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Abstract. In this paper, we consider a nonlinear wave equation with
delay. We show that under suitable conditions on the initial data, the
weights of the damping, the delay term and the nonlinear source, the
energy of solutions blows up in a finite time.
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1. Introduction

In this paper, we consider the following nonlinear damped wave equation
with delay
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt(x, t) − div
(
|∇u(x, t)|m−2∇u(x, t)

)

+μ1ut(x, t) + μ2ut(x, t − τ) = b |u(x, t)|p−2
u(x, t), in Ω × (0,∞),

ut (x, t − τ) = f0 (x, t − τ) , in (0, τ) ,

u(x, t) = 0, on ∂Ω × [0,+∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

(1.1)

where p > m ≥ 2, b, μ1 are positive constants, μ2 is a real number, and τ > 0
represents the time delay. Time delays arise in many applications because,
in most instances, physical, chemical, biological, thermal, and economic phe-
nomena naturally not only depend on the present state but also on some
past occurrences. In recent years, the control of PDEs with time delay effects
has become an active area of research. In many cases, it has been shown
that delay is a source of instability and even an arbitrarily small delay may
destabilize a system which is uniformly asymptotically stable in the absence
of delay unless additional conditions or control terms have been used. For
instance, it well known that the system
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⎧
⎪⎨

⎪⎩

utt(x, t) − �u(x, t) + a0ut(x, t) + aut(x, t − τ) = 0 in Ω × (0,∞),
u(x, t) = 0 in Γ0 × [0,∞),
∂u
∂v (x, t) = 0 in Γ1 × (0,∞),

(1.2)

in the absence of delay (a = 0, a0 > 0) is exponentially stable, see [13,32].
In the presence of delay (a > 0), Nicaise and Pignotti [20] examined system
(1.2) and proved, under the assumption that the weight of the feedback with
delay is smaller than that without delay (a < a0), the energy is exponentially
stable. When a ≥ a0, they produced a sequence of delays for which the
corresponding solution is instable. The same results were obtained for the
case of boundary delay. We refer the reader to [1] for an abstract treatment
to this problem and to [19,22,23] for analogous results in the case of time-
varying delay. When the delay term in (1.2) is replaced by the distributed
delay of the form

∫ τ2

τ1

a(s)ut(x, t − s)ds,

exponential stability results were obtained in [21] under the condition
∫ τ2

τ1

a(s)ds < a0.

In the absence of the delay term (a = 0), problem (1.2) has been exten-
sively studied and many results concerning global existence and nonexistence
have been proved. For instance, for the equation

utt − Δu + aut|ut|m = b|u|γu, in Ω × (0,∞), (1.3)

m, γ ≥ 0, it is well known that, for a = 0, the source term bu|u|γ , (γ > 0)
causes finite-time blowup of solutions with negative initial energy (see [4]).
The interaction between the damping and the source terms was first consid-
ered by Levine [10,11] in the linear damping case (m = 0). He showed that
solutions with negative initial energy blow up in finite time. Georgiev and
Todorova [7] extended Levine’s result to the nonlinear damping case (m > 0).
In their work, the authors introduced a different method and showed that so-
lutions with negative energy continue to exist globally ‘in time’ if m ≥ γ and
blow up in finite time if γ > m and the initial energy is sufficiently negative.
This last blow-up result has been extended to solutions with negative initial
energy only by Messaoudi [15] and others. For results of same nature, we
refer the reader to Levine and Serrin [9], and Vitillaro [27], Messaoudi and
Said-Houari [17].

For problem (1.3) in IRn, we mention, among others, the work of Levine,
Serrin and Park [12], Todorova [25,26], Messaoudi [16], and Zhou [31].
Recently, Autuori et al. [3] investigated the global nonexistence for nonlinear
Kirchhoff system. They established their result using the classical potential
well and the concavity method when the initial energy is controlled above by
a critical value.
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In [14], Messaoudi considered the following initial-boundary value prob-
lem in the presence of the viscoelastic term
⎧
⎪⎨

⎪⎩

utt − Δu +
∫ t

0
g(t − τ)Δu(τ)dτ + ut|ut|m−2 = u|u|p−2, in Ω × (0,∞)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.4)

where Ω is a bounded domain of IRn (n ≥ 1) with a smooth boundary ∂Ω, p >
2,m ≥ 1, and g : IR+ −→ IR+ is a positive nonincreasing function. He showed,
under suitable conditions on g, that solutions with initial negative energy
blow up in finite time if p > m and continue to exist if m ≥ p. This result has
been later pushed, by the same author [18], to certain solutions with positive
initial energy. A similar result was also obtained by Wu [29] using a different
method. Motivated by the above works, Wu and Lin [30] showed that the
global nonexistence results for

utt − Δu +
∫ t

0

g(t − s)Δu(x, s)ds + Q(x, t, ut) = f(x, u), in Ω × (0,∞),

can be extended to a bigger region.
More blow-up results can also be found in many interesting works.

For example, Autuori et al. [2] discussed a strongly damped Kirchhoff–Love
model, containing an intrinsic dissipative term of Kelvin–Voigt type, and
proved a global nonexistence and a priori estimates for the life span of max-
imal solutions. In [6], Feng et al. studied a semilinear wave equation with
a nonlinear boundary dissipation. They looked into the interaction between
the boundary damping and the interior source. Under appropriate assump-
tions on the initial data, two blow-up results with positive initial energy were
established. In [8], Guo and Rammaha focused on the life span of solutions of
systems of nonlinear wave equations with a supercritical source and proved,
under some restrictions on the parameters and for negative initial energy,
that every weak solution of the system blows up in finite time. Also, in [24],
Ouchenane et al. proved that solutions of a system of wave equations with
viscoelastic term, degenerate damping, and strong nonlinear sources acting
in both equations cannot exist globally provided that the initial data are suf-
ficiently large. In [28], Wang discussed a class of fourth-order wave equations
with a linear damping term and a superlinear source term. He showed the
uniqueness and the existence of a local solution and gave necessary and suffi-
cient conditions for global existence and finite-time blow up of these solutions.
Moreover, the potential well depth was estimated.

In the present work, we are concerned with problem (1.1). We prove,
under suitable conditions on the initial data that the energy blows up in
finite time. To the best of our knowledge, this is the first work that deals
with blow up of solutions to problems involving delay. The contents of this
paper is organized as follows. In Sect. 2, we prepare some material needed in
our proof and state the energy functional. In Sect. 3, we state and prove our
main result.
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2. Preliminaries

In this section, we transform the equation in (1.1) to a system, using the idea
of [17] and introduce the associated energy. We also refer the reader to [5] for
existence of solutions to nonlinear problems with delay.

So, we introduce the new variable

z(x, ρ, t) = ut(x, t − τρ), x ∈ Ω, ρ ∈ (0, 1), t > 0.

Thus, we have

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Ω, ρ ∈ (0, 1), t > 0.

Then, problem (1.1) takes the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) − div
(|∇u(x, t)|m−2 ∇u(x, t)

)
+ μ1ut(x, t)

+μ2z(x, 1, t) = b |u(x, t)|p−2 u(x, t), in Ω × (0, ∞)

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, in Ω × (0, 1) × (0, ∞)

z(x, ρ, 0) = f0(x, −ρτ), in Ω × (0, 1)

u(x, t) = 0, on ∂Ω × [0, 1)

u(x, 0) = u0(x), in Ω.

(2.1)

Next, we introduce the energy functional

E(t) :=
1
2

‖ut‖2
2 +

1
m

‖∇u‖m
m − b

p
‖u‖p

p +
ξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx, t ≥ 0,

(2.2)

where

τ |μ2| < ξ < τ (2μ1 − |μ2|) , μ1 > |μ2| . (2.3)

We also set

H(t) = −E(t) =
b

p
‖u‖p

p − 1
2

‖ut‖2
2 − 1

m
‖∇u‖m

m − ξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx.

(2.4)

The following lemma shows that the associated energy of the problem under
the condition μ1 > |μ2| is decreasing.

Lemma 2.1. Let u be the solution of (2.1). Then, for some C0 ≥ 0,

E′ (t) ≤ −C0

∫ 1

0

(
u2

t + z2(x, 1, t)
)
dx ≤ 0. (2.5)

Proof. Multiplying Eq. (2.1)1 by ut and integrating over (0, 1) and (2.1)2 by
(ξ/τ)z and integrating over (0, 1) × Ω with respect to ρ and x summing up
we get

d
dt

∫

Ω

(
1
2

‖ut‖2
2 +

1
m

‖∇u‖m
m − b

p
‖u‖p

p

)

dx +
ξ

2
d
dt

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

= −μ1

∫

Ω

u2
t dx − ξ

τ

∫

Ω

∫ 1

0

zzρ(x, ρ, t)dρdx − μ2

∫

Ω

utz(x, 1, t)dx. (2.6)
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We, now, estimate the last two terms of the right-hand side of (2.6) as follows

− ξ

τ

∫

Ω

∫ 1

0

zzρ(x, ρ, t)dρdx = − ξ

2τ

∫

Ω

∫ 1

0

∂

∂ρ
z2(x, ρ, t)dρdx

=
ξ

2τ

∫

Ω

(
z2(x, 0, t) − z2(x, 1, t)

)
dx =

ξ

2τ

(∫

Ω

u2
t dx −

∫

Ω

z2(x, 1, t)dx

)

and

−μ2

∫

Ω

utz(x, 1, t)dx ≤ |μ2|
2

(∫

Ω

u2
t dx +

∫

Ω

z2(x, 1, t)dx

)

.

Hence, we obtain

dE(t)
dt

≤ −
(

μ1 − ξ

2τ
− |μ2|

2

) ∫

Ω

u2
t dx −

(
ξ

2τ
− |μ2|

2

)∫

Ω

z2(x, 1, t)dx.

Using (2.3), we have, for some C0 > 0,

E′ (t) ≤ −C0

∫

Ω

(
u2

t + z2(x, 1, t)
)
dx ≤ 0.

�

Lemma 2.2. Suppose that m < p ≤ mn
n−m , if n > m and p > m if n ≤

m. Then there exists a positive constant C > 1 depending on Ω only such
that

‖u‖s
p ≤ C

[
‖u‖p

p + ‖∇u‖m
m

]
,

for any u ∈ W 1,m
0 (Ω) and m ≤ s ≤ p.

Proof. If ‖u‖p ≥ 1 then

‖u‖s
p ≤ ‖u‖p

p .

If ‖u‖p ≤ 1 then, ‖u‖s
p ≤ ‖u‖m

p . Using Sobolev embedding theorems, we have

‖u‖s
p ≤ ‖u‖m

p ≤ C ‖∇u‖m
m .

As a result, we have

Corollary 2.3. Let the assumptions of Lemma 2.2 hold. Then we have the
following

‖u‖s
p ≤ C

[
b + p

p
‖u‖p

p − H(t) − 1
2

‖ut‖2
2 − ξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

]

,

for all t ∈ [0, T ).



242 M. Kafini and S. A. Messaoudi MJOM

3. Blowup

In this section, we state and prove our main result.

Theorem 3.1. Suppose that m < p ≤ mn
n−m , if n > m and p > m if n ≤ m.

Assume further that

E(0) :=
1
2

‖u1‖2
2 +

1
m

‖∇u0‖m
m − b

p
‖u0‖p

p +
ξ

2

∫

Ω

∫ 1

0

f0(x,−ρτ)dρdx < 0.

(3.1)

Then the solution (1.4) blows up in finite time.

The result in (2.6) implies that

E(t) ≤ E(0) ≤ 0. (3.2)

Hence,

H ′(t) = −E′(t) = C0

∫ 1

0

(
u2

t + z2(x, 1, t)
)
dx ≥ C0

∫ 1

0

z2(x, 1, t)dx ≥ 0,

(3.3)

and

0 < H(0) ≤ H(t) ≤ b

p
‖u‖p

p . (3.4)

We set

L(t) = H1−α(t) + ε

∫

Ω

uutdx +
μ1ε

2

∫

Ω

u2dx, t ≥ 0, (3.5)

where ε > 0 to be specified later and

0 < α <
p − m

2p
. (3.6)

A direct differentiation of L(t) gives

L′(t) = (1 − α) H−α(t)H ′(t) + ε

∫

Ω

u2
t dx + ε

∫

Ω

uuttdx + μ1ε

∫

Ω

uutdx

= (1 − α) H−α(t)H ′(t) + ε ‖ut‖2
2 − ε ‖∇u‖m

m − εμ2

∫

Ω

uz(x, 1, t)dx

+εb

∫

Ω

|u|p dx. (3.7)

Using

εμ2

∫

Ω

uz(x, 1, t)dx≤ε |μ2|
(

δ

∫

Ω

u2dx+
1
4δ

∫

Ω

z2(x, 1, t)dx

)

, for any δ>0,

and (3.3), we obtain

L′(t) ≥
[

(1 − α) H−α(t) − ε |μ2|
4δC0

]

H ′(t) + ε ‖ut‖2
2 − ε ‖∇u‖m

m + εb ‖u‖p
p

−εδ |μ2| ‖u‖2
2 (3.8)
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Of course (3.8) remains valid even if δ is time dependant since the integral
is taken over the x-variable. Therefore by taking δ so that |μ2|

4δC0
= kH−α(t),

for large k to be specified later, and substituting in (3.8) we arrive at

L′(t) ≥ [(1 − α) − εk] H−α(t)H ′(t) + ε ‖ut‖2
2 − ε ‖∇u‖m

m − ε |μ2|2
4kC0

Hα ‖u‖2
2

+εb ‖u‖p
p . (3.9)

Using (3.4), we find

Hα(t) ≤
(

b

p

)α

‖u‖αp
p ,

thus

Hα ‖u‖2
2 ≤ c ‖u‖2+αp

p for some c > 0. (3.10)

Inserting (3.10) in (3.9), for 0 < a < 1, we arrive at

L′(t) ≥ [(1 − α) − εk] H−α(t)H ′(t) + ε ‖ut‖2
2 − ε ‖∇u‖m

m

−εc |μ2|2
4kC0

‖u‖2+2α
p + εab ‖u‖p

p

+ε (1 − a)
[

pH +
p

2
‖ut‖2

2 +
p

m
‖∇u‖m

m +
pξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

]

≥ [(1 − α) − εk] H−α(t)H ′(t) + ε

(

1 +
p (1 − a)

2

)

‖ut‖2
2

+ε

(
p (1 − a)

m
− 1

)

‖∇u‖m
m + εab ‖u‖p

p + ε (1 − a) pH

+ε (1 − a)
pξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx − εc |μ2|2
4kC0

‖u‖2+αp
p .

Then we use Corollary 2.3, for s = 2 + αp ≤ p, to deduce that

‖u‖2+αp
p ≤ C

[
b + p

p
‖u‖p

p − H(t) − 1
2

‖ut‖2
2 − ξ

2

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

]

.

Thus

L′(t) ≥ [(1 − α) − εk] H−α(t)H ′(t) + ε

(

1 +
p (1 − a)

2
+

C |μ2|2
8k

)

‖ut‖2
2

+ ε

[

(1 − a)
pξ

2
+

Cξ |μ2|2
8kC0

] ∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

+ ε

[

(1 − a) p +
C |μ2|2
4kC0

]

H(t) + ε

(
p (1−a)

m
−1

)

‖∇u‖m
m

+ ε

[

ab−C

(
b + p

p

) |μ2|2
4kC0

]

‖u‖p
p . (3.11)
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At this point, we choose a > 0 so small that makes
p (1 − a)

2
− 1 > 0,

the constant k large so that

ab − C

(
2b + p

p

) |μ2|2
4kC0

> 0

and ε so small so that

(1 − α) − εk > 0,

H(0) + ε

∫

Ω

u0u1dx > 0.

Thus, for λ > 0, estimation (3.11) becomes

L′(t) ≥ λ

[

‖ut‖2
2 + ‖∇u‖m

m + H(t) + ‖u‖p
p +

∫

Ω

∫ 1

0

z2(x, ρ, t)dρdx

]

. (3.12)

Consequently, we have

L(t) ≥ L(0) > 0, t ≥ 0.

Next, using Hölder’s inequality and the embedding ‖u‖2 ≤ C ‖u‖p, we have
∫

Ω

uutdx ≤ ‖u‖2 ‖ut‖2 ≤ C ‖u‖p ‖ut‖2 .

Young’s inequality yields
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣

1/(1−α)

≤ C
(
‖u‖μ/(1−α)

p + ‖ut‖θ/(1−α)
2

)
, (3.13)

for 1/μ + 1/θ = 1. To be able to use Lemma 2.2, we take θ = 2(1 − α) which
gives μ/(1 − α) = 2/(1 − 2α) ≤ p.

Therefore, for s = 2/(1 − 2α), (3.13) becomes
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣

1/(1−α)

≤ C
(
‖u‖s

p + ‖ut‖2
2

)
.

Again Lemma 2.2, gives
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣

1/(1−α)

≤ C
[
H(t) + ‖ut‖2

2 + ‖u‖p
p

]
.

Therefore,

L1/(1−α)(t) =
(

H1−α(t) + ε

∫

Ω

uutdx +
μ1ε

2

∫

Ω

u2dx

)1/(1−α)

≤ C

[

H(t) +
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣

1/(1−α)

+ ‖u‖2/(1−α)
2

]

≤ C

[

H(t) +
∣
∣
∣
∣

∫

Ω

uutdx

∣
∣
∣
∣

1/(1−α)

+ ‖u‖2/(1−α)
p

]

≤ C
[
H(t) + ‖ut‖2

2 + ‖u‖p
p

]
, t ≥ 0. (3.14)
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Combining (3.12) and (3.14), we arrive at

L′(t) ≥ ΛL1/(1−α)(t), t ≥ 0. (3.15)

where Λ is a positive constant depending only on λ and C.

A simple integration of (3.15) over (0, t) yields

Lα/(1−α)(t) ≥ 1
L−α/(1−α)(0) − Λαt/(1 − α)

.

Therefore, L(t) blows up in time

T ≤ T ∗ =
1 − α

ΛαL−α/(1−α)(0)
.

This completes the proof.
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