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A New Result on Multiplicity of Nontrivial
Solutions for the Nonhomogenous
Schrödinger–Kirchhoff Type Problem in RN

Bitao Cheng

Abstract. In this paper, we consider the following nonhomogenous
Schrödinger–Kirchhoff type problem{ − (

a + b
∫
RN |∇u|2dx

) �u + V (x)u = f(x, u) + g(x), for x ∈ RN ,
u(x) → 0, as |x| → ∞,

(0.1)

where constants a > 0, b ≥ 0, N = 1, 2 or 3, V ∈ C(RN , R), f ∈
C(RN × R, R) and g ∈ L2(RN ). Under more relaxed assumptions on
the nonlinear term f that are much weaker than those in Chen and
Li (Nonlinear Anal RWA 14:1477–1486, 2013), using some new proof
techniques especially the verification of the boundedness of Palais–Smale
sequence, a new result on multiplicity of nontrivial solutions for the
problem (1.1) is obtained, which sharply improves the known result of
Theorem 1.1 in Chen and Li (Nonlinear Anal RWA 14:1477–1486, 2013).
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1. Introduction and Main Results

In this paper, we consider the following nonhomogenous Schrödinger–Kir-
chhoff type problem{− (

a + b
∫

RN |∇u|2dx
) �u + V (x)u = f(x, u) + g(x), for x ∈ RN ,

u(x) → 0, as |x| → ∞,

(1.1)
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where constants a > 0, b ≥ 0, N = 1, 2 or 3, V ∈ C(RN , R), f ∈ C(RN ×R,R)
and g ∈ L2(RN ) satisfy some further conditions.

We note that when a = 1, b = 0, and g ≡ 0, the problem (1.1) reduces
to the following semilinear Schrödinger equation{−�u + V (x)u = f(x, u), for x ∈ RN ,

u(x) → 0, as |x| → ∞,
(1.2)

which has been studied extensively by many authors, and there is a large
literature on the existence and multiplicity of solutions for the Eq. (1.2), for
example, we refer the reader to [1–3] and references therein.

When V ≡ 0, g ≡ 0 and RN is replaced by a bounded domain Ω ⊂ RN ,
the problem (1.1) reduces to the following nonlocal Kirchhoff type problem{−(a + b

∫
Ω

|∇u|2dx)�u = f(x, u), in Ω;
u = 0, on ∂Ω.

(1.3)

The problem (1.3) is related to the stationary analog of the Kirchhoff equation

utt −
⎛
⎝a + b

∫
RN

|∇u|2dx

⎞
⎠ �u = g(x, t), (1.4)

which was proposed by Kirchhoff in [4] as a model given by the equation of
elastic strings

ρ
∂2u

∂t2
−

⎛
⎝P0

h
+

E

2L

L∫
0

|∂u

∂x
|2dx

⎞
⎠ ∂2u

∂x2
= 0. (1.5)

The Eq. (1.5) is an extension of the classical D’Alembert’s wave equation
by taking into account the changes in the length of the string during the
transverse vibrationa.

It was pointed out in [5] that Kirchhoff type problem (1.3) models sev-
eral physical and biological systems, where u describes a process which de-
pends on the average of itself (for example, population density). Moreover,
a lot of interesting studies by variational methods can be found in [6–15]
for Kirchhoff type problem (1.3) on bounded domain with several growth
conditions on f .

In the recently years, Kirchhoff type problems setting on the unbounded
domain or whole space RN have also been attracted a lot of attention. In
[16], by means of Fountain Theorem, Jin and Wu obtained the existence of
infinitely many radial solutions for the problem (1.3) in RN . In [17], Wu got a
sequence of high-energy solutions for the problem (1.3) in RN via Symmetric
Mountain Pass Theorem. These results had been subsequently unified and
shapely improved by Ye and Tang in [18] using minimax methods in critical
point theory, and they also obtained infinitely many small energy solutions
for the problem (1.3). In [19], the authors established an abstract theorem
concerning multiple critical points of a class of functionals involving local and
nonlocal nonlinearity. As an application, they studied the problem (1.3) in
RN assuming on the local nonlinearity the general hypotheses introduced by
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Berestycki and Lions in [20]. In [21], Nie and Wu considered the following
Schrödinger–Kirchhoff type problem with radial potential{−(a + b

∫
Ω

|∇u|2dx)Δu + V (|x|)u = Q(|x|)f(u), in RN ;
u(x) → 0, as |x| → ∞.

(1.6)

Four existence theorems of nontrivial solutions and a sequence of high-energy
solutions for the problem (1.6) were obtained by Mountain Pass Theorem and
Symmetric Mountain Pass Theorem. These results had been subsequently
generalized by Wang in [22] to the p-Schrödinger–Kirchhoff type problem
case. In [23], Alves and Figueiredo studied a periodic Kirchhoff equation in
RN with nonlinear perturbations, and the existence of positive solutions was
obtained for the subcritical nonlinearity case and critical nonlinearity case.
In [24], using minimax theorems and Lusternik–Schnirelmann theory, He and
Zou studied the multiplicity and concentration behavior of positive solutions
for the following Kirchhoff type equation{

−(ε2a + εb
∫
Ω

|∇u|2dx)Δu + V (x)u = f(u), in R3;

u ∈ H1(R3), u > 0, in R3,
(1.7)

where ε > 0 is a parameter, a and b are positive constants, and f is a con-
tinuous superlinear and subcritical nonlinearity. Soon after, with the aid of
the Nehari manifold methods and minimax methods, Wang et al. general-
ized this result to the critical nonlinearity case in [25]. Recently, without the
usual compactness conditions, the authors studied the existence of a positive
solution for the following Kirchhoff type problem in [26]:⎛

⎝a + λb

∫
RN

|∇u|2 + λb

∫
RN

u2

⎞
⎠ [−�u + bu] = f(u), in RN . (1.8)

To overcome the lack of compactness, they used the “monotonicity trick”
introduced by Jeanjean in [27] to construct a cut-off function to obtain the
bounded Palais–Smale sequences for the problem (1.8).

For the nonhomogenous Schrödinger–Kirchhoff type problem (1.1), there
is little known result of the existence and multiplicity of solutions except for
[28]. In [28], by applying Ekeland’s variational principle and Mountain Pass
Theorem, Chen and Li studied the problem (1.1) with the nonlinearity f sat-
isfying the Ambrosetti–Rabinowitz type condition, and the existence of two
solutions was obtained. Precisely, they assumed the following assumptions.

(V1) V ∈ C(RN , R) satisfies inf V (x) ≥ V0 > 0 and for each M > 0,
meas{x ∈ RN : V (x) ≤ M} < +∞, where V0 is a constant and meas
denote the Lebesgue measure in RN .

(f ′
1) f ∈ C(RN × R,R) and

|f(x, t)| ≤ C(1 + |t|p−1) for some 2 < p < 2∗ =
{

2N
N−2 , N > 2;
+∞, N ≤ 2,

where C is a positive constant.
(f2) f(x, t) = o(|t|) as |t| → 0 uniformly in x ∈ RN .
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(f ′
3)

inf
x∈RN ,|t|=1

F (x, t) > 0,

where F (x, t) =
∫ t

0
f(x, s)ds.

(f ′
4) There exists μ > 4 such that

μF (x, t) − f(x, t)t ≤ 0, ∀(x, t) ∈ RN × R.

We restate the corresponding result in [28] as in the following.

Theorem A (see [28], Theorem 1.1). Assume that g ∈ L2(RN ), g �≡ 0, (V1),
(f ′

1), (f2) and (f ′
3)–(f ′

4) hold. Then there exists a constant m0 > 0 such that
the Eq. (1.1) has at least two different solutions in E whenever ‖g‖L2 < m0.

Remark 1. (i) Since the problem (1.1) is defined in RN which is unbounded,
the lack of compactness of the Sobolev embedding becomes more deli-
cate using variational techniques. To overcome the lack of compactness,
the condition (V1), which was firstly introduced by Bartsch and Wang
in [29], is always assumed to preserve the compactness of embedding of
the working space.

(ii) It is worth pointing out that the combination of (f ′
3)–(f ′

4) implies the
range of p in condition (f ′

1) should be 4 < p < 2∗. Precisely, for any
x ∈ RN , z ∈ R, define

h(t) := F (x, t−1z)tμ, ∀ t ∈ [1,+∞).

Then, for |z| ≥ 1 and t ∈ [1, |z|], (f ′
4) implies that

h′(t) = tμ−1
[
μF (x, t−1z) − t−1zf(x, t−1z)

]
≤ 0.

Hence, h(1) ≥ h(|z|). Therefore, (f ′
3) implies that

F (x, z) ≥ F (x,
z

|z| )|z|μ ≥ c|z|μ, ∀ x ∈ RN and |z| ≥ 1, (1.9)

where c = infx∈RN ,|t|=1 F (x, t) > 0. If p ≤ 4, by (f ′
1), we have

|F (x, t)| ≤
1∫

0

|f(x, st)t|ds ≤ C

1∫
0

(1 + |st|p−1)|t|ds ≤ C(|t| + |t|p)

for all (x, t) ∈ RN × R, which implies that

lim sup
|t|→+∞

F (x, t)
t4

≤ C uniformly in x ∈ RN .

This contradicts (1.9). Hence 4 < p < 2∗.

Motivated by the works mentioned above, in the present paper, we shall
consider the nonhomogeneous Schrödinger–Kirchhoff type problem, and we
are interested in looking for multiple solutions of the problem (1.1). Under
more relaxed assumptions on the nonlinear term f that are much weaker
than those in [28], using some new proof techniques especially the verification
of the boundedness of Palais–Smale sequence, a new result on multiplicity of
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nontrivial solutions for the problem (1.1) is obtained, which sharply improves
the result of [28].

To obtain the multiplicity of solutions for the nonhomogeneous
Schrödinger–Kirchhoff type problem (1.1) in RN , we make the following as-
sumptions.

(f1) f ∈ C(RN × R,R) and

|f(x, t)| ≤ C(1 + |t|p−1) for some 4 < p < 2∗ =
{

2N
N−2 , N > 2;
+∞, N ≤ 2,

where C is a positive constant.
(f3)

F (x,t)
t4 → +∞ as |t| → +∞ uniformly in x ∈ RN .

(f4) There exist L > 0 and d ∈ [0, V0
2 ] such that

4F (x, t) − f(x, t)t ≤ d|t|2, for a.e. x ∈ RN and ∀|t| ≥ L.

Next, we give some notations. Define the function space

H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ L2(RN )}
with the norm

‖u‖H1 =

⎛
⎝ ∫

RN

(|∇u|2 + u2)dx

⎞
⎠

1
2

.

Denote

E =

⎧⎨
⎩u ∈ H1(RN ) :

∫
RN

(|∇u|2 + V (x)u2)dx < +∞
⎫⎬
⎭

with the inner product and the norm

〈u, v〉E =
∫

RN

(∇u · ∇v + V (x)uv)dx, ‖u‖E = 〈u, u〉 1
2
E .

Obviously, the following embedding

E ↪→ Ls(RN ), 2 ≤ s ≤ 2∗

is continuous. Hence, for any s ∈ [2, 2∗], there is a constant as > 0 such that

‖u‖Ls ≤ as‖u‖E . (1.10)

It is well known that a weak solution for the problem (1.1) is a critical
point of the following functional I defined on E by

I(u) =
a

2

∫
RN

|∇u|2dx +
b

4

⎛
⎝ ∫

RN

|∇u|2dx

⎞
⎠

2

+
1
2

∫
RN

V (x)u2dx −
∫

RN

F (x, u)dx −
∫

RN

g(x)udx (1.11)
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for all u ∈ E. We say that a weak solution u ∈ E for the problem (1.1) is a
negative energy solution if the energy I(u) < 0, and a weak solution v ∈ E
for the problem (1.1) is a positive energy solution if the energy I(v) > 0.

Now, we can state our result as follows.

Theorem 1.1. Assume that g ∈ L2(RN ), g �≡ 0, (V1) and (f1)–(f4) hold.
Then, there exists a constant g0 > 0 such that the problem (1.1) has at least
two different solutions in E whenever ‖g‖L2 < g0, one is negative energy
solution, and the other is positive energy solution.

Remark 2. Theorem 1.1 sharply improves Theorem A. In fact, (f3)–(f4) are
much weaker than (f ′

3)–(f ′
4). To be precise, by (f ′

3)–(f ′
4), the inequality (1.9)

in Remark 1 holds. Hence,

F (x, t)
t4

≥ c|t|μ−4, ∀x ∈ RN and |t| ≥ 1,

which implies (f3). Moreover, note that μ > 4, then (f ′
4) and (1.9) imply

4F (x, t) − f(x, t)t = μF (x, t) − f(x, t)t + (4 − μ)F (x, t) ≤ (4 − μ)F (x, t)
≤ (4 − μ)c|t|μ < 0 ≤ d|t|2

for all x ∈ RN and |t| ≥ 1. This shows (f4) holds by taking L = 1. Con-
sequently, (f ′

3)–(f ′
4) imply (f3)–(f4). Thus, Theorem 1.1 sharply improves

Theorem A.

In Theorem 1.1, we consider the case μ = 4. For the case μ > 4, we also
have the following result about the existence of one negative energy solution,
one positive energy solution for the nonhomogeneous Schrödinger–Kirchhoff
type problem (1.1) in RN , which is a corollary of Theorem 1.1 and more
general than Theorem A. To begin with, we need the following assumptions.

(f ′′
3 ) There exists L′ > 0 such that

c′ = inf
x∈RN ,|t|=L′

F (x, t) > 0.

(f ′′
4 ) There exist μ > 4 and d′ ∈ [0, c′(μ−2)

L′2 ) such that

μF (x, t) − f(x, t)t ≤ d′|t|2, for a.e. x ∈ RN and ∀|t| ≥ L′.

Now, we can state the Corollary as follows.

Corollary 1. If we replace (f3)–(f4) with (f ′′
3 )–(f ′′

4 ) in Theorem 1.1, then the
conclusion of Theorem 1.1 remains valid.

The paper is organized as follows. In Sect. 2, we present some lemmas,
which are bases of Sects. 3 and 4. In Sect. 3, we study the existence of the
negative energy solution for problem (1.1). In Sect. 4, we obtain the existence
of the positive energy solution and prove Theorem 1.1 and Corollary 1.
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2. Some Lemmas

To apply variational techniques, we first state the key compactness result.

Lemma 2.1 (Lemma 3.4 in [30]). Under the assumption (V1), the embedding

E ↪→ Ls(RN ), 2 ≤ s < 2∗

is compact.

The following lemma can be obtained by a similar argument as Lemma 1
in [17] or Lemma 1 in [18].

Lemma 2.2. Assume that g ∈ L2(RN ), (V1) and (f1)–(f2) hold. Then I is
well defined on E, I ∈ C1(E,R) and for any u, v ∈ E,

〈I ′(u), v〉 =

⎛
⎝a + b

∫
RN

|∇u|2dx

⎞
⎠ ∫

RN

∇u∇vdx +
∫

RN

V (x)uvdx

−
∫

RN

f(x, u)vdx −
∫

RN

g(x)vdx. (2.1)

Moreover, Ψ′ : E → E∗ is compact, where Ψ(u) =
∫

RN F (x, u)dx − ∫
RN g(x)

udx.

Lemma 2.3. Assume that g ∈ L2(RN ) and (f1)–(f2) hold. Then there exist
some constants ρ, α and β > 0 such that I(u) ≥ α whenever ‖u‖E = ρ and
‖g‖L2 < β.

Proof. For any ε > 0, by (f1)–(f2), there exists Cε > 0 such that

|f(x, t)| ≤ ε|t| + C(ε)|t|p−1, ∀(x, t) ∈ RN × R, (2.2)

|F (x, t)| ≤
1∫

0

|f(x, st)t|ds ≤ ε|t|2 + Cε|t|p, ∀(x, t) ∈ RN × R. (2.3)

By (1.10), (1.11), (2.3) and Hölder inequality,

I(u) =
a

2

∫
RN

|∇u|2dx +
b

4

⎛
⎝ ∫

RN

|∇u|2dx

⎞
⎠

2

+
1
2

∫
RN

V (x)u2dx

−
∫

RN

F (x, u)dx −
∫

RN

g(x)udx

≥ min{a, 1}
2

‖u‖2
E −

∫
RN

F (x, u)dx −
∫

RN

g(x)udx

≥ min{a, 1}
2

‖u‖2
E − (ε‖u‖2

L2 + Cε‖u‖p
Lp) − ‖g‖L2‖u‖L2

≥ min{a, 1}
2

‖u‖2
E − a2

2ε‖u‖2
E − ap

pCε‖u‖p
E − a2‖g‖L2‖u‖E

= ‖u‖E

[(min{a, 1}
2

− a2
2ε

)
‖u‖E − ap

pCε‖u‖p−1
E − a2‖g‖L2

]
.
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Choose ε = min{a,1}
4a2

2
> 0, and take

h(t) =
min{a, 1}

4
t − ap

pCεt
p−1, ∀t ≥ 0.

Note that 4 < p < 2∗, we can conclude that there exists a constant ρ > 0
such that

h(ρ) = max
t≥0

h(t) > 0.

Therefore, take β := 1
2a2

h(ρ) > 0, it has

I(u) ≥ 1
2
ρh(ρ) =: α > 0

whenever ‖u‖E = ρ and ‖g‖L2 < β. This completes the proof. �

Lemma 2.4. Let assumptions (f1)–(f3) hold. Then there exists a function
e ∈ E with ‖e‖E > ρ such that I(e) < 0.

Proof. For every M > 0, by (f1)–(f3), there exists C(M) > 0 such that

F (x, t) ≥ M |t|4 − C(M)|t|2, ∀ (x, t) ∈ RN × R. (2.4)

Choose φ ∈ E with ‖φ‖L4 = 1, then (1.11), (2.4) and Hölder inequality imply
that

I(tφ) =
at2

2

∫
RN

|∇φ|2dx +
bt4

4

⎛
⎝ ∫

RN

|∇φ|2dx

⎞
⎠

2

+
t2

2

∫
RN

V (x)φ2dx

−
∫

RN

F (x, tφ)dx − t

∫
RN

g(x)φdx

≤ max{a, 1}t2

2
‖φ‖2

E +
b

4
‖φ‖4

Et4 − M‖φ‖4
L4t4 + C(M)‖φ‖2

L2t2

−t

∫
RN

g(x)φdx

≤ −
(
M − b

4
‖φ‖4

E

)
t4 +

[max{a, 1}
2

‖φ‖2
E + C(M)‖φ‖2

L2

]
t2

+‖g‖L2‖φ‖L2t,

which implies I(tφ) → −∞ as t → +∞ by taking M > b
4‖φ‖4

E . Hence, there
exists e = t0φ with t0 large enough such that ‖e‖E > ρ and I(e) < 0. The
proof is completed. �

Recall that, we say I satisfies the (PS) condition at the level c ∈
R ((PS)c condition for short) if any sequence {un} ⊂ E along with I(un) →
c and I ′(un) → 0 as n → ∞ possesses a convergent subsequence. If I sat-
isfies (PS)c condition for each c ∈ R, then we say that I satisfies the (PS)
condition.

Lemma 2.5. Let assumption (V1) and (f1)–(f2) hold. Then any bounded
Palais–Smale sequence of I has a strongly convergent subsequence in E.
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Proof. Let {un} ⊂ E be any bounded Palais–Smale sequence of I. Then, up
to a subsequence, there exists c1 ∈ R such that

I(un) → c1, I ′(un) → 0 and sup
n

‖un‖E < +∞. (2.5)

Since the embedding

E ↪→ Ls(RN ), 2 ≤ s < 2∗

is compact, going if necessary to a subsequence, we can assume that there is
a u ∈ E such that

⎧⎨
⎩

un ⇀ u, weakly in E;
un → u, strongly inLs(RN );
un(x) → u(x), a.e. in RN .

(2.6)

In view of (2.1), it has

〈I ′(un) − I ′(u), un − u〉

=

⎛
⎝a + b

∫
RN

|∇un|2dx

⎞
⎠ ∫

RN

∇un · ∇(un − u)dx +
∫

RN

V (x)|un − u|2dx

−
⎛
⎝a+b

∫
RN

|∇u|2dx

⎞
⎠∫
RN

∇u · ∇(un−u)dx−
∫

RN

[f(x, un)−f(x, u)](un−u)dx

=

⎛
⎝a + b

∫
RN

|∇un|2dx

⎞
⎠ ∫

RN

|∇(un − u)|2dx +
∫

RN

V (x)|un − u|2dx

−
⎛
⎝ ∫

RN

|∇u|2dx −
∫

RN

|∇un|2dx

⎞
⎠ ∫

RN

∇u · ∇(un − u)dx

−
∫

RN

[f(x, un) − f(x, u)](un − u)dx

≥ min{a, 1}‖un − u‖2
E − bl;

⎛
⎝ ∫

RN

|∇u|2dx −
∫

RN

|∇un|2dx

⎞
⎠

−
∫

RN

∇u · ∇(un−u)dx−
∫

RN

[f(x, un)−f(x, u)](un − u)dx.

(2.7)
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Then, (2.7) implies that
min{a, 1}‖un−u‖2

E ≤〈I ′(un)−I ′(un), un − u〉

+b

⎛
⎝∫
RN

|∇u|2dx −
∫

RN

|∇un|2dx

⎞
⎠ ∫

RN

∇u · ∇(un − u)dx

+

∫
RN

[f(x, un) − f(x, u)](un − u)dx. (2.8)

Define the functional hu: E → R by

hu(v) =
∫

RN

∇u · ∇vdx, ∀ v ∈ E.

Obviously, hu is a linear functional on E. Furthermore,

|hu(v)| ≤
∫

RN

|∇u · ∇v|dx ≤ ‖u‖E‖v‖E ,

which implies hu is bounded on E. Hence hu ∈ E∗. Since un ⇀ u in E, it
has limn→∞ hu(un) = hu(u), that is,

∫
RN ∇u · ∇(un − u)dx → 0 as n → ∞.

Consequently, by (2.6) and the boundedness of {un}, it has

b

⎛
⎝ ∫

RN

|∇u|2dx−
∫

RN

|∇un|2dx

⎞
⎠ ∫

RN

∇u · ∇(un − u)dx → 0 , n → +∞.

(2.9)

By (2.2), using the Hölder inequality, we can conclude∣∣∣∣∣∣
∫

RN

[f(x, un) − f(x, u)](un − u)dx

∣∣∣∣∣∣ ≤ [ε + C(ε)]

∫
RN

[|un| + |u| + |un|p−1

+|u|p−1]|un − u|dx

≤ [ε + C(ε)](‖un‖L2 + ‖u‖L2)‖un − u‖L2

+[ε+C(ε)](‖un‖p−1
Lp +‖u‖p−1

Lp )‖un−u‖Lp .

Therefore, it follows from (2.6) that∫
RN

[f(x, un) − f(x, u)](un − u)dx → 0, as n → ∞. (2.10)

Moreover, combining (2.5) with (2.6), then

< I ′(un) − I ′(u), un − u >→ 0, as n → ∞. (2.11)

Consequently, (2.8–2.11) imply that

un → u, strongly in E as n → ∞.

This completes the proof. �
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3. Negative Energy Solution

In this section, we will get a negative energy solution for the problem (1.1)
using the Ekeland’s variational principle. We consider a minimization of I
constrained in a neighborhood of zero and find a critical point of I which
achieves the local minimum of I. Furthermore, the level of this local minimum
is negative.

Lemma 3.1. Assume that g ∈ L2(RN ), g �≡ 0 and (f1)–(f3) hold. Then

−∞ < inf{I(u) : u ∈ Bρ} < 0,

where Br := {u ∈ E : ‖u‖E ≤ r}.
Proof. By (f1)–(f3), it follows from the proof of Lemma 2.4 that

F (x, t) ≥ C1|t|4 − C2|t|2, ∀ (x, t) ∈ RN × R,

where C1 and C2 are positive constants. Since g(x) ∈ L2(RN ) and g �≡ 0, we
can choose a function v ∈ E such that∫

RN

g(x)v(x)dx > 0.

Thus,

I(tv) =
at2

2

∫
RN

|∇v|2dx +
bt4

4

⎛
⎝ ∫

RN

|∇v|2dx

⎞
⎠

2

+
t2

2

∫
RN

V (x)v2dx

−
∫

RN

F (x, tv)dx − t

∫
RN

g(x)vdx

≤ max{a, 1}t2

2
‖v‖2

E +
b

4
‖v‖4

Et4 − C1‖v‖4
L4t4 + C2‖v‖2

L2t2

−t

∫
RN

g(x)vdx < 0

for t > 0 small enough, which implies inf{I(u) : u ∈ Bρ} < 0. In addition, by
(1.10), (1.11), (2.3) and Hölder inequality,

I(u) =
a

2

∫
RN

|∇u|2dx +
b

4

⎛
⎝ ∫

RN

|∇u|2dx

⎞
⎠

2

+
1
2

∫
RN

V (x)u2dx

−
∫

RN

F (x, u)dx −
∫

RN

g(x)udx

≥ −
∫

RN

F (x, u)dx −
∫

RN

g(x)udx

≥ −(ε‖u‖2
L2 + Cε‖u‖p

Lp) − ‖g‖L2‖u‖L2

≥ −a2
2ε‖u‖2

E − ap
pCε‖u‖p

E − a2‖g‖L2‖u‖E ,
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which implies I is bounded below in Bρ. Therefore, we obtain

−∞ < inf{I(u) : u ∈ Bρ} < 0.

This completes the proof. �
Ekeland’s variational principle is the tool to obtain a negative energy

solution, we give it here for readers’ convenience.

Theorem 3.2 ([31], Theorem 4.1). Let M be a complete metric space with
metric d and let I : M �→ (−∞, +∞] be a lower semicontinuous function,
bounded from below and not identical to +∞. Let ε > 0 be given and u ∈ M
be such that

I(u) ≤ inf
M

I + ε.

Then there exists v ∈ M such that

I(v) ≤ I(u), d(u, v) ≤ 1,

and for each w ∈ M , one has

I(v) ≤ I(w) + εd(v, w).

Now, we could give the result of negative energy solution for the problem
(1.1).

Theorem 3.3. Assume that g ∈ L2(RN ), g �≡ 0, (V1) and (f1)–(f3) hold.
Then there exists a constant g0 > 0 such that the problem (1.1) has a negative
energy solution whenever ‖g‖L2 < g0, that is, there exists a function u0 ∈ E
such that I ′(u0) = 0 and I(u0) < 0.

Proof. The proof is almost the same as ([8], pp. 534–535), we give it here for
the completeness. By Lemmas 2.3 and 3.1, taking g0 = β > 0, we know that

−∞ < inf
Bρ

I < 0 < α ≤ inf
∂Bρ

I

whenever ‖g‖L2 < g0. Set

1
n

∈
(

0, inf
∂Bρ

I − inf
Bρ

I

)
, n ∈ N.

Then, there is un ∈ Bρ such that

I(un) ≤ inf
Bρ

I +
1
n

. (3.1)

By Theorem 3.2 (Ekeland’s variational principle), then

I(un) ≤ I(u) +
1
n

‖u − un‖E , ∀u ∈ Bρ. (3.2)

Note that

I(un) ≤ inf
Bρ

I +
1
n

< inf
∂Bρ

I.

Thus un ∈ Bρ. Define Mn : E → R by

Mn(u) = I(u) +
1
n

‖u − un‖E .
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By (3.2), we have un ∈ Bρ minimizes Mn on Bρ. Therefore, for all φ ∈ E

with ‖φ‖E = 1, taking t > 0 small enough such that un + tφ ∈ Bρ, then

Mn(un + tφ) − Mn(un)
t

≥ 0,

which implies that

I(un + tφ) − I(un)
t

+
1
n

≥ 0.

Thus,

< I ′(un), φ >≥ − 1
n

.

Hence,

‖I ′(un)‖E ≤ 1
n

. (3.3)

Passing to the limit in (3.1) and (3.3), we conclude that

I(un) → inf
Bρ

I and ‖I ′(un)‖E → 0, as n → ∞. (3.4)

Note that ‖un‖E ≤ ρ, hence {un} ⊂ E is a bounded Palais–Smale sequence of
I. By Lemma 2.5, {un} has a strongly convergent subsequence, still denoted
by {un} and un → u0 ∈ Bρ, as n → ∞. Consequently, it follows from (3.4)
that

I(u0) = inf
Bρ

I < 0 and I ′(u0) = 0.

This completes the proof. �

4. Positive Energy Solution

The aim of this section is to get a positive energy solution for the problem
(1.1) with the aid of Mountain Pass Theorem. Hence, we recall the classical
Mountain Pass Theorem due to Ambrosetti–Rabinowitz.

Theorem 4.1 ([32], Theorem 2.2). Let X be a real Banach space and I ∈
C1(X,R) satisfying (PS) condition. Suppose I(0) = 0 and
(I1) there are constants ρ, α > 0 such that I|∂Bρ

≥ α, and
(I2) there is u1 ∈ X\Bρ such that I(u1) ≤ 0.
Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
γ∈Γ

max
u∈γ([0,1])

I(u),

where

Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = u1}.

Lemma 4.2. Let assumptions (V1) and (f1)–(f4) hold. Then any Palais–Smale
sequence of I is bounded.
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Proof. Let {un} ⊂ E be any Palais–Smale sequence of I. Then, up to a
subsequence, there exists c1 ∈ R such that

I(un) → c1, and I ′(un) → 0. (4.1)

The combination of (1.10), (1.11), (2.1), (4.1), (V1) with (f4) implies

c1 + 1 + ‖un‖E ≥ I(un) − 1
4
〈I ′(un), un〉

=
a

4

∫
RN

|∇un|2dx +
1
4

∫
RN

V (x)u2
ndx +

∫
RN

F̃ (x, un)dx − 3
4

∫
RN

g(x)undx

≥ a

4

∫
RN

|∇un|2dx +
1
4

∫
RN

V (x)u2
ndx − d

4

∫
RN

u2
ndx

+
∫

An

F̃ (x, un)dx − 3
4
‖g‖L2‖un‖L2

≥ a

4

∫
RN

|∇un|2dx +
1
4

∫
RN

V (x)u2
ndx − 1

8

∫
RN

V0u
2
ndx

+
∫

An

F̃ (x, un)dx − 3
4
a2‖g‖L2‖un‖E

≥ a

4

∫
RN

|∇un|2dx +
1
4

∫
RN

V (x)u2
ndx − 1

8

∫
RN

V (x)u2
ndx

+
∫

An

F̃ (x, un)dx − 3
4
a2‖g‖L2‖un‖E

≥ 1
16

min{a, 1}‖un‖2
E +

1
16

∫
RN

V (x)u2
ndx+

∫
An

F̃ (x, un)dx− 3
4
a2‖g‖L2‖un‖E ,

where F̃ (x, un) = 1
4f(x, un)un − F (x, un) and An = {x ∈ RN : |un| ≤ L}.

Hence,

c1 + 1 +
(

1 +
3
4
a2‖g‖L2

)
‖un‖E

≥ 1
16

min{a, 1}‖un‖2
E +

1
16

∫
RN

V (x)u2
ndx +

∫
An

F̃ (x, un)dx. (4.2)

For x ∈ RN and |un| ≤ L, by (2.2) and (2.3), it has

|F̃ (x, un)| ≤ 1
4
|f(x, un)||un| + |F (x, un)|

≤ 5
4
ε|un|2 +

5
4
C(ε)|un|p

=
5
4

[
ε + C(ε)|un|p−2

]
|un|2

≤ 5
4

[
ε + C(ε)Lp−2

]
|un|2.
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Take A > max
{
20

[
ε + C(ε)Lp−2

]
, V0

}
, then

F̃ (x, un) ≥ − A

16
|un|2, ∀x ∈ RN , |un| ≤ L. (4.3)

Let Ã = {x ∈ RN : V (x) ≤ A}. By (V1) and (4.3), we can conclude

1
16

∫
RN

V (x)u2
ndx +

∫
An

F̃ (x, un)dx ≥ 1
16

∫
|un|≤L

(V (x) − A)|un|2dx

≥ 1
16

∫

Ã∩An

(V (x) − A)L2dx

≥ 1
16

(V0 − A)L2meas(Ã ∩ An)

≥ 1
16

(V0 − A)L2meas(Ã). (4.4)

Note that meas(Ã) < +∞ due to (V1), it follows from (4.2) and (4.4) that

c1 + 1 +
(

1 +
3
4
a2‖g‖L2

)
‖un‖E

≥ 1
16

min{a, 1}‖un‖2
E +

1
16

(V0 − A)L2meas(Ã),

which implies {un} ⊂ E is bounded in E. Hence, the proof is completed. �

Theorem 4.3. Assume that g(x) ∈ L2(RN ), g �≡ 0, (V1) and (f1)–(f4) hold.
Then the problem (1.1) has a positive energy solution whenever ‖g‖L2 < g0,
that is, there exists a function u1 ∈ E such that I ′(u1) = 0 and I(u1) > 0.

Proof. We will apply Theorem 4.1 to prove Theorem 4.3. Next, we shall
verify I satisfies all the conditions of Theorem 4.1. By Theorem 3.3, we know
g0 = β > 0. Then I satisfies (I1) whenever ‖g‖L2 < g0 by Lemma 2.3.
Lemma 2.4 implies that I satisfies (I2), and I satisfies (PS) condition by
virtue of Lemmas 2.5 and 4.2. Evidently, I ∈ C1(E,R) and I(0) = 0. Hence,
applying Theorem 4.1, there exists a function u1 ∈ E such that I ′(u1) = 0
and I(u1) ≥ α > 0. The proof is completed. �

Proof of Theorem 1.1. The desired conclusion directly follows from Theorems
3.3 and 4.3.

Proof of Corollary 1. It is sufficient to prove that (f ′′
3 )–(f ′′

4 ) imply (f3)–(f4)
by applying Theorem 1.1. In fact, For any (x, z) ∈ RN × R, define

k(t) := F (x,
z

t
)tμ, ∀t ∈ [1,+∞].
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Then for |z| ≥ L′ and t ∈ [1, |z|
L′ ], (f ′′

4 ) implies that

k′(t) = f(x,
z

t
)(− z

t2
)tμ + μF (x,

z

t
)tμ−1

= tμ−1[μF (x,
z

t
) − f(x,

z

t
)
z

t
]

≤ d′tμ−1|z
t
|2

= d′tμ−3|z|2.
Thus,

k

( |z|
L′

)
− k(1) =

|z|
L′∫

1

k′(t)dt

≤
|z|
L′∫

1

d′tμ−3|z|2dt

=
d′|z|μ

(μ − 2)L′μ−2
− d′|z|2

μ − 2
.

Hence, for any x ∈ RN and |z| ≥ L′, by (f ′′
3 ), one has

F (x, z) = k(1) ≥ k

( |z|
L′

)
+

d′|z|2
μ − 2

− d′|z|μ
(μ − 2)L′μ−2

≥
[

inf
x∈RN ,|t|=L′

F (x, t)
]
(
|z|
L′ )

μ +
d′|z|2
μ − 2

− d′|z|μ
(μ − 2)L′μ−2

≥
(

c′

L′μ − d′

(μ − 2)L′μ−2

)
|z|μ.

By d′ ∈ [0, c′(μ−2)
L′2 ), set C4 = c′

L′μ − d′
(μ−2)L′μ−2 > 0, it has

F (x, z) ≥ C4|z|μ, ∀x ∈ RN and |z| ≥ L′.

Hence,

F (x, z)
z4

≥ C4|z|μ−4, ∀x ∈ RN and |z| ≥ L′. (4.5)

Note that μ > 4, then (4.5) implies (f3). Furthermore, it follows from (4.5)
and (f ′′

4 ) that

4F (x, z) − f(x, z)z = μF (x, z) − f(x, z)z + (4 − μ)F (x, z)
≤ d′|z|2 − (μ − 4)C4|z|μ

for all x ∈ RN and |z| ≥ L′. This, together with μ > 4, shows there exists
L > 0 such that

4F (x, z) − f(x, z)z < 0, ∀x ∈ RN and |z| ≥ L,

which implies (f4). Hence, the proof is completed. �
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