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Abstract. A class of trigonometric polynomial basis functions over trian-
gular domain with three shape parameters is constructed in this paper.
Based on these new basis functions, a kind of trigonometric polynomial
patch over triangular domain, which can be used to construct some
surfaces whose boundaries are arcs of ellipse or parabola, is proposed.
Without changing the control points, the shape of the trigonometric
polynomial patch can be adjusted flexibly in a foreseeable way using
the shape parameters. For computing the proposed trigonometric poly-
nomial patch stably and efficiently, a practical de Casteljau-type algo-
rithm is developed. Moveover, the conditions for G1 continuous smooth
joining two trigonometric polynomial patches are deduced.
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1. Introduction

In the last decades, lots of generalized spline bases have been constructed
in various non-polynomial function spaces (typically including hyperbolic
or trigonometric functions) for curves and surfaces design. For instance,
in [19], a basis for the space of hyperbolic polynomials was given, using which
hyperbola can be represented exactly. In [1,11,14,15,27,29,30], the study for
mixing algebraic and trigonometric/hyperbolic generalized B-splines can be
found. Trigonometric polynomials and splines have also attracted widespread
interest within computer-aided geometric design (CAGD), particularly
within curves design. In [12], the recurrence relation for the trigonometric
B-splines of arbitrary order was established. Afterwards, in [22], it was further
shown that the trigonometric B-splines of odd order form a partition of a con-
stant in the case of equidistant knots and thus the associated trigonometric
B-spline curves possess the important convex hull property. In [23], a family
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of trigonometric polynomials, which contains the trigonometric Lagrange and
Bernstein polynomials, was introduced. In [3,4,6,7], some quadratic trigono-
metric polynomial splines with shape parameters were shown. In [5], a class of
cubic trigonometric Bézier (T-Bézier, for short) curve with a shape parame-
ters was proposed. Later, in [9], the cubic T-Bézier curve was further extended
to possess two shape parameters. In [10,21], based on the theory of envelop
and topological mapping, shape features of the T-Bézier curve were ana-
lyzed. There are some recent papers concerning representation of curves using
trigonometric spline with shape parameters; see for example [8,13,16,24] and
the references quoted therein. Since tensor product Bézier patch is the direct
extension of Bézier curve, we can easily get rectangular patches with shape
parameters through these new curves. However, the Bernstein–Bézier patch
over the triangular domain is not a tensor product patch exactly. Therefore,
we cannot get triangular surfaces with an adjustable shape using the method
of tensor product. Surfaces modeling over triangular domain is important for
many applications and thus it is worth studying the practical methods for
generating surfaces over a triangular domain.

Recently, some researchers have made many efforts for the estab-
lishment of new bases over triangular domain with shape parameters;
see [2,20,25,26,28,31] and the references quoted therein. In [2], Cao and
Wang constructed a class of Bernstein–Bézier patch over the triangular
domain with a shape parameter. By changing the value of the shape parame-
ter, different surfaces under the fixed control points can be obtained. In [20],
Shen and Wang proposed a kind of linear Bernstein-like trigonometric poly-
nomial basis over the triangular domain with a shape parameter, which was a
triangular domain extension of the p-Bézier basis of order three given in [17].
In [25], Wei et al. extended the C-Bézier basis of order four on the univariate
domain given in [29] to a new Bézier-like basis on the triangular domain,
which has a shape parameter and can be used to generate some surfaces
whose boundaries are arcs of ellipse. In [26], Yang and Zeng gave a class of
triangular Bézier surfaces with 3n(n + 1)/2 shape parameters. In [28], Yan
and Liang constructed a set of initial basis functions of order 2 with a shape
parameter and then defined the basis functions of order n using the classical
recursive approach for the Bernstein–Bézier basis over the triangular domain.
Based on the basis, they proposed a class of triangular Bernstein–Bézier-like
surface with a shape parameter. Recently, Zhu and Han [31] have constructed
a class of αβγ-Bernstein–Bézier basis with three exponential shape parame-
ters over the triangular domain, which includes the cubic triangular Said–Ball
basis and the cubic triangular Bernstein–Bézier basis as special cases.

The purpose of this paper is to present a new class of trigonometric
polynomial basis functions over the triangular domain, which has three shape
parameters and is useful for generating triangular surface patch. The given
basis functions are a triangular domain extension of the cubic trigonomet-
ric Bézier basis functions with two shape parameters given in [9]. The three
shape parameters in the corresponding trigonometric polynomial patch have
a predictable adjusting role on the patch. The proposed trigonometric poly-
nomial patch can be used to construct some surfaces whose boundaries are
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arcs of ellipse or parabola. The rest of this paper is organized as follows.
Section 2 gives the construction and properties of the trigonometric polyno-
mial basis functions over the triangular domain. In Sect. 3, the definition and
properties of the trigonometric polynomial patch over the triangular domain
with three shape parameters are shown. A practical de Casteljau-type algo-
rithm for computing the proposed trigonometric polynomial patch over the
triangular domain is developed. Conclusions are given in Sect. 4.

2. Trigonometric Polynomial Basis Functions
Over the Triangular Domain

2.1. Construction of the Trigonometric Polynomial Basis Functions

The classical cubic Bernstein–Bézier basis over the triangular domain with
ten functions is widely used for surface design on the grounds of flexibility
and efficiency; see [18]. However, since the cubic Bernstein–Bézier basis over
the triangular domain does not possess any additional shape parameters,
the shapes of the corresponding triangular Bernstein–Bézier cubic patches
are fixed relatively to their control net. Although we can use weight factors
to adjust the shape of the cubic rational Bernstein–Bézier patch over the
triangular domain, see [18], the effect of the weight factors in modifying the
shape of a patch is sometimes hard to predict. Trigonometric polynomials and
splines has been widely studied for constructing curves; however, there are
few publications concerning trigonometric polynomial surfaces over triangular
domain with shape parameters. Therefore, we want to construct ten new
trigonometric polynomial basis functions over the triangular domain, which
possess three shape parameters to adjust the shape of the corresponding
trigonometric polynomial surface patch.

Definition 2.1. Let λ, μ, γ ∈ [−2, 1], for the given triangular domain D =
{(t, s, w) |t + s + w = π/2, t ≥ 0, s ≥ 0, w ≥ 0}, the following ten functions
are defined to be trigonometric polynomial basis functions, with three shape
parameters λ, μ and γ, over the triangular domain D:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T 3
3,0,0(t, s, w;λ, μ, γ) = (1 − cos t)2(1 − λ cos t),

T 3
0,3,0(t, s, w;λ, μ, γ) = (1 − cos s)2(1 − μ cos s),

T 3
0,0,3(t, s, w;λ, μ, γ) = (1 − cos w)2(1 − γ cos w),

T 3
2,1,0(t, s, w;λ, μ, γ) = cos w sin s(1 − cos t) [2 + λ − λ cos t] ,

T 3
2,0,1(t, s, w;λ, μ, γ) = cos s sin w(1 − cos t) [2 + λ − λ cos t] ,

T 3
1,2,0(t, s, w;λ, μ, γ) = cos w sin t(1 − cos s) [2 + μ − μ cos s] ,

T 3
0,2,1(t, s, w;λ, μ, γ) = cos t sin w(1 − cos s) [2 + μ − μ cos s] ,

T 3
1,0,2(t, s, w;λ, μ, γ) = cos s sin t(1 − cos w) [2 + γ − γ cos w] ,

T 3
0,1,2(t, s, w;λ, μ, γ) = cos t sin s(1 − cos w) [2 + γ − γ cos w] ,

T 3
1,1,1(t, s, w;λ, μ, γ) = 1 − ∑

i+j+k=3,
i·j·k �=1

T 3
i,j,k(t, s, w;λ, μ, γ).

(2.1)
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Remark 2.2. When one of the three variables w is taken as zero, the ten
trigonometric polynomial basis functions T 3

i,j,k(t, s, w;λ, μ, γ) (i, j, k ∈ N, i +
j + k = 3) will degenerate to the following four cubic trigonometric Bézier
(T-Bézier for short) basis functions (notice s = π/2 − t) with two shape
parameters λ, μ given in [9]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0(t;λ, μ) = (1 − sin t)2(1 − μ sin t),
T1(t;λ, μ) = sin t(1 − sin t)(2 + μ − μ sin t),
T2(t;λ, μ) = cos t(1 − cos t)(2 + λ − λ cos t),
T3(t;λ, μ) = (1 − cos t)2(1 − λ cos t).

(2.2)

For λ = μ, this kind of T-Bézier basis functions with a shape parameter was
also proposed in [5]. Therefore, we can see that the trigonometric polynomial
basis functions T 3

i,j,k(t, s, w;λ, μ, γ) (i, j, k ∈ N, i+ j +k = 3) are a triangular
domain extension of the cubic T-Bézier basis functions given in [5,9].

Before further discussion, we want to prove the following lemma, which
is extremely useful in the following discussion.

Lemma 2.3. For t + s + w = π/2, we have

1 − (
sin2t + sin2s + sin2w

)
= 2 sin t sin s sin w. (2.3)

Proof. For t + s + w = π/2, direct computation gives that

1 − (
sin2t + sin2s + sin2w

)
=

1
2

(

cos 2t + cos 2s + cos 2w − 1
)

= cos(t + s) cos(t − s) − sin2w

= cos(t − s) sin w − cos(t + s) sin w

= [cos(t − s) − cos(t + s)] sin w

= 2 sin t sin s sin w.

These imply the lemma. �

2.2. Properties of the Trigonometric Polynomial Basis Functions

From the definition of the trigonometric polynomial basis functions over the
triangular domain, we can obtain the following important properties of the
basis.

Theorem 2.4. The trigonometric polynomial basis functions given in (2.1)
have the following properties:

(A) Nonnegativity. T 3
i,j,k(t, s, w;λ, μ, γ) ≥ 0 for i, j, k ∈ N, i + j + k = 3.

(B) Partition of unity.
∑

i+j+k=3 T 3
i,j,k(t, s, w;λ, μ, γ) = 1.

(C) Symmetry. For all i, j, k ∈ N, i + j + k = 3, we have

T 3
i,j,k(t, s, w;λ, μ, γ) = T 3

j,i,k(s, t, w;μ, λ, γ) = T 3
j,k,i(s, w, t;μ, γ, λ)

= T 3
i,k,j(t, w, s;λ, γ, μ) = T 3

k,i,j(w, t, s; γ, λ, μ)

= T 3
k,j,i(w, s, t; γ, μ, λ).
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(D) Boundary property. When one of the three variables t, s, w is set to be
zero, the ten trigonometric basis functions T 3

i,j,k(t, s, w;λ, μ, γ) (i, j, k ∈
N, i + j + k = 3) with three shape parameters will degenerate to four
corresponding univariate cubic T-Bézier basis functions Ti(· ; · , ·) (i =
0, 1, 2, 3) with two associated shape parameters.

(E) Linear independence. {T 3
i,j,k(t, s, w;λ, μ, γ), i, j, k ∈ N, i + j + k = 3}

are linearly independent.

Proof. We shall prove (A) and (E). The remaining cases follow obviously.

(A) Apparently, for any λ, μ, γ ∈ [−2, 1], i, j, k ∈ N, i+j+k = 3 and ijk �= 1,
we have T 3

i,j,k(t, s, w;λ, μ, γ) ≥ 0. Furthermore, for T 3
1,1,1(t, s, w;λ, μ, γ),

using Lemma 2.3, we have

T 3
1,1,1(t, s, w;λ, μ, γ) = 1 −

∑

i+j+k=3,
i·j·k �=1

T 3
i,j,k(t, s, w;λ, μ, γ)

= 1 − (
sin2t + sin2s + sin2w

)

= 2 sin t sin s sin w ≥ 0.

(E) For any λ, μ, γ ∈ [−2, 1], αi,j,k ∈ R (i, j, k ∈ N, i+j+k = 3), we consider
a linear combination

∑

i+j+k=3

αi,j,kT 3
i,j,k(t, s, w;λ, μ, γ) = 0.

Let w = 0, we have

3∑

i=0

αi,3−i,0Ti(t;λ, μ) = 0. (2.4)

Differentiating with respect to the variable t on both sides, we have

3∑

i=0

αi,3−i,0T
′
i (t;λ, μ) = 0. (2.5)

For t = 0, from (2.4) and (2.5), we get the following linear system of
equations with respect to α0,3,0 and α1,2,0

{
α0,3,0 = 0,
(μ + 2) (α1,2,0 − α0,3,0) = 0.

Thus, we have α0,3,0 = α1,2,0 = 0. For t = π/2, from (2.4) and (2.5),
we have α3,0,0 = α2,1,0 = 0. Similarly, αi,0,3−i = α0,i,3−i = 0 for i =
0, 1, 2, 3. Finally, α1,1,1 = 0.

These imply the theorem. �

Figure 1 shows some plots of trigonometric polynomial basis functions
over the triangular domain. The three shape parameters take values λ = 1,
μ = 0 and γ = −1, respectively.
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Figure 1. Some plots of trigonometric polynomial basis func-
tions over the triangular domain

3. Trigonometric Polynomial Patch Over the Triangular
Domain with Three Shape Parameters

3.1. Definition and Properties of the Trigonometric Polynomial Patch

Definition 3.1. For any real numbers λ, μ, γ ∈ [−2, 1], given a triangular
domain D = {(t, s, w) |t + s + w = π/2, t ≥ 0, s ≥ 0, w ≥ 0}, and ten control
points Pi,j,k ∈ R

3(i, j, k ∈ N, i + j + k = 3). We call

R(t, s, w) =
∑

i+j+k=3

T 3
i,j,k(t, s, w;λ, μ, γ)Pi,j,k, (t, s, w) ∈ D (3.1)

the trigonometric polynomial patch over the triangular domain with three
shape parameters λ, μ and γ.

According to the properties of the trigonometric polynomial basis func-
tions given in (2.1), some properties of the corresponding trigonometric poly-
nomial patch given in (3.1) can be obtained as follows:
(A) Affine invariance and convex hull property. Since the trigonometric poly-

nomial basis functions (2.1) have the properties of partition of unity and
nonnegativity, these imply that the corresponding trigonometric poly-
nomial patch (3.1) has affine invariance and convex hull property.

(B) End point interpolation property. Direct computation gives that

R(π/2, 0, 0) = P3,0,0, R(0, π/2, 0) = P0,3,0, R(0, 0, π/2) = P0,0,3.
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These indicate that the trigonometric polynomial patch interpolates at
the three end points.

(C) End point tangent property. Let w = π/2 − s − t, we have

∂R(t, s, w)
∂t

∣
∣
∣
∣
(π/2,0,0)

= (λ + 2) (P3,0,0 − P2,0,1) ,

∂R(t, s, w)
∂s

∣
∣
∣
∣
(π/2,0,0)

= (λ + 2) (P2,1,0 − P2,0,1) ,

∂R(t, s, w)
∂t

∣
∣
∣
∣
(0,π/2,0)

= (μ + 2) (P1,2,0 − P0,2,1) ,

∂R(t, s, w)
∂s

∣
∣
∣
∣
(0,π/2,0)

= (μ + 2) (P0,3,0 − P0,2,1) ,

∂R(t, s, w)
∂t

∣
∣
∣
∣
(0,0,π/2)

= (γ + 2) (P1,0,2 − P0,0,3) ,

∂R(t, s, w)
∂s

∣
∣
∣
∣
(0,0,π/2)

= (γ + 2) (P0,1,2 − P0,0,3) .

These indicate that the tangent plane at the three end points (π/2, 0, 0),
(0, π/2, 0), (0, 0, π/2) are the three planes spanned by the control points
P3,0,0, P2,1,0, P2,0,1; P0,3,0, P1,2,0, P0,2,1; P0,0,3, P1,0,2, P0,1,2, respec-
tively.

(D) Boundary property. For w = 0, R(t, s, w) is just the following cubic
T-Bézier curve given in [9], with two shape parameters λ and μ.

R(t, π/2 − t, 0) =
3∑

i=0

Pi,3−i,0Ti(t;λ, μ). (3.2)

Similarly, R(0, s, π/2 − s) and R(π/2 − w, 0, w) are also T-Bézier curve
with shape parameters μ, γ and λ, γ, respectively. For λ = μ = 0,
the T-Bézier curve (3.2) can represent exactly elliptic and parabolic
arcs; see [9]. These imply that for λ = μ = γ = 0, the three bound-
aries of trigonometric polynomial patch (3.1) can be arcs of ellipse
or parabola, respectively. Figure 2 shows the trigonometric polyno-
mial patches generated by setting λ = μ = γ = 0. On the left,
the figure shows the trigonometric polynomial patch whose bound-
aries are two elliptic arcs and a parabolic arc, respectively. Its con-
trol points are {P3,0,0 = (0,−4, 0) , P0,3,0 = (2, 0, 0), P0,0,3 = (0, 0, 1),
P2,1,0 = (1,−4, 0), P2,0,1 = (0,−4, 1/2), P1,2,0 = (2, 0, 0), P0,2,1 =
(2, 0, 1/2), P1,0,2 = (0,−2, 1), P0,1,2 = (1, 0, 1), P1,1,1 = (1,−2, 1)}.
The corresponding parametric equations of the three boundaries are:
t = 0, s = −4 sin x, w = cos x; t = 2 sin x, s = 0, w = cos x; and
t = 2 cos x, s = −4+4cos2x,w = 0, where x ∈ [0, π/2] . On the right, the
figure shows the trigonometric polynomial patch with three same bound-
aries as a quarter of the unit circle. The three boundaries are fitted onto
the unit sphere. The associated control points of the trigonometric poly-
nomial patch are {P3,0,0 = (0, 1, 0) , P0,3,0 = (1, 0, 0), P0,0,3 = (0, 0, 1),
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Figure 2. Trigonometric polynomial patches with elliptic or
parabolic boundary curves.

P2,1,0 = (1/2, 1, 0), P2,0,1 = (0, 1, 1/2), P1,2,0 = (1, 1/2, 0), P0,2,1 =
(1, 0, 1/2), P1,0,2 = (0, 1/2, 1), P0,1,2 = (1/2, 0, 1), P1,1,1 = (1,−2, 1)}.
The corresponding three parametric equations of the boundaries are:
t = 0, s = sin x,w = cos x; t = sin x, s = 0, w = cos x; and
t = cos x, s = sinx,w = 0, where x ∈ [0, π/2] .

(E) Shape adjustable property. Without changing the control points, we can
adjust the shape of the obtained trigonometric polynomial patch con-
veniently using the three shape parameters λ, μ and γ. As the three
shape parameters increase at the same time, the trigonometric polyno-
mial patch will be made close to the control net. From the boundary
property of the trigonometric polynomial patch, we can see that the
three shape parameters λ, μ and γ have nothing to do with the bound-
ary curves R(0, s, w), R(t, 0, w) and R(t, s, 0), respectively. It is equiva-
lent to say that changing the values of single one shape parameter, one
corresponding boundary curve will not change. Moreover, from (3.1),
differentiate with respect to the shape parameter λ, we have

∂R(t, s, w)
∂λ

= (1 − cos t)2 [P2,1,0 cos w sin s + P2,0,1 cos s sin w

−P3,0,0 cos t] . (3.3)

Therefore, there is no relationship between ∂R(t,s,w)
∂λ and λ. These imply

that for the fixed control points and the given value (t, s, w) ∈ D, chang-
ing single one shape parameter λ will make the corresponding point on
the trigonometric polynomial surface patch (3.1) move linearly in the
direction given by (3.3). The shape parameters μ and γ have similar
effect on the trigonometric polynomial surface patch.

Figure 3 shows the trigonometric polynomial patches and the effect on
the patches by altering the values of the shape parameters under the same
control points. Figure 4 shows the directions of the three vectors ∂R/∂λ,
∂R/∂μ and ∂R/∂γ at a fixed point R(π/6, π/6, π/6). Here, to show the direc-
tions of the three vectors more clearly, the lengths of the three vectors are all
magnified by 15 times.
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Figure 3. Trigonometric polynomial patches with different
shape parameters.
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∂R/∂γ at a fixed point R(π/6, π/6, π/6).
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3.2. De Casteljau-type Algorithm

The classical de Casteljau algorithm is a stable and efficient process for com-
puting the triangular Bernstein–Bézier patch. Now, we want to develop a
practical de Casteljau-type algorithm for computing the proposed trigono-
metric polynomial patch given in (3.1). For this purpose, for any (t, s, w) ∈ D,
let

f1(t, s, w) :=
sin t cos w

(
sin2t+sin2s+sin2w

)

cos w (sin t+sin s)
(
sin2t+sin2s+sin2w

)
+sin w

(
sin2t+sin2s

) ,

f2(t, s, w) :=
sin s cos w

(
sin2t+sin2s+sin2w

)

cos w (sin t+sin s)
(
sin2t+sin2s+sin2w

)
+sin w

(
sin2t+sin2s

) ,

f3(t, s, w) :=
sinw

(
sin2t+sin2s

)

cos w (sin t+sin s)
(
sin2t+sin2s+sin2w

)
+sin w

(
sin2t+sin2s

) ,

g1(t, s, w) := (1 − cos t)
(
sin2t + sin2s + sin2w

)
,

g2(t, s, w) := sin s cos w
(
sin2t + sin2s + sin2w

)
+ sin t sin s sin w,

g3(t, s, w) := cos s sin w
(
sin2t + sin2s + sin2w

)
+ sin t sin s sin w,

and

P 1
2,0,0 :=

(1−λ cos t)
1+cos t

P3,0,0+
(1+λ) sin s cos w

1+cos t
P2,1,0+

(1+λ) cos s sin w

1+cos t
P2,0,1,

P 1
0,2,0 :=

(1+μ) sin t cos w

1+cos s
P1,2,0+

(1−μ cos s)
1+cos s

P0,3,0+
(1+μ) cos t sin w

1+cos s
P0,2,1,

P 1
0,0,2 :=

(1+γ) sin t cos s

1+cos w
P1,0,2+

(1+γ) cos t sin s

1+cos s
P0,1,2+

(1−γ cos w)
1+cos s

P0,0,3,

P 1
1,1,0 := f1(t, s, w)P2,1,0 + f2(t, s, w)P1,2,0 + f3(t, s, w)P1,1,1,

P 1
1,0,1 := f1(t, w, s)P2,0,1 + f3(t, w, s)P1,1,1 + f2(t, w, s)P1,0,2,

P 1
0,1,1 := f3(s, w, t)P1,1,1 + f1(s, w, t)P0,2,1 + f2(s, w, t)P0,1,2.

Then, we can rewrite the expression of the trigonometric polynomial patch
(3.1) as follows:

R(t, s, w) =
1 − cos2t

sin2t + sin2s + sin2w

× [
g1(t, s, w)P 1

2,0,0 + g2(t, s, w)P 1
1,1,0 +g3(t, s, w)P 1

1,0,1

]

+
1 − cos2s

sin2t + sin2s + sin2w

× [
g2(s, t, w)P 1

1,1,0 + g1(s, t, w)P 1
0,2,0 +g3(s, t, w)P 1

0,1,1

]

+
1 − cos2w

sin2t + sin2s + sin2w

× [
g3(w, s, t)P 1

1,0,1+g2(w, s, t)P 1
0,1,1+g1(w, s, t)P 1

0,0,2

]
. (3.4)
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Furthermore, by setting

P 2
1,0,0 := g1(t, s, w)P 1

2,0,0 + g2(t, s, w)P 1
1,1,0 + g3(t, s, w)P 1

1,0,1,

P 2
0,1,0 := g2(s, t, w)P 1

1,1,0 + g1(s, t, w)P 1
0,2,0 + g3(s, t, w)P 1

0,1,1,

P 2
0,0,1 := g3(w, s, t)P 1

1,0,1 + g2(w, s, t)P 1
0,1,1 + g1(w, s, t)P 1

0,0,2,

we have

R(t, s, w) =
1 − cos2t

sin2t + sin2s + sin2w
P 2
1,0,0 +

1 − cos2s
sin2t + sin2s + sin2w

P 2
0,1,0

+
1 − cos2w

sin2t + sin2s + sin2w
P 2
0,0,1

:= P 3
0,0,0. (3.5)

For t + s + w = π/2, it is easy to check that f1(t, s, w) + f2(t, s, w) +
f3(t, s, w) = 1 and g1(t, s, w) + g2(t, s, w) + g3(t, s, w) = 1 (by using Lemma
2.3). Thus (3.4) and (3.5) really indicate a de Casteljau-type algorithm for
computing the proposed trigonometric polynomial patch given in (3.1).

3.3. Joining Two Trigonometric Polynomial Patches

In practical surface construction, we often need to join several patches
together to generate shapes that are too complex to handle with a single
patch. During the joining trigonometric polynomial patches, we need to con-
trol the smoothness of the connecting surface. Let two trigonometric polyno-
mial patches be

R1(t, s, w) =
∑

i+j+k=3

T 3
i,j,k(t, s, w;λ1, μ, γ)Pi,j,k, (t, s, w) ∈ D, (3.6)

and

R2(t, s, w) =
∑

i+j+k=3

T 3
i,j,k(t, s, w;λ2, μ, γ)Qi,j,k, (t, s, w) ∈ D, (3.7)

respectively.
Apparently, if the control points satisfy

P0,j,k = Q0,j,k, j, k ∈ N, j + k = 3, (3.8)

the two patches join along a common boundary curve: R1(0, s, w) = R2(0, s,
w), s+w = π/2. Thus, the two patches clearly form a surface with positional
continuity, or a surface with C0 continuity.

For the common boundary curve R1(0, s, π/2 − s), differentiating with
respect to s, we have

dR1(0, s, π/2 − s)
ds

= sin s(1 − cos s)(2 + μ − 3μ cos s)(P0,3,0 − P0,2,1)

+2 sin s cos s(P0,2,1 − P0,1,2)
+ cos s(1 − sin s)(2 + γ − 3γ sin s)(P0,1,2 − P0,0,3).

(3.9)
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For R1(t, s, π/2 − t − s) and R2(t, s, π/2 − t − s), differentiating with
respect to t respectively, we get

∂R1(t, s, π/2 − t − s)
∂t

∣
∣
∣
∣
t=0

= sin s(1 − cos s)(2 + μ − 3μ cos s)(P1,2,0 − P0,2,1)

+2 sin s cos s(P1,1,1 − P0,1,2)
+ cos s(1−sin s)(2+γ−3γ sin s)(P1,0,2−P0,0,3),

(3.10)
∂R2(t, s, π/2 − t − s)

∂t

∣
∣
∣
∣
t=0

= sin s(1 − cos s)(2 + μ − 3μ cos s)(Q1,2,0 − Q0,2,1)

+2 sin s cos s(Q1,1,1 − Q0,1,2)
+ cos s(1−sin s)(2+γ−3γ sin s)(Q1,0,2−Q0,0,3).

(3.11)

−1
0

1

−2
−1

0
0

0.5

1

t

λ
1
=μ=γ=λ

2
=−1

s

w

−1

0

1

−2
−1

0
0

0.5

1

t

λ
1
=μ=γ=λ

2
=1

s

w

−1

0

1

−2
−1

0
0

0.5

1

t

λ
1
=−1,μ=γ=−0.5,λ

2
=−1

s

w

−1

0

1

−2
−1

0
0

0.5

1

t

λ
1
=−1,μ=γ=λ

2
=1

s

w

−1

0

1

−2
−1

0
0

0.5

1

t

λ
1
=μ=γ=−1,λ

2
=1

s

w

−1

0

1

−2
−1

0
0

0.5

1

t

λ
1
=−1,μ=γ=0.5,λ

2
=1

s

w

Figure 5. G1 continuous smooth joining two trigonometric
polynomial patches with different shape parameters.
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The condition for smooth joining is that the vectors defined by Eqs.
(3.9) through (3.11) are coplanar for any value of s, see [18], which can be
expressed as follows:

∂R2(t, s, π/2−t−s)
∂t

∣
∣
∣
∣
t=0

= φ
dR1(0, s, π/2−s)

ds
+ϕ

∂R1(t, s, π/2 − t − s)
∂t

∣
∣
∣
∣
t=0

,

where φ and ϕ both are constants. From these, we can obtain a rule
⎧
⎨

⎩

Q1,2,0 − Q0,2,1 = φ(P0,3,0 − P0,2,1) + ϕ(P1,2,0 − P0,2,1),
Q1,1,1 − Q0,1,2 = φ(P0,2,1 − P0,1,2) + ϕ(P1,1,1 − P0,1,2),
Q1,0,2 − Q0,0,3 = φ(P0,1,2 − P0,0,3) + ϕ(P1,0,2 − P0,0,3).

(3.12)

Summarizing the above discussion, we can conclude the following theo-
rem.

Theorem 3.2. For λl, μ, γ ∈ [−2, 1], l = 1, 2, the surface connected (3.6)
with (3.7) is G1 continuous, if the control points satisfy the conditions (3.8)
and (3.12).

From Theorem 3.2, we can see that the conditions for smooth joining
two trigonometric polynomial patches are analogous to that for joining two
triangular Bernstein–Bézier cubic patches; see [18]. However, we can adjust
the shape of the obtained G1 continuous surface conveniently using the shape
parameters in the trigonometric polynomial patches.

Figure 5 shows the G1 continuous surface generated by smooth joining
two trigonometric polynomial patches with different shape parameters. The
parameters take fixed values φ = 1 and ϕ = −1.

4. Conclusion

The given trigonometric polynomial basis over the triangular domain with
three shape parameters is a new construction for geometric design and com-
puting, which has properties of nonnegativity, partition of unity, symmetry,
linear independence and so on. Using the new basis, we propose a class of
trigonometric polynomial patch over the triangular domain, which has some
properties analogous to that of the triangular Bernstein–Bézier cubic patch
and is useful for generating some surfaces whose boundaries are arcs of an
ellipse or parabola. The boundary curves of the trigonometric polynomial
patch are precisely the T-Bézier curves given in [5,9]. The newly developed
de Casteljau-type algorithm is practical for computing the proposed trigono-
metric polynomial patch. Without changing the control net, the shape of
the obtained G1 continuous smooth surface can be adjusted predictably and
conveniently using the three shape parameters.

Even though many properties of the given trigonometric polynomial
basis over the triangular domain have been discussed in detail, the approx-
imation power of the basis has not been discussed. In practice, the exten-
sion of the given trigonometric polynomial basis over the triangular domain



854 X. Han and Y. Zhu MJOM

to higher degrees and subdivision algorithm for the proposed trigonomet-
ric polynomial patch are important considerations. More work is needed to
address these problems.
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