Z). Since {Γu : u ∈ D} ⊂ PC0
h(R,X), then {Γu : u ∈ D}

is a relatively compact set by Lemma 2.4, then Γ is a compact operator.
Since D is a closed convex set, by Schauder fixed point theorem, Γ has
a fixed point u in D, which is the piecewise pseudo almost periodic mild
solution of (1.1). �

3.3. Stability

In this subsection, we investigate the stability of a piecewise pseudo almost
periodic solution of (1.1) using the generalized Gronwall–Bellman inequality
(Lemma 2.3).

Theorem 3.3. Assume that (H1)–(H8) and MLf (η+LgCk)
ωη + ML1

1−e−ωα < 1 hold,
then the piecewise pseudo almost periodic mild solution of (1.1) is exponen-
tially stable if ln(1+ML1)

α + MLf (η+LgCk)
η < ω.

Proof. By Theorem 3.1, (1.1) has a mild solution u(t) ∈ PAPT (R,X), for
t ∈ R, t > σ, σ �= ti, i ∈ Z,

u(t) = U(t, σ)u(σ) +

t∫

σ

U(t, s)f(s, u(s), (Ku)(s))ds +
∑

σ<ti<t

U(t, ti)Ii(u(ti)).

Let u(t) = u(t, σ, ϕ) and v(t) = v(t, σ, ψ) be two mild solutions of (1.1), then

‖u(t) − v(t)‖
≤ ‖U(t, σ)[u(σ) − v(σ)]‖

+

∥
∥
∥
∥
∥
∥

t∫

σ

U(t, s)[f(s, u(s), (Ku)(s))ds − f(s, v(s), (Kv)(s))]ds

∥
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∑

σ<ti<t

U(t, ti)[Ii((u(ti)) − Ii(v(ti))]

∥
∥
∥
∥
∥
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≤ ‖U(t, σ)‖‖u(σ) − v(σ)‖ +

t∫

σ

‖U(t, s)‖‖f(s, u(s), (Ku)(s))ds

−f(s, v(s), (Kv)(s))‖ds +
∑

σ<ti<t

‖U(t, ti)‖‖Ii((u(ti)) − Ii(v(ti))‖

≤ Me−ω(t−σ)‖u(σ)−v(σ)‖+

t∫

σ

Me−ω(t−s)Lf

(

1+
LgCk

η

)

‖u(s)−v(s)‖ ds

+
∑

σ<ti<t

Me−ω(t−ti)L1‖u(ti) − v(ti)‖,

then

eωt‖u(t) − v(t)‖ ≤ Meωσ‖u(σ) − v(σ)‖

+

t∫

σ

MLf (η + LgCk)
η

eωs ‖u(s) − v(s)‖ ds

+
∑

σ<ti<t

ML1eωti‖u(ti) − v(ti)‖.

Let y(t) = eωt‖u(t) − v(t)‖, then

y(t) ≤ My(σ) +

t∫

σ

MLf (η + LgCk)
η

y(s)ds +
∑

σ<ti<t

ML1y(ti).

By Lemma 2.3, one has

y(t) ≤ My(σ)
∏

σ<ti<t

(1 + ML1)e
∫ t
σ

MLf (η+LgCk)
η ds

= My(σ)
∏

σ<ti<t

(1 + ML1)e
MLf (η+LgCk)

η (t−σ)

≤ My(σ)(1 + ML1)
t−σ

α e
MLf (η+LgCk)

η (t−σ)

= My(σ)e
[
ln(1+ML1)

α +
MLf (η+LgCk)

η

]
(t−σ)

,

that is

‖u(t) − v(t)‖ ≤ M‖u(σ) − v(σ)‖e
[
ln(1+ML1)

α +
MLf (η+LgCk)

η −ω
]
(t−σ)

.

Since ln(1+ML1)
α + MLf (η+LgCk)

η − ω < 0, then the piecewise pseudo almost
periodic mild solution of (1.1) is exponentially stable. �
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4. Example

Consider the heat equations with Dirichlet conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
− 2u(t, x) +

(
sin t + sin

√
2t
)

u(t, x)

+f(t, x, u(t, x), (Ku)(t, x)),

(Ku)(t, x) =

t∫

−∞
k(t − s)g(s, x, u(s, x))ds, t ∈ R, t �= ti, i ∈ Z, x ∈ [0, π],

Δu(ti, x) = βiu(ti, x), i ∈ Z, x ∈ [0, π],
u(t, 0) = u(t, π) = 0, t ∈ R,

(4.1)
where f ∈ PAPT (R × [0, π] × L2[0, π] × L2[0, π], L2[0, π]), g ∈ PAPT (R ×
[0, π]×L2[0, π], L2[0, π]), ti = i+ 1

4 | sin i+sin
√

2i|, βi ∈ PAP (Z,R). Note that,
{tji}, i ∈ Z, j ∈ Z are equipotentially almost periodic and α = infi∈Z(ti+1 −
ti) > 0, one can see [14,24] for more details.

Take X = L2[0, π] is equipped with its natural topology and define

D(A) = {u ∈ L2[0, π] : u′′ ∈ L2[0, π], u(0) = u(π) = 0},

Au = u′′ − 2u, for all u ∈ D(A).

Let ϕn(t) =
√

2
π

sin(nt) for all n ∈ N. It is well know that A is the in-

finitesimal generator of an analytic semigroup (T (t))t≥0 on L2[0, π] with
‖T (t)‖ ≤ e−3t for t ≥ 0 [30]. Moreover,

T (t)ϕ =
∞∑

n=1

e−(n2+2)t〈ϕ,ϕn〉ϕn,

for each ϕ ∈ L2[0, π].
Define a family of linear operators A(t) by

D(A(t)) = D(A),

A(t)ϕ(x) =
(
A + sin t + sin

√
2t
)

ϕ(x), ∀x ∈ [0, π], ϕ ∈ D(A).

Then, the system

u′(t) = A(t)u(t), t ≥ s,

u(s) = ϕ ∈ L2[0, π],

has an associated evolution family (U(t, s))t≥s on L2[0, π], which can be ex-
plicitly express by

U(t, s)ϕ = T (t − s)e
∫ t
s
(sin τ+sin

√
2τ)dτϕ.

Moreover,

‖U(t, s)‖ ≤ e−(t−s) for every t ≥ s.
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Note that, sin t+sin
√

2t ∈ AP (R,R) and it is not difficult to verify that A(t)
satisfy (H1)–(H4) with M = 1, ω = 1. One can see [4] for more details. Since
Ii(u) = βiu and βi ∈ PAP (Z,R), then (H7) holds with L1 = supi∈Z

‖βi‖.
Now, the following theorem is an immediate consequence of Theorem

3.3.

Theorem 4.1. Under the assumptions (H5), (H6), (H8), (4.1) admits an ex-
ponentially stable mild solution u(t) ∈ PAAT (R, L2[0, π]) if Θ := ln(1+L1)

α +
Lf (η+LgCk)

η + L1
1−e−α < 1.

Note that, in the above example, if

g(t, x, u(t, x)) =
1
16

(sin t + sin
√

2t + e−t2 cos2 t + h(t))u(t, x),

f(t, x, u(t, x), (Ku)(t, x)) =
1
16

(sin t + sin
√

2t + e−t2 cos2 t + h(t))u(t, x)

+(Ku)(t, x),

where h ∈ UPC(R,R) satisfies |h(t)| ≤ 1 and limr→∞ 1
2lr

∫ r

−r
|h(t)|dt = 0.

Then, (H5), (H6) hold with Lg = 1
4 , Lf = max(14 , 1

4Ckη−1), so the conclusion
of Theorem 4.1 holds if it satisfies (H8) and Θ < 1.
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