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Continuity and Schatten–von Neumann
Properties for Localization Operators
on Modulation Spaces
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Abstract. We use sharp convolution estimates for weighted Lebesgue and
modulation spaces to obtain an extension of the celebrated Cordero-
Gröchenig theorems on boundedness and Schatten–von Neumann prop-
erties of localization operators on modulation spaces. We also give a new
proof of the Weyl connection based on the kernel theorem for Gelfand–
Shilov spaces.
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1. Introduction

We use sharp convolution estimates from [37] to extend the celebrated
Cordero–Gröchenig theorems on boundedness and Schatten–von Neumann
properties of localization operators on modulation spaces [6]. Related results
are given by Toft in [32–35]. See also [6–12] for different aspects on localiza-
tion operators.

General results on products and convolution from [37] include six
Lebesgue and six weight parameters. This generality is used here to prove
a refinement of certain known results from the above-mentioned references.
For example, in [6] window functions (see Definition 1.1 below) are chosen
to be in the same space, while here we allow different Lebesgue and weight
parameters for different windows.

To define a localization operator we start with the short-time Fourier
transform, a time–frequency representation related to Feichtinger’s modula-
tion spaces cf. [14].
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Let S(1)(Rd) be the Gelfand–Shilov space of smooth functions given by:

f ∈ S(1)(Rd) ⇐⇒ ‖f(x)eh·|x|‖L∞ < ∞ and ‖f̂(ω)eh·|ω|‖L∞ < ∞, ∀h > 0.

Any f ∈ S(1)(Rd) can be extended to the complex domain as holomor-
phic functions in a strip [17]. The dual space of S(1)(Rd) will be denoted
by (S(1))′(Rd).

The short-time Fourier transform (STFT in the sequel) of f ∈ S(1)(Rd)
with respect to the window g ∈ S(1)(Rd)\0 is given by

Vgf(x, ω) = 〈f,MωTxg〉 =
∫
Rd

f(t) g(t − x) e−2πiωt dt. (1.1)

The map (f, g) 
→ Vgf from S(1)(Rd)×S(1)(Rd) to S(1)(R2d) extends uniquely
to a continuous mapping from (S(1))′(Rd) × (S(1))′(Rd) to (S(1))′(R2d) by
duality.

Moreover, for a fixed g ∈ S(1)(Rd)\0, the following characterization
holds:

f ∈ S(1)(Rd) ⇐⇒ Vgf ∈ S(1)(R2d). (1.2)
We refer to [22,31,36] for the proof and more details on STFT in more general
Gelfand–Shilov type spaces. For our purposes, the duality between S(1)(Rd)
and (S(1))′(Rd) will suffice, and we use it here for the simplicity and the
clarity of exposition.

Definition 1.1. Let f ∈ S(1)(Rd). The localization operator Aϕ1,ϕ2
a with sym-

bol a ∈ S(1)′
(R2d) and windows ϕ1, ϕ2 ∈ S(1)(Rd) is given by

Aϕ1,ϕ2
a f(t) =

∫
R2d

a(x, ω)Vϕ1f(x, ω)MωTxϕ2(t) dxdω. (1.3)

In the weak sense,

〈Aϕ1,ϕ2
a f, g〉 = 〈aVϕ1f, Vϕ2g〉 = 〈a, Vϕ1f Vϕ2g〉, f, g ∈ S(1)(Rd), (1.4)

where the brackets express a suitable duality between a pair of dual spaces.
Indeed, Aϕ1,ϕ2

a is a well-defined continuous operator from S(1)(Rd) to (S(1))′

(Rd).
Localization operators were introduced by Berezin in the study of gen-

eral Hamiltonians satisfying the so-called Feynman inequality, within a quan-
tization problem in quantum mechanics [2].

In signal analysis, they are related to the localization technique devel-
oped by Slepian–Polak–Landau; we refer to [30] for an overview.

Localization in phase space and basic facts on localization operators,
together with references to applications in optics and signal analysis are given
in [13], which initiated further study of the topic. More precisely, in [13],
Daubechies studied localization operators Aϕ1,ϕ2

a with Gaussian windows

ϕ1(t) = ϕ2(t) = π−d/4exp(−t2/2) and with a radial symbol a ∈ L1(R2d).

Such operators are named Daubechies operators afterward. The eigenfunc-
tions of Daubechies operators are Hermite functions:

hn(t) = (−1)nπ−1/4(2nn!)−1/2exp(t2/2)(exp(−t2))(n), n = 0, 1, . . . ,
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and eigenvalues can be explicitly calculated. This is an important issue in
applications, cf. [27].

Note that Hermite functions belong not only to S(1)(Rd), but also to test
function spaces for quasi-analytic ultradistributions. In that context, Hermite
functions give rise to important representation theorems [24].

Localization operators of the form 〈LχΩf, g〉 =
∫∫

Ω
W (f, g), where

W (f, g)(x, ω) =
∫

f

(
x +

t

2

)
g

(
x − t

2

)
e−2πiωt dt, f, g ∈ L2(R), (1.5)

is the Wigner transform (see [16], it is also known as the cross-Wigner dis-
tribution), were studied in [27] in the context of signal analysis. There it is
proved that if Ω ⊂ [−B,B] × [−T, T ] is an open set such that all its cross
sections in both ω and x directions consist of at most M intervals, then the
eigenfunctions of LχΩ belong to S(1)(Rd).

Inverse problem for a simply connected localization domain Ω has been
recently studied in [1]. It is proved that if one of the eigenfunctions of
Daubechies operator is a Hermite function, then Ω is a disc centered at the
origin.

In abstract harmonic analysis, localization operators on a locally com-
pact group G and Lp(G), 1 ≤ p ≤ ∞, were studied in [40] where one can
find a product formula and Schatten–von Neumann properties of localization
operators; see also [4].

Since the beginning of the twenty-first century, localization operators in
the context of modulation spaces were studied by many authors, cf. [6,7,12,
15,34,35]. See also the references given there.

For example, different choices of windows and symbols of localization
operators give rise to different continuity, compactness and Schatten–von
Neumann properties [6,9,34,35], composition formulas and Fredholm prop-
erty [7,12], multilinear versions [8], eigenvalue and eigenfunctions estimates
[1,13,27].

We will use the standard tools in the study of localization operators
such as

(a) STFT, cross-Wigner distribution, and the Weyl transform representa-
tion of localization operators,

(b) continuity properties of pseudo-differential operators, and
(c) convolution and multiplication in Lebesgue and modulation spaces.

In particular, we prove the Weyl connection (see Lemma 3.3) in a dif-
ferent manner from that in [3,16].

Notation. The Schwartz class is denoted by S(Rd), and the space of tempered
distributions by S ′(Rd). We use brackets 〈f, g〉 to denote the extension of the
inner product 〈f, g〉 =

∫
f(t)g(t)dt on L2(Rd) to any pair of dual spaces. The

Fourier transform is normalized to be f̂(ω) = Ff(ω) =
∫

f(t)e−2πitωdt. The
involution f∗ is f∗(·) = f(−·), and the convolution of f and g is given by
f ∗ g(x) =

∫
f(x − y)g(y)dy, when the integral exists.
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We denote by 〈·〉s the polynomial weights

〈(x, ω)〉s = (1 + |x|2 + |ω|2)s/2, (x, ω) ∈ R
2d, s ∈ R,

and 〈x〉 = 〈1 + |x|2〉, when x ∈ R
d.

We use the notation A � B to indicate A ≤ cB for a suitable constant
c > 0, whereas A � B means that c−1A ≤ B ≤ cA for some c ≥ 1.

Recall, the Schatten class Sp, 1 ≤ p < ∞, consists of all compact oper-
ators with singular values in lp, and S∞ is the space of bounded operators
on L2(Rd). The singular values of a compact operator L ∈ S∞ are the eigen-
values of

√
L∗L.

2. Modulation Spaces

Modulation spaces are defined through decay and integrability conditions on
STFT, which makes them suitable for time–frequency analysis and for the
study of localization operators in particular. The definition is given in terms
of weighted mixed-norm Lebesgue spaces.

In general, a weight w(·) on R
d is a non-negative and continuous func-

tion. By Lp
w(Rd), p ∈ [1,∞] we denote the weighted Lebesgue space defined

by the norm

‖f‖Lp
w

= ‖fw‖Lp =
(∫

|f(x)|pw(x)pdx

)1/p

,

with the usual modification when p = ∞. When w(x) = 〈x〉t t ∈ R, we use
the notation Lp

t (R
d) instead.

Similarly, the weighted mixed-norm space Lp,q
w (R2d), p, q ∈ [1,∞] con-

sists of (Lebesgue) measurable functions on R
2d such that

‖F‖Lp,q
w

=

(∫
Rd

(∫
Rd

|F (x, ω)|pw(x, ω)pdx

)q/p

dω

)1/q

< ∞,

where w(x, ω) is a weight on R
2d.

In particular, when w(x, ω) = 〈x〉t〈ω〉s, s, t ∈ R, we will use the notation
Lp,q

w (R2d) = Lp,q
t,s (R2d).

Now, modulation space Mp,q
s,t (Rd) consists of distributions whose STFT

belong to Lp,q
t,s (R2d):

Definition 2.1. Let φ ∈ S(Rd)\0, s, t ∈ R and p, q ∈ [1,∞]. The modulation
space Mp,q

s,t (Rd) consists of all f ∈ S ′(Rd) s. t.

‖f‖Mp,q
s,t

≡
(∫

Rd

(∫
Rd

|Vφf(x, ω)〈x〉t〈ω〉s|p dx

)q/p

dω

)1/q

< ∞ (2.1)

(with obvious interpretation of the integrals when p = ∞ or q = ∞).

In special cases, we use the usual abbreviations: Mp,p
0,0 = Mp, Mp,p

t,t =
Mp

t , etc.
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Remark 2.2. Notice that the original definition given in [14] contains more
general, submultiplicative weights. We restrict ourselves to w(x, ω) = 〈x〉t〈ω〉s,
s, t ∈ R, since the convolution and multiplication estimates which will be used
later on involve weighted spaces with such polynomial weights. The weights
of (almost) exponential growth are used in the study of Gelfand–Shilov spaces
and their duals in cf. [9,22,31,36]. We refer to [19] for a survey on the most
important types of weights commonly used in time–frequency analysis.

The following theorem lists some of the basic properties of modulation
spaces. We refer to [14,18] for its proof.

Theorem 2.3. Let p, q, pj , qj ∈ [1,∞] and s, t, sj , tj ∈ R, j = 1, 2. Then:
(1) Mp,q

s,t (Rd) are Banach spaces, independent of the choice of φ ∈ S(Rd)\0;
(2) if p1 ≤ p2, q1 ≤ q2, s2 ≤ s1 and t2 ≤ t1, then

S(Rd) ⊆ Mp1,q1
s1,t1 (Rd) ⊆ Mp2,q2

s2,t2 (Rd) ⊆ S ′(Rd);

(3) ∩s,tM
p,q
s,t (Rd) = S(Rd), ∪s,tM

p,q
s,t (Rd) = S ′(Rd).

Modulation spaces include the following well-known function spaces:
(a) M2(Rd) = L2(Rd).
(b) M2

t,0(R
d) = L2

t (R
d).

(c) Sobolev spaces M2
0,s(R

d) = H2
s (Rd) = {f | f̂(ω)〈ω〉s ∈ L2(Rd)}.

(d) Shubin spaces M2
s (Rd) = L2

s(R
d) ∩ H2

s (Rd) = Qs(Rd), cf. [28].

3. Main Results

We introduce the Young functional :

R(p) ≡ 2 − 1
p0

− 1
p1

− 1
p2

, p = (p0, p1, p2) ∈ [1,∞]3. (3.1)

When R(p) = 0, the Young inequality for convolution reads as

‖f1 ∗ f2‖Lp′
0

≤ ‖f1‖Lp1 ‖f2‖Lp2 , fj ∈ Lpj (Rd), j = 1, 2.

We give a version of this inequality for weighted Lebesgue spaces when 0 ≤
R(p) ≤ 1/2.

The following theorem is an extension of the Young inequality to the
case of weighted Lebesgue spaces and modulation spaces.

Theorem 3.1. Let sj , tj ∈ R, pj , qj ∈ [1,∞], j = 0, 1, 2. Assume that 0 ≤
R(p) ≤ 1/2, R(q) ≤ 1,

0 ≤ tj + tk, j, k = 0, 1, 2, j �= k, (3.2)
0 ≤ t0 + t1 + t2 − d · R(p), and (3.3)
0 ≤ s0 + s1 + s2, (3.4)

with strict inequality in (3.3) when R(p) > 0 and tj = d · R(p) for some
j = 0, 1, 2.

Then, (f1, f2) 
→ f1 ∗ f2 on C∞
0 (Rd) extends uniquely to a continuous

map from
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(1) Lp1
t1 (Rd) × Lp2

t2 (Rd) to L
p′
0−t0(R

d);

(2) Mp1,q1
s1,t1 (Rd) × Mp2,q2

s2,t2 (Rd) to M
p′
0,q′

0−s0,−t0(R
d).

For the proof we refer to [37]. It is based on a detailed study of an auxil-
iary three-linear map over carefully chosen regions in R

d; see Subsections 3.1
and 3.2 in [37]. This result extends multiplication and convolution properties
obtained in [26]. Moreover, the result is sharp in the following sense.

Proposition 3.2. Let pj , qj ∈ [1,∞] and sj , tj ∈ R, j = 0, 1, 2. Assume that
at least one of the following statements hold true:
(1) The map (f1, f2) 
→ f1 ∗ f2 on C∞

0 (Rd) is continuously extendable to a
map from Lp1

t1 (Rd) × Lp2
t2 (Rd) to L

p′
0−t0(R

d);
(2) The map (f1, f2) 
→ f1 ∗ f2 on C∞

0 (Rd) is continuously extendable to a
map from Mp1,q1

s1,t1 (Rd) × Mp2,q2
s2,t2 (Rd) to M

p′
0,q′

0−s0,−t0(R
d);

Then, (3.2) and (3.3) hold true.

Again, we refer to [37] for the proof.
Next, we give a Weyl transform representation of localization operators.
Let Lσ be the Weyl pseudo-differential operator with the Weyl symbol

σ ∈ S(1)′
(R2d):

〈Lσf, g〉 = 〈σ,W (g, f)〉, f, g ∈ S(1)(Rd). (3.5)

In fact, if σ ∈ S(1)(R2d), then the Weyl pseudo-differential operator Lσ

is defined as the oscillatory integral:

Lσf(x) =
∫∫

σ(
x + y

2
, ω)f(y)e2π(x−y)·ωdydω, f ∈ S(1)(R2d).

It extends to each σ ∈ S(1)′
(R2d), and then Lσ is continuous from S(1)(R2d)

to S(1)′
(R2d). With this definition, (3.5) is proved in, e.g., [16,18,39].

Next, we establish the so-called Weyl connection, which shows that the
set of localization operators is a subclass of the set of Weyl operators. Al-
though the same result (in the context of the Schwartz class) can be found
elsewhere ([3,16]), it is given here to be self-contained. The proof is based on
kernel theorem for Gelfand–Shilov spaces, and direct calculation.

Lemma 3.3. If a ∈ S(1)′
(R2d) and ϕ1, ϕ2 ∈ S(1)(Rd), then the localization

operator Aϕ1,ϕ2
a is Weyl pseudo-differential operator with the Weyl symbol

σ = a ∗ W (ϕ2, ϕ1); in other words,

Aϕ1,ϕ2
a = La∗W (ϕ2,ϕ1). (3.6)

The proof of Lemma 3.3 is given in Sect. 3.3. Note that Lemma 3.3 can
be proved in the quasi-analytic case by the same arguments. However, in this
paper we do not need such an extension. Notice also that in the literature the
symbol a in Lemma 3.3 is called the anti-Wick symbol of the Weyl pseudo-
differential operator Lσ.

Lemma 3.3 describes the localization operators in terms of the convolu-
tion. The smoothing effect of convolution gives boundedness of localization
operators over different spaces even if a is a distribution. It is shown in [6]
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that polynomial weights give rise to boundedness result for operators with
symbols which are compactly supported tempered distributions. We refer to
[9] for related results in the context of non-quasi-analytic classes. Moreover,
representation theorems based on the heat kernel and parametrix techniques
lead to trace-class result for certain quasi-analytic distributions; see [10].

We start with an estimate of modulation space norm of the cross-Wigner
distribution.

Proposition 3.4. Let tj ∈ R, pj ∈ [1,∞], j = 0, 1, 2, 0 ≤ R(p) ≤ 1/2,
0 ≤ tj + tk, j, k = 0, 1, 2, j �= k, and 0 ≤ t0 + t1 + t2 − d · R(p), with strict
inequality when R(p) > 0 and tj = d · R(p) for some j = 0, 1, 2.

If ϕj ∈ M
pj

tj (Rd), j = 1, 2, then the map (ϕ1, ϕ2) 
→ W (ϕ2, ϕ1) where
W is the cross-Wigner distribution given by (1.5) is a sesquilinear continuous
map from Mp2

t2 (Rd) × Mp1
t1 (Rd) to M

1,p′
0

−t0,0(R
2d).

Proof. Note that in the 2d−case,

‖F‖Mp,q
s,t (R2d) =

(∫
R2d

(∫
R2d

|VΦF (z, ζ)〈z〉t〈ζ〉s|p dz

)q/p

dζ

)1/q

for some Φ ∈ S(R2d)\0.
Let ψ1, ψ2 ∈ S(Rd)\0. Then,

‖W (ϕ2, ϕ1)‖
M

1,p′
0

−t0,0

� ‖(VW (ψ1,ψ2)W (ϕ2, ϕ1))(z, ζ)〈ζ〉−t0‖
L1,p′

0
,

where z, ζ ∈ R
2d.

By the relation between the Wigner transform and the STFT:

W (f, g)(x, ω) = 2de4πix·ωVg∗f(2x, 2ω), f, g ∈ S(1)(Rd)

(see [18, Lemma 4.3.1] and the proof of [18, Lemma 14.5.1 (b)]), it follows
that

(VW (ψ1,ψ2)W (ϕ2, ϕ1))(z, ζ)

= e−2πiz2ζ2Vψ1ϕ1(z1 +
ζ2

2
, z2 − ζ1

2
)Vψ2ϕ2(z1 − ζ2

2
, z2 +

ζ1

2
),

with z = (z1, z2) ∈ R
d × R

d and ζ = (ζ1, ζ2) ∈ R
d × R

d. Hence

‖W (ϕ2, ϕ1)‖
M

1,p′
0

−t0,0

�
(∫

R2d

(∫
R2d

|Vψ1ϕ1(z1+
ζ2

2
, z2− ζ1

2
)||Vψ2ϕ2(z1− ζ2

2
, z2+

ζ1

2
)|dz

)
〈ζ〉−t0p′

0dζ

)1/p′
0

=

(∫
R2d

(|Vψ1ϕ1| ∗ |Vψ2ϕ2
∗|)(ζ2, −ζ1)〈(ζ2, −ζ1)〉−t0p′

0dζ

)1/p′
0

,

where the convolution is obtained from the integration over z after the the
change of variables (z1, z2) 
→ (z1 − ζ2

2 , z2 + ζ1
2 ); see also [6, Proposition 2.5].

Therefore,

‖W (ϕ2, ϕ1)‖
M

1,p′
0

−t0,0

� ‖ |Vψ1ϕ1| ∗ |Vψ2ϕ2|∗ ‖
L

p′
0

−t0

� ‖Vψ1ϕ1‖L
p1
t1

‖Vψ2ϕ2‖L
p2
t2

,

where the last estimate follows from Theorem 3.1 (1). �
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Remark 3.5. Our result extends some known estimates. In particular, when
s = −t0 = t1 = t2 ≥ 0, p = p′

0 = p2 ∈ [1,∞] and p1 = 1, we obtain

‖W (ϕ2, ϕ1)‖M1,p
s,0

� ‖ϕ1‖M1
s
‖ϕ2‖Mp

s
, (3.7)

that is [6, Proposition 2.5] (with a slightly different notation).
In certain situations (in particular, when p′

0 �= p2), we obtain sharper
estimates for the modulation space norm of the cross-Wigner distribution
with respect to (3.7). For example, if p1 = 1, p2 = ∞ and p ≥ 2, we obtain

‖W (ϕ2, ϕ1)‖M1,p
−t0,0

� ‖ϕ1‖M1
t1

‖ϕ2‖M∞
t2

,

with 0 < t0 + t1 + t2 − d · R(p) when p = ∞ and tj = d · R(p) for some
j = 0, 1, 2.

3.1. Continuity Properties

In this subsection, we use the relation between the Weyl pseudo-differential
operators and localization operators, from Lemma 3.3, and convolution re-
sults for modulation spaces from Theorem 3.1 to obtain continuity results for
Aϕ1,ϕ2

a for different choices of windows and symbol.
Let σ be the Weyl symbol of Lσ. By [18, Theorem 14.5.2], if σ ∈

M∞,1(R2d), then Lσ is bounded on Mp,q(Rd), 1 ≤ p, q ≤ ∞. This result has
a long history starting with the Calderon–Vaillancourt theorem on bounded-
ness of pseudo-differential operators with smooth and bounded symbols on
L2(Rd) [5]. It is extended by Sjöstrand in [29] where M∞,1 is used as appro-
priate symbol class. Sjöstrand’s results were thereafter further extended in
[18,20,21,32–34].

Theorem 3.6. Let the assumptions of Theorem 3.1 hold. If ϕj ∈ M
pj

tj (Rd),
j = 1, 2, and a ∈ M∞,r

u,v (R2d) where 1 ≤ r ≤ p0, u ≥ t0 and v ≥ dR(p)
with v > dR(p) when R(p) > 0, then Aϕ1,ϕ2

a is bounded on Mp,q(Rd), for all
1 ≤ p, q ≤ ∞ and the operator norm satisfies the uniform estimate

‖Aϕ1,ϕ2
a ‖op � ‖a‖M∞,r

u,v
‖ϕ1‖M

p1
t1

‖ϕ2‖M
p2
t2

.

Proof. Let ϕj ∈ M
pj

tj (Rd), j = 1, 2. Then, by Proposition 3.4 it follows that

W (ϕ2, ϕ1) ∈ M
1,p′

0
−t0,0(R

2d). This fact, together with Theorem 3.1 (2), implies
that

a ∗ W (ϕ2, ϕ1) ∈ M p̃,1(R2d), p̃ ≥ 2,

if the involved parameters fulfill the conditions of the theorem. Concern-
ing the Lebesgue parameters, it is easy to see that p̃ ≥ 2 is equivalent
to R(p) = R(p,∞, 1) ∈ [0, 1/2], and that 1 ≤ r ≤ p0 is equivalent to
R(q) = R(∞, r, p′

0) ≤ 1. It is also straightforward to check that the choice
of the weight parameters u and v implies that a ∗ W (ϕ2, ϕ1) ∈ M p̃,1(R2d),
p̃ ≥ 2.

In particular, if p̃ = ∞ then a∗W (ϕ2, ϕ1) ∈ M∞,1(R2d). From [18, The-
orem 14.5.2] (and Lemma 3.3), it follows that Aϕ1,ϕ2

a is bounded on Mp,q(Rd),
1 ≤ p, q ≤ ∞.

The operator norm estimate also follows from [18, Theorem 14.5.2]. �
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Remark 3.7. When p1 = p2 = 1, r = p0 = ∞ and t1 = t2 = −t0 = s ≥ 0,
u = −s, v = 0 we recover the celebrated Cordero–Gröchenig Theorem, [6,
Theorem 3.2], in the case of polynomial weights, with the uniform estimate

‖Aϕ1,ϕ2
a ‖op � ‖a‖M∞

−s,0
‖ϕ1‖M1

s
‖ϕ2‖M1

s

in our notation.
We remark that a modification of Theorem 3.6 can be obtained by using

[18, Theorem 14.5.6] instead. This result allows symbols from weighted mod-
ulation spaces. We leave to the reader to check how to change the conditions
on weight parameters in Theorem 3.6 in such case.

3.2. Schatten–von Neumann Properties

In this subsection, we use known results on Weyl pseudo-differential operators
with symbol σ, their connection to localization operators from Lemma 3.3,
and convolution properties of modulation spaces. References to the proof of
the following well-known theorem can be found in [6].

Theorem 3.8. Let σ be the Weyl symbol of Lσ.
(1) If σ ∈ M1(R2d), then ‖Lσ‖S1 � ‖σ‖M1 .
(2) If σ ∈ Mp(R2d), 1 ≤ p ≤ 2, then ‖Lσ‖Sp

� ‖σ‖Mp .

(3) If σ ∈ Mp,p′
(R2d), 2 ≤ p ≤ ∞, then ‖Lσ‖Sp

� ‖σ‖Mp,p′ .

The Schatten–von Neumann properties in the following Theorem are
formulated in the spirit of [6]; see also [32,33]. Note that more general weights
are considered in [34,35], leading to different types of results.

Theorem 3.9. Let the assumptions of Theorem 3.1 hold, 1 ≤ q ≤ ∞, and let
v ≥ dR(p) with v > dR(p) when R(p) > 0.
(1) If 1 ≤ p ≤ 2 and p ≤ r ≤ 2p/(2 − p), then the mapping (a, ϕ1, ϕ2) 
→

Aϕ1,ϕ2
a is bounded from Mr,q

−s,v × M1
s × Mp

s into Sp, that is

‖Aϕ1,ϕ2
a ‖Sp

� ‖a‖Mr,q
0,t

‖ϕ1‖M1
s
‖ϕ2‖Mp

s
.

(2) If 2 ≤ p ≤ ∞ and p ≤ r, then the mapping (a, ϕ1, ϕ2) 
→ Aϕ1,ϕ2
a is

bounded from Mr1,r2
u,v × M1

s × Mp′
s into Sp, that is

‖Aϕ1,ϕ2
a ‖Sp

� ‖a‖Mr,q
0,t

‖ϕ1‖M1
s
‖ϕ2‖Mp′

s
.

Proof. (1) By Proposition 3.4, it follows that W (ϕ2, ϕ1) ∈ M1,pw

−t0,0(R
2d), with

t0 ≥ −s and pw ∈ [2p/(p + 2), p]. Therefore, W (ϕ2, ϕ1) ∈ M1,p
s,0 (R2d).

This and Theorem 3.1 (2) imply a ∗ W (ϕ2, ϕ1) ∈ Mp(R2d). The result
now follows from Theorem 3.8 (2).

(2) By Proposition 3.4, it follows that W (ϕ2, ϕ1) ∈ M1,pw

−t0,0(R
2d), with

t0 ≥ −s and pw ∈ [p′, 2p′/(p′ + 2), p]. Therefore, W (ϕ2, ϕ1) ∈ M1,p′
s,0 (R2d).

The statement follows from Theorem 3.1 (2) and Theorem 3.8 (3), sim-
ilarly to the previous case. �

Remark 3.10. A particular choice: r = p, q = ∞ and v = 0 gives [6, Theorem
3.4].
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We finish with necessary conditions whose proofs follow from the proofs
of Theorems 4.3 and 4.4 in [6] and are therefore omitted.

Theorem 3.11. Let the assumptions of Theorem 3.1 hold and let a ∈ S ′(R2d).

(1) If there exists a constant C = C(a) > 0 depending only on the symbol a
such that

‖Aϕ1,ϕ2
a ‖S∞ ≤ C‖ϕ1‖M

p1
t1

‖ϕ2‖M
p2
t2

,

for all ϕ1, ϕ2 ∈ S(Rd), then a ∈ M∞,r
u,v (R2d) where 1 ≤ r ≤ p0, u ≥ t0

and v ≥ dR(p) with v > dR(p) when R(p) > 0.
(2) If there exists a constant C = C(a) > 0 depending only on the symbol a

such that

‖Aϕ1,ϕ2
a ‖S2 ≤ C‖ϕ1‖M1‖ϕ2‖M1

for all ϕ1, ϕ2 ∈ S(Rd), then a ∈ M2,∞(R2d).

3.3. Proof of Lemma 3.3

We first note that the integrals below are absolutely convergent and that the
change of order of integration is allowed. Moreover, when suitably interpreted,
certain oscillatory integrals are meaningful in S(1)′

(Rd). In particular, if δ
denotes the Dirac distribution, then the Fourier inversion formula in the sense
of distributions gives

∫
e2πixωdω = δ(x), wherefrom

∫∫
φ(x)e2πi(x−y)ωdxdω =

φ(y), when φ ∈ S(1)(Rd).
Next, we will use the following version of the Schwartz kernel theorem

[23]. If T is any linear and continuous operator from S(1)(R2d) to S(1)′
(R2d),

then there exists a uniquely determined k ∈ S(1)′
(R2d) such that

〈Tf, g〉 = 〈k, g ⊗ f〉, f, g ∈ S(1)(R2d).

We refer to [25] for the proof; see also [38].
Let us show that the kernel of Aϕ1,ϕ2

a coincides with the kernel of Lσ

when σ = a ∗ W (ϕ2, ϕ1).
From (1.4), it follows that:

〈Aϕ1,ϕ2
a f, g〉 =

∫∫
R2d

a(x, ω)

(∫
Rd

f(y)MωTxϕ1(y)dy

) (∫
Rd

g(t)MωTxϕ2(t)dt

)
dxdω

=

∫
Rd

∫
Rd

f(y)g(t)

(∫∫
R2d

a(x, ω)MωTxϕ1(y)MωTxϕ2(t)dxdω

)
dtdy

= 〈k, g ⊗ f〉,

where

k(t, y) =
∫
R2d

a(x, ω)MωTxϕ1(y)MωTxϕ2(t)dxdω. (3.8)
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Next, we calculate the kernel of La∗W (ϕ2,ϕ1). We will use the covariance
property of the Wigner transform:

W (TxMωf, TxMωg)(p, q) =
∫
Rd

TxMωf

(
p +

t

2

)
TxMωg

(
p − t

2

)
e−2πiqtdt

=
∫
Rd

e2πi(p+ t
2 )ωf

(
p +

t

2
− x

)
e−2πi(p− t

2 )ωg

(
p − t

2
− x

)
e−2πiqtdt

=
∫
Rd

f

(
p−x+

t

2

)
g

(
p − x − t

2

)
e−2πi(q−ω)tdt = W (f, g)(p − x, q − ω).

Note also that W (f, g) = W (g, f).
We have:

a ∗ W (ϕ2, ϕ1)(p, q) =
∫∫

R2d
a(x, ω)W (ϕ2, ϕ1)(p − x, q − ω)dxdω

=
∫∫

R2d
a(x, ω)W (TxMωϕ2, TxMωϕ1)(p, q)dxdω

=
∫∫

R2d
a(x, ω)

(∫
Rd

TxMωϕ2

(
p +

s

2

)
TxMωϕ1

(
p − s

2

)
e−2πiqsds

)
dxdω

=
∫∫

R2d
a(x, ω)

(∫
Rd

MωTxϕ2

(
p +

s

2

)
MωTxϕ1

(
p − s

2

)
e−2πiqsds

)
dxdω,

where we have used the commutation relation TxMω = e−2πix·ωMωTx.

Now,

〈La∗W (ϕ2,ϕ1)f, g〉 = 〈a ∗ W (ϕ2, ϕ1), W (g, f)〉

=

∫∫
R2d

a(x, ω)

∫∫
R2d

(∫∫
R2d

MωTxϕ2

(
p+

s

2

)
MωTxϕ1

(
p − s

2

)
e−2πiq(s−r)

× g
(
p +

r

2

)
f

(
p − r

2

)
dsdr

)
dpdqdxdω

=

∫∫
R2d

a(x, ω)

∫
Rd

( ∫∫
R2d

MωTxϕ2

(
p +

s

2

)
MωTxϕ1

(
p − s

2

)

× g
(
p +

r

2

)
f

(
p − r

2

)
δ(s − r)dsdr

)
dpdxdω

=

∫∫
R2d

a(x, ω)

∫
Rd

( ∫
Rd

MωTxϕ2

(
p +

s

2

)
MωTxϕ1

(
p − s

2

)

× g
(
p +

s

2

)
f

(
p − s

2

)
ds

)
dpdxdω,

where we use the above-mentioned interpretation of the oscillatory integral
which appears above. Finally, the change of variable p + s

2 = t and p − s
2 = y

gives

〈La∗W (ϕ2,ϕ1)f, g〉 =
∫∫

R2d

∫∫
R2d

a(x, ω)MωTxϕ2(t)MωTxϕ1(y)dxdω

× g(t)f(y)dtdy = 〈k, g ⊗ f〉,
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where k is given by (3.8). By the uniqueness of the kernel we conclude that
Aϕ1,ϕ2

a = La∗W (ϕ2,ϕ1), and the proof is complete.

4. Concluding Remarks

Continuity of localization operators on modulation spaces with general sub-
multiplicative weights is used in the study of ultradistributional symbols in
[9]. One can find a trace-class result when the symbol is a compactly sup-
ported non-quasi-analytic ultradistribution. Notice that such weights may
have at most exponential growth at infinity.

By the Hardy theorem for modulation spaces, cf. [22] if the weight grows
at infinity faster than Cexp(a|z|2), z ∈ R

2d, for some a ≥ π/2, the correspond-
ing modulation space is trivial.

When the growth at infinity of the involved weight is between C1exp
(b|z|), and C2exp(c|z|2), z ∈ R

2d, for some b > 0 and some small positive c,
the corresponding test function spaces are quasi-analytic.

Boundedness results in the framework of quasi-analytic ultradistribu-
tions require different techniques. For example, a trace-class result for quasi-
analytic ultradistributions given in [10] is based on representations of quasi-
analytic ultradistributions based on the heat kernel method, and correspond-
ing growth properties of the STFT. Notice that representations via Hermite
functions given in [24,25] cannot be used in that context, since quasi-analytic
spaces of test functions are not dense in test function spaces for compactly
supported ultradistributions.

An extension of the results from the present paper is possible if the
convolution and multiplication results from [37] can be extended to general
sub-multiplicative weights. This requires new nontrivial estimates and will
be done in a separate paper.
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[23] Hörmander, L.: The analysis of linear partial differential Operators, vol. I,
Springer, Berlin (1983)

[24] Langenbruch, M.: Hermite functions and weighted spaces of generalized func-
tions. Manuscr. Math 119, 269–285 (2006)

[25] Lozanov–Crvenkovic, Z., Perisic, D., Taskovic, M.: Gelfand-Shilov spaces,
Structural and Kernel theorems, Preprint. arXiv:0706.2268v2
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