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Entire Solutions for a Class of Fourth-Order
Semilinear Elliptic Equations with Weights
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Abstract. We investigate the problem of entire solutions for a class of
fourth-order, dilation invariant, semilinear elliptic equations with power-
type weights and with subcritical or critical growth in the nonlinear
term. These equations define noncompact variational problems and are
characterized by the presence of a term containing lower order deriva-
tives, whose strength is ruled by a parameter λ. We can prove existence
of entire solutions found as extremal functions for some Rellich–Sobolev
type inequalities. Moreover, when the nonlinearity is suitably close to
the critical one and the parameter λ is large, symmetry breaking phe-
nomena occur and in some cases the asymptotic behavior of radial and
nonradial ground states can be somehow described.
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1. Introduction

In recent years, much interest has been addressed to a class of equations
shaped on

Δ(|x|αΔu) = |x|−β |u|q−2u in R
n (1.1)

where the dimension n and the parameters α, β and q > 2 are asked to
satisfy suitable restrictions. In particular, in the case of the pure biharmonic
operator, we quote, e.g., [1–4,6,15–17,19,20].

Equations like (1.1) arise in a natural way from variational inequalities
of the form

Sα,q

⎛
⎝

∫

Rn

|x|−β |u|q dx

⎞
⎠

2/q

≤
∫

Rn

|x|α|Δu|2 dx ∀u ∈ C∞
c (Rn\{0})

which, for q > 2, can be considered as nonlinear versions of the weighted
Rellich inequality (this case occurs taking q = 2 and −β = α − 4).
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In addition, (1.1) can be viewed as a higher order version of equations
like

− div(|x|a∇u) = |x|−b|u|q−2u in R
n (1.2)

where again n ∈ N, a, b ∈ R and q > 2 are subject to some constraints. Even
(1.2) comes from a class of variational inequalities which are often known in
the literature as Caffarelli–Kohn–Nirenberg inequalities ([5]) and can be read
as interpolation of the linear weighted Hardy inequality with the weighted
Sobolev inequality.

As one can expect, both for (1.1) and for (1.2), the restrictions on the
parameters are needed to guarantee that the supporting variational inequal-
ities hold true. In particular, these restrictions necessarily involve some dila-
tion invariance which is a typical feature of any problem displaying scaling
processes.

In this work, we study a class of equations which are built as linear
combination of (1.1) and (1.2). In particular, we are interested in the existence
of nontrivial solutions to{

Δ(|x|αΔu) − λ div(|x|α−2∇u) = |x|−β |u|q−2u in R
n∫

Rn |x|α|Δu|2 dx < ∞ (1.3)

where n ≥ 5, q > 2,

4 − n < α < n , β = n − q(n − 4 + α)
2

, (1.4)

and λ is a real parameter subject to some limitation. In particular, we look
for ground states of (1.3), i.e., solutions to (1.3) characterized as minimizers
for the following problems:

Sα,q(λ) := inf
u∈D2,2(Rn;|x|α)

u�=0

∫
Rn |x|α|Δu|2 dx + λ

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q
. (1.5)

Here D2,2(Rn; |x|α) is the space defined as the completion of C∞
c (Rn) with

respect to the norm

‖u‖22,α :=
∫

Rn

|x|α|Δu|2 dx . (1.6)

We point out that the role of entire solutions and especially of ground states
of (1.3) is rather meaningful since this kind of solutions naturally appear as
limiting profiles in the blowup analysis of related classes of nonlinear prob-
lems.

As discussed later, thanks to already known variational inequalities (see
[8,14]), one has that Sα,q(λ) > 0 and the minimization problem (1.5) makes
sense whenever

2 < q ≤ 2∗∗ :=
2n

n − 4
(1.7)

and

λ > −γα where γα := inf
u∈D2,2(Rn;|x|α)

u�=0

∫
Rn |x|α|Δu|2 dx∫

Rn |x|α−2|∇u|2 dx
. (1.8)
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In particular, it is known that if n ≥ 5 and α ∈ (4 − n, n) then γα > 0.
Moreover for α ∈ [0, n) then γα = (n − α)2/4. These facts are discussed in
[9,13,18].

Taking β as in (1.4) makes problem (1.3) invariant with respect to the
action of the weighted dilation group

ρ 	→ (ρ ∗ u)(x) = ρ
n−4+α

2 u(ρx) (ρ > 0). (1.9)

This invariance is responsible of a lack of compactness in the study of the
minimization problem (1.5). Adapting some techniques already used for dif-
ferent problems ([4,8]), we develop a suitable argument allowing us to recover
some local compactness, and we get a first existence result, stated as follows.

Theorem 1.1. Let n ≥ 5 and assume (1.4). Then:
(i) For q ∈ (2, 2∗∗) and λ ∈ (−γα,∞) problem (1.3) admits a ground state.
(ii) For q = 2∗∗, for every α ∈ (4 − n, n) there exists λα > −γα such that

problem (1.3) admits a ground state if λ ∈ (−γα, λα) (the value λα is
given by (3.17)).

By exploiting the rotational symmetry of the domain and of the weights
in (1.3), we can drop the upper bound on q in (1.7) by looking for radial
ground states for problems (1.3), namely, nontrivial, radial weak solutions of
(1.3) characterized as minimum points for

Srad
α,q (λ) := inf

u∈D2,2
rad(R

n;|x|α)
u�=0

∫
Rn |x|α|Δu|2 dx + λ

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q
(1.10)

where D2,2
rad(R

n; |x|α) is the space of radial functions belonging to
D2,2(Rn; |x|α). We have that:

Theorem 1.2. Let n ≥ 5 and assume (1.4). Then for every q ∈ (2,∞) and
λ > −(n − α)2/4, problem (1.3) admits a radial ground state. Moreover such
a ground state has constant sign and is unique up to the weighted dilation
(1.9).

The second part of our work consists in the study of global ground states
of (1.3) given by Theorem 1.1. In particular, we are interested in investigating
radial symmetry or not of these solutions. We find symmetry breaking in
different situations. A first result in this direction is the following.

Theorem 1.3. Let n ≥ 5 and λ > 0. There exist α > 0 and q ∈ (2, 2∗∗), both
depending on λ, such that if q ∈ (q, 2∗∗] and |α| < α then Sα,q(λ) < Srad

α,q (λ).
In particular, if q ∈ (q, 2∗∗) and |α| < α then global ground states of (1.3) are
not radially symmetric.

The previous result is obtained by noticing that S0,2∗∗(λ) < Srad
0,2∗∗(λ)

and using some continuity of the mappings (α, q) 	→ Sα,q(λ) and (α, q) 	→
Srad

α,q (λ). We have no sharp information on the region of values (α, q) for which
global ground states of (1.3) are nonradial. On the other hand, for fixed q
and α, again symmetry breaking is displayed for λ large, as stated in the next
result.
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Theorem 1.4. Let n ≥ 5 and assume (1.4). Let 2∗ = 2n
n−2 be the critical

exponent for the first-order Sobolev embedding.
(i) If q ∈ (2∗, 2∗∗) then for λ large enough (depending on q) any global

ground state of (1.3) is not radially symmetric.
(ii) If q ∈ (2, 2∗] and

1
n − 1

(
n − 4 + α

2

)2

>
1

q − 2
− 1

q + 2
(1.11)

then for λ large enough (depending on q) any global ground state of (1.3)
is not radially symmetric.

When q ∈ (2, 2∗) we can better describe the limit profile of ground states
of (1.3) as λ → ∞. To this aim, we need to introduce the lower order problem{−div(|x|α−2∇u) = |x|−β |u|q−2u in R

n∫
Rn |x|α−2|∇u|2 dx < ∞ (1.12)

The natural variational space for problem (1.12) is D1,2(Rn; |x|α−2) defined
as the completion of C∞

c (Rn\{0}) with respect to the norm

‖u‖21,α−2 =
∫

Rn

|x|α−2|∇u|2 dx .

Ground states of problem (1.12) are defined as weak solutions of (1.12) min-
imizing

S̃α,q = inf
u∈D1,2(Rn;|x|α−2)

u�=0

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q
.

We finally can show:

Theorem 1.5. Let n ≥ 5, q ∈ (2, 2∗) and assume (1.4). If λk → ∞ and
uk ∈ D2,2(Rn; |x|α) is a ground state of (1.3) with λ = λk, then there exists a

sequence (ρk) ⊂ (0,∞) such that, for a subsequence, λ
− 1

q−2
k ρk ∗ uk converges

strongly in D1,2(Rn; |x|α−2) to a ground state of (1.12). The same holds for
radial ground states.

We point out that condition (1.11) has been found in [12] for having
symmetry breaking of ground states of the lower order problem (1.12).

We finally observe that most of the results contained in this work are
presented in [10], generalize in a nontrivial way and complete with new con-
tributions some previous results discussed in [6] limited to the case α = 0.

2. Preliminaries

Here we introduce the space D2,2(Rn; |x|α) for n ≥ 5 and α ∈ (4 − n, n) and
we discuss its main embedding properties. The starting point can be given
by the weighted Rellich inequality stating that

δα

∫

Rn

|x|α−4|u|2 dx ≤
∫

Rn

|x|α|Δu|2 dx ∀u ∈ C∞
c (Rn\{0}) (2.1)
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with optimal constant

δα =

[(
n − 2

2

)2

−
(

α − 2
2

)2
]2

. (2.2)

We refer to the paper [7] and to its bibliography for a deeper discussion
on (2.1) and some generalizations. Inequality (2.1) allows us to define the
space D2,2(Rn; |x|α) as the completion of C∞

c (Rn\{0}) with respect to the
Hilbertian norm given by (1.6). Let 2∗∗ = 2n

n−4 be the critical exponent for the
second-order Sobolev embedding. It is known (see, e.g., [8]) that if q ∈ [2, 2∗∗]
and β is given as in (1.4) then D2,2(Rn; |x|α) is continuously embedded into
Lq(Rn; |x|β), that is the space of mappings in Lq with respect to the measure
|x|−βdx.

For future convenience, let us introduce also the space D1,2(Rn; |x|α̃)
which can be defined as the completion of C∞

c (Rn\{0}) with respect to the
Hilbertian norm

‖u‖21,α̃ =
∫

Rn

|x|α̃|∇u|2 dx .

This definition of D1,2(Rn; |x|α̃) is well posed when α̃ > 2 − n, thanks to the
weighted Hardy inequality

hα̃

∫

Rn

|x|α̃−2|u|2 dx ≤
∫

Rn

|x|α̃|∇u|2 dx ∀u ∈ C∞
c (Rn\{0}) (2.3)

which holds with optimal constant

hα̃ =
(

n − 2 + α̃

2

)2

.

In fact here we consider the case α̃ = α − 2. Let 2∗ = 2n
n−2 be the critical

exponent for the first-order Sobolev embedding. As a direct consequence of
the Caffarelli–Kohn–Nirenberg inequalities [5], if q ∈ [2, 2∗] and β is given as
in (1.4) then D1,2(Rn; |x|α−2) is continuously embedded into Lq(Rn; |x|β).

As noticed in the Introduction, for n ≥ 5 and α ∈ (4 − n, n), the space
D2,2(Rn; |x|α) turns out to be continuously embedded into D1,2(Rn; |x|α−2).
We denote by γα the embedding constant, defined as in (1.8). The value of γα

is explicitly known only for α in a sub-interval of the admissible one (4−n, n).
More precisely, there exists α∗ ∈ (4 − n, 0) such that γα = (n − α)2/4 for
α ∈ (α∗, n), whereas this expression is not valid for all α ∈ (4−n, n) (see [9]).

Hence, for n ≥ 5, q ∈ (2, 2∗∗], α and β as in (1.4), and λ > −γα, the
minimization problem (1.5) is meaningful since the corresponding infimum
value Sα,q(λ) is positive. Let us recall the following well-known property
linking the minimization problem (1.5) with (1.3).

Lemma 2.1. If Sα,q(λ) > 0 and u ∈ D2,2(Rn; |x|α) is a minimum point for
(1.5), then U = τ

1
q−2 u is a solution of (1.3), being τ = Sα,q(λ)

( ∫
Rn |x|−β

|u|q dx
) 2−q

q .
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Since we are interested also in radial ground states of (1.3), we introduce
also spaces of radial functions. More precisely, with obvious notation, we set

D2,2
rad(R

n; |x|α) := {u ∈ D2,2(Rn; |x|α) | u = u(|x|)},

D1,2
rad(R

n; |x|α̃) := {u ∈ D1,2(Rn; |x|α̃) | u = u(|x|)},

with the same restrictions on n, α and α̃ as before. For n ≥ 5 and α ∈
(4 − n, n) the value of the best constant embedding of D2,2

rad(R
n; |x|α) into

D1,2
rad(R

n; |x|α−2) is sharp:

inf
u∈D2,2

rad(R
n;|x|α)

u�=0

∫
Rn |x|α|Δu|2 dx∫

Rn |x|α−2|∇u|2 dx
=

(n − α)2

4
(2.4)

(see [9,13]).
The Emden–Fowler transform, defined by

u(x) = |x| 4−n−α
2 w(− log |x|) (2.5)

provides a nice isomorphism between the space D2,2
rad(R

n; |x|α) and the stan-
dard Sobolev space H2(R), and between D1,2

rad(R
n; |x|α−2) and H1(R). Indeed:

Lemma 2.2. Let n ≥ 5 and α ∈ (4 − n, n). For any radial mapping
u : Rn\{0} → R let w : R → R be defined by (2.5), and viceversa.

(i) u ∈ D2,2
rad(R

n; |x|α) if and only if w ∈ H2(R). Moreover∫

Rn

|x|α|Δu|2 dx = ωn

∫

R

(
|w′′|2 + 2δ̃α|w′|2 + δα|w|2

)
dt

where ωn = |Sn−1| and δ̃α =
(

n−2
2

)2 +
(

α−2
2

)2.
(ii) u ∈ D1,2

rad(R
n; |x|α−2) if and only if w ∈ H1(R). Moreover∫

Rn

|x|α−2|∇u|2 dx = ωn

∫

R

(
|w′|2 + h̃α|w|2

)
dt

where h̃α = hα−2 =
(

n−4+α
2

)2.
(iii) For q ≥ 2 and β as in (1.4), u ∈ Lq(Rn; |x|−β) if and only if w ∈ Lq(R).

In this case ∫

Rn

|x|−β |u|q dx = ωn

∫

R

|w|q dt .

For a proof we refer to [8].
Thanks to Lemma 2.2 the spaces D2,2

rad(R
n; |x|α) and D1,2

rad(R
n; |x|α−2)

are embedded into Lq(Rn; |x|−β) for every q ≥ 2. In particular, taking ac-
count also of (2.4), the minimization problem (1.10) is meaningful for all
λ > − (n−α)2

4 and q > 2. Moreover, an analog of Lemma 2.1 holds true,
namely:

Lemma 2.3. If Srad
α,q (λ) > 0 and u ∈ D2,2

rad(R
n; |x|α) is a minimum point for

(1.10), then U = τ
1

q−2 u is a solution of (1.3), being τ = Srad
α,q (λ)

( ∫
Rn |x|−β

|u|q dx
) 2−q

q .
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3. Global Ground States

In this section, we prove Theorem 1.1.

Lemma 3.1. There exists a sequence (uk) in D2,2(Rn; |x|α) satisfying∫

Rn

(|x|α|Δuk|2 + λ|x|α−2|∇uk|2) dx = Sα,q(λ)q/q−2 + o(1) (3.1)

∫

Rn

|x|−β |uk|q dx = Sα,q(λ)q/q−2 (3.2)

∫

B2

|x|−β |uk|q dx =
1
2
Sα,q(λ)q/q−2 (3.3)

Δ(|x|αΔuk) − λ div(|x|α−2∇uk) − |x|−β |uk|q−2uk → 0 in (D2,2(Rn; |x|α))′.
(3.4)

Proof. Set

F (u) =
∫

Rn

|x|α|Δu|2 dx + λ

∫

Rn

|x|α−2|∇u|2 dx and G(u) =
∫

Rn

|x|−β |u|q dx

so that

Sα,q(λ) = inf{F (u) | G(u) = 1}.

Since the constraint G(u) = 1 defines a smooth manifold, by the Ekeland
variational principle, one can find a sequence (vk) ⊂ D2,2(Rn; |x|α) such that

F ′(vk) − μkG′(vk) → 0 in (D2,2(Rn; |x|α))′ where μk =
〈∇F (vk),∇G(vk)〉

‖∇G(vk)‖2,α
,

∇F (vk), ∇G(vk) denote the Riesz representative in D2,2(Rn; |x|α) of the
functionals F ′(vk), G′(vk), respectively, and 〈 , 〉 stands for the inner prod-
uct in D2,2(Rn; |x|α) corresponding to the norm (1.6). One can easily check
that the sequence (vk) is bounded in D2,2(Rn; |x|α), μk → 2

q Sα,q(λ) and
supk ‖G′(vk)‖ < ∞. Hence

F ′(vk) − μG′(vk) → 0 in (D2,2(Rn; |x|α))′ where μ =
2
q
Sα,q(λ) .

Now the sequence

ũk = Sα,q(λ)1/(q−2)vk

turns out to satisfy (3.1), (3.2) and (3.4). Finally, for every k one can find
ρk > 0 such that

uk(x) = ρ
n−4+α

2
k ũk(ρkx)

satisfies (3.3). The sequence (uk) always verifies (3.1), (3.2) and (3.4) because
the functionals F and G are invariant with respect to (1.9). �

A key tool in our argument is the following compactness lemma. This
result is an adaptation of a tool already used in previous works, like [4] or
[8].
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Lemma 3.2. Let (uk) be a sequence in D2,2(Rn; |x|α) satisfying (3.4). If

uk → 0 weakly in D2,2(Rn; |x|α) (3.5)

lim sup
∫

BR

|x|−β |uk|q dx < Sα,q(λ)q/(q−2)for some R > 0, (3.6)

then |x|−β |uk|q → 0 strongly in L1
loc(BR).

Proof. Fix R′ ∈ (0, R) and take a cutoff function ϕ ∈ C∞
c (BR) such that ϕ =

1 on BR′ . We point out that the sequence (ϕ2uk) is bounded in D2,2(Rn; |x|α).
Using ϕ2uk as a test function in (3.4) we obtain

∫

Rn

ϕ2ukΔ(|x|αΔuk) dx − λ

∫

Rn

ϕ2uk div(|x|α−2∇uk) dx

=
∫

Rn

|x|−βϕ2|uk|q dx + o(1). (3.7)

By (3.5) uk → 0 weakly in H2
loc(R

n\{0}) and then, by compactness, uk → 0
strongly in H1

loc(R
n\{0}). Hence, we have that

∫

Rn

|x|α|Δ(ϕuk)|2 dx =
∫

Rn

|x|αϕ2|Δuk|2 dx + o(1)

∫

Rn

|x|α(Δuk)Δ(ϕ2uk) dx =
∫

Rn

|x|αϕ2|Δuk|2 dx + o(1)

∫

Rn

|x|α−2∇uk · ∇(ϕ2uk) dx =
∫

Rn

|x|α−2|∇(ϕuk)|2 dx + o(1).

Then, after integration by parts,
∫

Rn

ϕ2ukΔ(|x|αΔuk) dx =
∫

Rn

|x|α|Δ(ϕuk)|2 dx + o(1)

∫

Rn

ϕ2uk div(|x|α−2∇uk) dx = −
∫

Rn

|x|α−2|∇(ϕuk)|2 dx + o(1).

Consequently (3.7) reduces to
∫

Rn

|x|α|Δ(ϕuk)|2 dx + λ

∫

Rn

|x|α−2|∇(ϕuk)|2 dx =
∫

Rn

|x|−βϕ2|uk|q dx + o(1).

(3.8)
By (3.6) there exists ε0 > 0 such that

∫

BR

|x|−β |uk|q dx ≤ ε0 < Sα,q(λ)q/(q−2) ∀k large. (3.9)
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Therefore, using the Hölder inequality and (3.9), we estimate

∫

Rn

|x|−βϕ2|uk|q dx ≤ ε
(q−2)/q
0

⎛
⎝

∫

Rn

|x|−β |ϕuk|q dx

⎞
⎠

2/q

. (3.10)

On the other side, by definition of Sα,q(λ),
∫

Rn

|x|α|Δ(ϕuk)|2 dx + λ

∫

Rn

|x|α−2|∇(ϕuk)|2 dx ≥ Sα,q(λ)

×
⎛
⎝

∫

Rn

|x|−β |ϕuk|q dx

⎞
⎠

2
q

. (3.11)

Therefore from (3.8)–(3.11) it follows that

Sα,q(λ)

⎛
⎝

∫

Rn

|x|−β |ϕuk|q dx

⎞
⎠

2/q

≤ ε
(q−2)/q
0

⎛
⎝

∫

Rn

|x|−β |ϕuk|q dx

⎞
⎠

2/q

+ o(1).

As ε0 < Sα,q(λ)q/(q−2) we infer that
∫

Rn

|x|−β |ϕuk|q dx → 0

and then, since ϕ = 1 on BR′ and R′ is arbitrary in (0, R), |x|−β |uk|q → 0
strongly in L1

loc(BR). �

Proof of Theorem 1.1, part (i). Let (uk) be a sequence in D2,2(Rn; |x|α)
satisfying (3.1)–(3.4), as given by Lemma 3.1. Since λ > −γα, by (3.1), the
sequence (uk) is bounded in D2,2(Rn; |x|α) and then it admits a subsequence,
still denoted (uk), weakly converging to some u ∈ D2,2(Rn; |x|α). If u �= 0,
then u is a minimizer for Sα,q(λ) and uk → u strongly in D2,2(Rn; |x|α).
The proof of this fact is definitely standard: one can adapt to our situation
a well-known argument (see, e.g., [21], Chapt. 1, Sect. 4). Hence we have to
exclude that u = 0. We argue by contradiction, assuming that u = 0. In this
case, by Lemma 3.2, ∫

B1

|x|−β |uk|q dx → 0. (3.12)

Therefore, by (3.3),
∫

B2\B1

|x|−β |uk|q dx → 1
2
Sq(λ)q/q−2. (3.13)

Since q ∈ (2, 2∗∗) and uk → 0 weakly in H2
loc(R

n\{0}), the Rellich compact-
ness theorem implies that uk → 0 strongly in Lq(B2\B1), in contradiction
with (3.13). Therefore, u cannot be zero and the proof is complete.
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Now we focus on the case of critical exponent q = 2∗∗. To this purpose,
let us denote by S∗∗ the best constant for the second-order standard Sobolev
embedding, defined by

S∗∗ := inf
u∈C∞

c (Rn)
u�=0

∫
Rn |Δu|2 dx

(∫
Rn |u|2∗∗ dx

)2/2∗∗ .

As S∗∗ > 0, one can introduce the space D2,2(Rn) as the completion of
C∞

c (Rn) with respect to the norm ‖Δu‖L2 . One has that C∞
c (Rn\{0}) is

dense in D2,2(Rn) and then D2,2(Rn) coincides with the space D2,2(Rn; |x|α)
with α = 0 and S∗∗ = S0,2∗∗(0). Let us recall the following result.

Lemma 3.3 [11]. The function U(x) =
(
1 + |x|2)− n−4

2 is a minimizer for S∗∗

in D2,2(Rn).

A condition for existence of a ground state for problem (1.3) in case of
critical exponent is stated by the following result.

Lemma 3.4. If Sα,2∗∗(λ) < S∗∗ then Sα,2∗∗(λ) is attained in D2,2(Rn; |x|α).

Proof. As in the proof of Theorem 1.1, part (i), there exists a sequence (uk)
in D2,2(Rn; |x|α) satisfying (3.1)–(3.4) and there exists u ∈ D2,2(Rn; |x|α)
such that uk → u weakly in D2,2(Rn; |x|α) and strongly in H1

loc(R
n\{0}).

If u �= 0 then, with a standard argument, u turns out to be a minimizer.
Assume by contradiction that u = 0. Then (3.12) and (3.13) hold. Let us fix
a cutoff function ϕ ∈ C∞

c (Rn\{0}) such that 0 ≤ ϕ ≤ 1 and ϕ(x) = 1 for
1 ≤ |x| ≤ 2. Arguing as in the first part of the proof of Lemma 3.2 we obtain
(3.8). By (3.1) and (3.2), we also have that

∫

Rn

|x|α|Δ(ϕuk)|2 dx + λ

∫

Rn

|x|α−2|∇(ϕuk)|2 dx

≤ Sα,2∗∗(λ)

⎛
⎝

∫

Rn

|x|−β |ϕuk|2∗∗
dx

⎞
⎠

2
2∗∗

+ o(1). (3.14)

Since
∫

Rn

|x|α−2|∇(ϕuk)|2 dx ≤ C

∫

B2\B1

(|∇uk|2 + u2
k

)
dx

for some constant C > 0, and uk → 0 strongly in H1
loc(R

n\{0}), (3.8) reduces
to ∫

Rn

|x|α|Δ(ϕuk)|2 dx =
∫

Rn

|x|−βϕ2|uk|2∗∗
dx + o(1). (3.15)
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Now we apply the identity

|x|−α|Δ(|x|α
2 w)|2 = |Δw|2 + α2|x|−4|x · ∇w|2 +

α2

4

(
n − 2 +

α

2

)2

|x|−4w2

+2α|x|−2(x · ∇w)Δw + α2
(
n − 2 +

α

2

)
|x|−4w(x · ∇w)

+α
(
n − 2 +

α

2

)
|x|−2wΔw

with w = ϕuk and, using again the fact that uk → 0 strongly in H1
loc(R

n\{0}),
we infer that∫

Rn

|x|α|Δ(ϕuk)|2 dx =
∫

Rn

∣∣∣Δ(|x|α/2ϕuk)
∣∣∣
2

dx + o(1).

Hence from (3.8), (3.14) and (3.15) it follows that

Sα,2∗∗(λ)

⎛
⎝

∫

Rn

|x|−β |ϕuk|2∗∗
dx

⎞
⎠

2
2∗∗

≥
∫

Rn

∣∣∣Δ(|x|α/2ϕuk)
∣∣∣
2

dx + o(1)

≥ S∗∗

⎛
⎝

∫

Rn

||x|α/2ϕuk|2∗∗
dx

⎞
⎠

2
2∗∗

+ o(1).

Since ∫

Rn

||x|α/2ϕuk|2∗∗
dx =

∫

Rn

|x|−β |ϕuk|2∗∗
dx

and, by hypothesis, Sα,2∗∗(λ) < S∗∗, we deduce that∫

Rn

|x|−β |ϕuk|2∗∗
dx → 0

in contradiction with (3.13), as ϕ = 1 on B2\B1. �

Lemma 3.5. If

− γα < λ <

(
α − α2

4

)
(α2 − 4α)(n − 3) − 2(n − 2)2(n − 4)

(n − 4 + α)2(n − 3) + (n − 4)2
(3.16)

then Sα,2∗∗(λ) < S∗∗.

Proof. Set u(x) = |x|− α
2 U(x) where U is as in Lemma 3.3. One can check

that ∫

Rn

|x|α|Δu|2 dx =
∫

Rn

|ΔU |2 dx + Aα

∫

Rn

|x|−4U2 dx

∫

Rn

|x|α−2|∇u|2 dx = Bα

∫

Rn

|x|−4U2 dx

∫

Rn

|x|−β |u|2∗∗
dx =

∫

Rn

U2∗∗
dx
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where

Aα =
(

α2

4
− α

) (
α2

4
− α − (n − 2)2(n − 4)

2(n − 3)

)

Bα =
(

n − 4 + α

2

)2

+
(n − 4)2

4(n − 3)
.

For detailed computation see [8] or [10]. Then

Sα,q(λ) ≤
∫
Rn |ΔU |2 dx

(∫
Rn U2∗∗ dx

)2/2∗∗ + (Aα + λBα)

∫
Rn U2 dx

(∫
Rn U2∗∗ dx

)2/2∗∗ .

Hence the strict inequality Sα,q(λ) < S∗∗ holds true when

λ < λα := −Aα

Bα
=

(
α − α2

4

)
(α2 − 4α)(n − 3) − 2(n − 2)2(n − 4)

(n − 4 + α)2(n − 3) + (n − 4)2
.

(3.17)

We point out that λα = 0 when α = 0, 4, λα > 0 > −γα when α ∈ (4 −
n, 0) ∪ (4, n), whereas λα < 0 when α ∈ (0, 4). In fact, with some calculation
one can check that in this last case λα > − (n−α)2

4 = −γα. Hence (3.16) is
completely proved. �

Clearly the proof of Theorem 1.1, part (ii) is a direct consequence of
Lemmas 3.4 and 3.5.

When α = 0, condition (3.16) is optimal for the validity of the strict
inequality Sα,2∗∗(λ) < S∗∗. Indeed one has:

Proposition 3.6. If λ ≥ 0 then S0,2∗∗(λ) = S∗∗. Moreover, for λ > 0 the
infimum S0,2∗∗(λ) is not achieved in D2,2(Rn).

For a proof, see [6] or [10].

4. Radial Ground States

Here we prove Theorem 1.2. In view of Lemma 2.2 we have that

Srad
α,q (λ) = ω

q−2
q

n inf
w∈H2(R)

w �=0

∫
R

(|w′′|2 + 2aλ|w′|2 + bλ|w|2) dt
(∫

R
|w|q dt

)2/q
(4.1)

where

aλ =
(n − 2)2

4
+

(α − 2)2

4
+

λ

2
and bλ =

(
(n − α)2

4
+ λ

)(
n − 4 + α

2

)2

.

(4.2)
We point out that, thanks to the assumption λ > −(n−α)2/4, the values aλ

and bλ are positive. Now we use the following key result, proved in [4]:

Theorem 4.1. For every a, b > 0 and q > 2 the minimization problem

inf
w∈H2(R)

w �=0

∫
R

(|w′′|2 + 2a|w′|2 + b|w|2) dt
(∫

R
|w|q dt

)2/q
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admits a minimum point. In addition, if a2 ≥ b then the minimum point
is positive and unique, up to the natural invariances of the problem (i.e.,
translation, inversion, multiplication by a nonzero constant).

In the case in consideration

a2
λ − bλ =

(
(n − 2)(α − 2)

2
− λ

2

)2

.

Hence by Theorem 4.1 there exists a positive function w ∈ H2(R) which is
a minimizer for the problem defined by the right-hand side of (4.1). Such
a minimizer is unique up to translation, inversion, and multiplication by a
nonzero constant. Then, using Lemma 2.2, we infer that the mapping u de-
fined by (2.5) belongs to D2,2

rad(R
n; |x|α), is a positive minimizer for Srad

α,q (λ)
and is the unique minimizer up to the weighted dilation (1.9) and to a multi-
plicative constant. Then one applies Lemma 2.3 to get a radial ground state
for problem (1.3). �

5. Symmetry Breaking and Limiting Profiles

This section contains the proof of the symmetry breaking results stated in
Theorems 1.3 and 1.4, and the description of the limit profile of ground states
for q ∈ (2, 2∗), when λ → ∞ (Theorem 1.5).

Let us start with the discussion of Theorem 1.3, whose proof lies on the
following semicontinuity inequalities.

Lemma 5.1. For λ ≥ 0 one has

lim sup
(α,q)→(0,2∗∗

− )

Sα,q(λ) ≤ S0,2∗∗(λ) and Srad
0,2∗∗(λ) ≤ lim inf

(α,q)→(0,2∗∗
− )

Srad
α,q (λ) .

(5.1)

Proof. Fix λ ≥ 0. For every u ∈ C∞
c (Rn\{0}), u �= 0, set

Qα,q(u) =

∫
Rn |x|α|Δu|2 dx + λ

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q
.

Since Qα,q(u) → Q0,2∗∗(u) as (α, q) → (0, 2∗∗
− ) and C∞

c (Rn\{0}) is dense
in D2,2(Rn; |x|α), the first inequality in (5.1) immediately follows. To check
the second inequality, we proceed in this way. For every q ∈ (2, 2∗∗) let
θq = q−2

2∗∗−2 . By the Hölder inequality, one has that

∫

Rn

|x|−β |u|q dx ≤
⎛
⎝

∫

Rn

|x|α−4|u|2 dx

⎞
⎠

1−θq
⎛
⎝

∫

Rn

|x| nα
n−4 |u|2∗∗

dx

⎞
⎠

θq

and consequently

Srad
α,q (λ)

q
θq2∗∗ ≥ Srad

α,2(λ)
(1−θq)2
θq2∗∗ Srad

α,2∗∗(λ) ≥ δ
(1−θq)2
θq2∗∗

α Srad
α,2∗∗(λ) (5.2)
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[see (2.1)–(2.2)]. Now we estimate Srad
α,2∗∗(λ) in terms of Srad

0,2∗∗(λ). For every α

let τα := 1+ α
n−4 and for every radial u ∈ C∞

c (Rn\{0}), set ũ(x) = u(|x|1/τα).
One can check that∫

Rn

|ũ|2∗∗
dx=τα

∫

Rn

|x| nα
n−4 |u|2∗∗

dx ,

∫

Rn

|x|−2|∇ũ|2 dx=τ−1
α

∫

Rn

|x|α−2|∇u|2 dx,

∫

Rn

|Δũ|2 dx=τ−3
α

∫

Rn

|x|α|Δu+Rαu|2 dx where Rαu=(τα − 1)(n−2)∇u · x

|x|2 .

Setting εα = |τα − 1|(n − 2)γ−1/2
α and using (1.8), as α ∈ (4 − n, n) we can

estimate ∫

Rn

|x|α|Rαu|2 dx ≤ ε2α

∫

Rn

|x|α|Δu|2 dx

and then, by the Cauchy–Schwarz inequality,
∫

Rn

|x|α|Δu + Rαu|2 dx ≤ (1 + εα)2
∫

Rn

|x|α|Δu|2 dx .

Therefore,

Srad
0,2∗∗(λ) ≤

∫
Rn(|Δũ|2 + λ|x|−2|∇ũ|2) dx

(∫
Rn |ũ|2∗∗ dx

) 2
2∗∗

≤ (1 + εα)2

τ
3+2/2∗∗
α

∫
Rn

(|x|α|Δu|2 + λ|x|α−2|∇u|2) dx
(∫

Rn |x| nα
n−4 |u|2∗∗ dx

) 2
2∗∗

+
λ

τ
1+2/2∗∗
α

(
1 − (1 + εα)2

τ2
α

) ∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x| nα

n−4 |u|2∗∗ dx
) 2

2∗∗

≤ Kα

∫
Rn

(|x|α|Δu|2 + λ|x|α−2|∇u|2) dx
(∫

Rn |x| nα
n−4 |u|2∗∗ dx

) 2
2∗∗

where

Kα =
(

(1 + εα)2

τ
3+2/2∗∗
α

+
λγ−1

α

τ
1+2/2∗∗
α

∣∣∣∣1 − (1 + εα)2

τ2
α

∣∣∣∣
)

.

Hence
Srad

α,2∗∗(λ) ≥ K−1
α Srad

0,2∗∗(λ) . (5.3)

For |α| small, one has that C−1 ≤ γα ≤ C and C−1 ≤ δα ≤ C for some con-
stant C > 0. Consequently, if (α, q) → (0, 2∗∗

− ), then τα → 1, θq → 1, εα → 0,
and Kα → 1. Thus the second inequality in (5.1) follows from (5.2)–(5.3). �

Proof of Theorem 1.3. Fix λ > 0. By Theorem 1.2 Srad
0,2∗∗(λ) is achieved

in D2,2
rad(R

n). Instead, by Proposition 3.6, S0,2∗∗(λ) is not attained. Hence
Srad
0,2∗∗(λ) > S0,2∗∗(λ). Therefore, the conclusion follows by applying

Lemma 5.1. �
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Now let us address to Theorem 1.4. It is convenient to normalize the
minimization problems defined by (1.5) and (1.10) as follows. For every ε ≥ 0
set

S̃α,q(ε) := inf
u∈C∞

c (Rn\{0})
u�=0

ε
∫
Rn |x|α|Δu|2 dx +

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q

S̃rad
α,q (ε) := inf

u∈C∞
c (Rn\{0})

u=u(|x|), u �=0

ε
∫
Rn |x|α|Δu|2 dx +

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q

We remark that if λ > 0 then

S̃α,q(λ−1) = λ−1Sα,q(λ) and S̃rad
α,q (λ−1) = λ−1Srad

α,q (λ). (5.4)

Lemma 5.2. Let n ≥ 5 and α ∈ (4 − n, n).

(i) For every q ∈ (2, 2∗∗] one has that S̃α,q(ε) → S̃α,q(0) as ε → 0.
(ii) For every q > 2 one has that S̃rad

α,q (ε) → S̃rad
α,q (0) as ε → 0.

Proof. (i) Fix α ∈ (4 − n, n) and q ∈ (2, 2∗∗] and set

Q̃ε(u) :=
ε
∫
Rn |x|α|Δu|2 dx+

∫
Rn |x|α−2|∇u|2 dx

(∫
Rn |x|−β |u|q dx

)2/q
∀u ∈ C∞

c (Rn\{0}), u �=0.

Since S̃α,q(ε) ≤ Q̃ε(u), when ε → 0 one has that

lim sup S̃α,q(ε) ≤ Q̃0(u) ∀u ∈ C∞
c (Rn\{0}), u �= 0

namely lim sup S̃α,q(ε) ≤ S̃α,q(0). On the other hand, Q̃ε(u) ≥ Q̃0(u) and
then S̃α,q(ε) ≥ S̃α,q(0). Hence the conclusion immediately follows. Clearly
(ii) is proved in the same way. �

Proof of Theorem 1.4. If q ∈ (2∗, 2∗∗] then S̃rad
α,q (0) > 0 whereas S̃α,q(0) = 0.

Indeed, by Lemma 2.2,

S̃rad
α,q (0) = ω

1− 2
q

n inf
w∈C∞

c (R)
w �=0

∫
R
(|w′|2 + h̃α|w|2) dt
(∫

R
|w|q dt

)2/q

which is positive because H1(R) is embedded into Lq. Instead, taking u ∈
C∞

c (Rn), u �= 0, with support in the unit ball, fixing x0 ∈ R
n with |x0| = 1

and setting

uδ(x) = δ− n−2
2 u

(
x − x0

δ

)
,

one can check that Q̃0(uδ) → 0 as δ → 0, because q > 2∗. Hence, by
Lemma 5.2, S̃α,q(ε) < S̃rad

α,q (ε) for ε > 0 small, and then Sα,q(λ) < Srad
α,q (λ)

for λ large, by (5.4). If q ∈ (2, 2∗] and (1.11) holds, then S̃α,q(0) < S̃rad
α,q (0),

as proved in [12] and one concludes as before that Sα,q(λ) < Srad
α,q (λ) for λ

large.
In the following, we study the behavior of ground states of problems

(1.3) for fixed q ∈ (2, 2∗), in the limit λ → ∞.
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Lemma 5.3. Let n ≥ 5, q ∈ (2, 2∗) and assume (1.4). Let εk → 0+ and for
every k let vk ∈ D2,2(Rn; |x|α) be a minimizer for S̃α,q(εk) with

∫

Rn

|x|−β |vk|q dx = 1 and
∫

B2

|x|−β |vk|q dx =
1
2

. (5.5)

If vk → v weakly in D1,2(Rn; |x|α−2) then vk → v strongly in D1,2(Rn; |x|α−2)
and v is a minimizer for S̃α,q(0).

Proof. Let us write, briefly, S̃k = S̃α,q(εk) and S̃0 = S̃α,q(0). Since vk is a
minimizer for S̃k and (5.5) holds, we have that

S̃0 ≤
∫

Rn

|x|α−2|∇vk|2 dx ≤ S̃k (5.6)

and then,

εk

∫

Rn

|x|α|Δvk|2 dx → 0 (5.7)

for S̃k → S̃0 by Lemma 5.2. Now we want to exclude that v = 0. To do this,
we argue by contradiction, assuming that v → 0 weakly in D1,2(Rn; |x|α−2).
Since vk is a minimizer for S̃k, it is so for Sα,q(ε−1

k ) and, by Lemma 2.1,

εkΔ(|x|αΔvk) − div(|x|α−2∇vk) = S̃k|x|−β |vk|q−2vk on R
n. (5.8)

Taking a cutoff function ϕ ∈ C∞
c (Rn) with supp(ϕ) ⊂ B2 and ϕ ≡ 1 in B1,

we can use ϕ2vk as a test function in (5.8) getting that

εk

∫

Rn

|x|αΔvkΔ(ϕ2vk)dx+
∫

Rn

|x|α−2∇vk ·∇(ϕ2vk)dx = S̃k

∫

Rn

|x|−βϕ2|vk|q dx.

(5.9)
We estimate each term of (5.9) as follows. Firstly

∣∣∣∣∣∣

∫

Rn

|x|αΔvkΔ(ϕ2vk) dx

∣∣∣∣∣∣
≤

∫

Rn

|x|α|Δvk|∣∣Δ(ϕ2)vk + 2∇(ϕ2) · ∇vk

∣∣ dx

+
∫

Rn

|x|α|ϕΔvk|2 dx ≤
⎛
⎝

∫

Rn

|x|α|Δvk|2 dx

⎞
⎠

1/2

×

⎛
⎜⎝C

∫

B2\B1

(|vk|2 + |∇vk|2) dx

⎞
⎟⎠

1/2

+
∫

Rn

|x|α|Δvk|2 dx

because ϕ is constant in B1 and out of B2. Then

εk

∫

Rn

|x|αΔvkΔ(ϕ2vk) dx → 0 (5.10)
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thanks to (5.7) and because the sequence (vk) is bounded in D1,2(Rn; |x|α−2)
and then also in H1(B2\B1). Secondly, as vk → 0 weakly in D1,2(Rn; |x|α−2)
we also obtain that∫

Rn

|x|α−2∇vk · ∇(ϕ2vk) dx =
∫

Rn

|x|α−2|∇(ϕvk)|2 dx + o(1) . (5.11)

In addition, using Hölder inequality and (5.5)

∫

Rn

|x|−β |vk|qϕ2 dx ≤ 2− q−2
q

⎛
⎝

∫

Rn

|x|−β |ϕvk|q dx

⎞
⎠

2/q

. (5.12)

By definition of S̃0 we also have that

∫

Rn

|x|α−2|∇(ϕvk)|2 dx ≥ S̃0

⎛
⎝

∫

Rn

|x|−β |ϕvk|q dx

⎞
⎠

2/q

. (5.13)

Plugging (5.10)–(5.13) into (5.9) and taking into account that S̃k → S̃0, we
obtain

S̃0

⎛
⎝

∫

Rn

|x|−β |ϕvk|q dx

⎞
⎠

2/q

≤ 2− q−2
q S̃0

⎛
⎝

∫

Rn

|x|−β |ϕvk|q dx

⎞
⎠

2/q

+ o(1) .

Being q > 2, we infer that
∫

B1
|x|−β |vk|q dx → 0 and, by (5.5),

∫

B2\B1

|x|−β |vk|q dx → 1
2

. (5.14)

On the other hand, if vk → 0 weakly in D1,2(Rn; |x|α−2), in particular vk → 0
weakly in H1

loc(R
n\{0}) and, by the Rellich compactness theorem, vk → 0

strongly in Lq(B2\B1) because q < 2∗. This is in contradiction with (5.14).
Therefore, v �= 0. Since, by (5.7), (vk) is a minimizing sequence for S̃0 with
a nonzero weak limit, it is standard to conclude that v is a minimizer for S̃0

and vk → v strongly in D1,2(Rn; |x|α−2). �

Proof of Theorem 1.5. Let uk ∈ D2,2(Rn; |x|α) be a ground state of (1.3) with

λ = λk and set Sk = Sα,q(λk) and ũk = S
− 1

q−2
k uk. Then ũk turns out to be

a minimizer for S̃α,q(λ−1
k ) with∫

Rn

|x|−β |ũk|q dx = 1 .

Moreover there exists ρk > 0 such that∫

B2

|x|−β |ρk ∗ ũk|q dx =
1
2

.

Hence vk = ρk∗ũk is again a minimizer for Sα,q(λ−1
k ) and satisfies (5.5). Since

(5.6) holds, there exists v ∈ D1,2(Rn; |x|α) such that, for a subsequence, vk →
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v weakly in D1,2(Rn; |x|α). Since λk → ∞, by Lemma 5.3, vk → v strongly
in D1,2(Rn; |x|α) and v is a minimizer for S̃α,q(0). Then u = S̃α,q(0)

1
q−2 v

turns out to be a ground state for problem (1.12) and limk λ
− 1

q−2
k ρk ∗ uk =

S̃α,q(0)
1

q−2 limk S
− 1

q−2
k ρk ∗ uk = u strongly in D1,2(Rn; |x|α).
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