Mediterr. J. Math. 13 (2016), 53–64 DOI 10.1007/s00009-014-0493-z 0378-620X/16/010053-12 *published online* November 26, 2014 -c Springer Basel 2014

Mediterranean Journal **I** of Mathematics

CrossMark

Power-Commuting Generalized Skew Derivations in Prime Rings

Luisa Carini, Vincenzo De Filippis and Giovanni Scudo

Abstract. Let R be a non-commutative prime ring of characteristic dif-
ferent from 2 with extended centroid $C \cdot F \neq 0$ a generalized skew derivaferent from 2 with extended centroid $C, F \neq 0$ a generalized skew deriva-
tion of R and $n \geq 1$ such that $[F(x), x]^n = 0$ for all $x \in R$. Then there tion of R, and $n \ge 1$ such that $[F(x), x]^n = 0$, for all $x \in R$. Then there exists an element $\lambda \in C$ such that $F(x) = \lambda x$ for all $x \in R$ exists an element $\lambda \in C$ such that $F(x) = \lambda x$, for all $x \in R$.

Mathematical Subject Classification. 16N60, 16W25, 47B47, 47B48.

Keywords. Prime rings, differential identities, generalized skew derivations.

1. Introduction

Let R be a prime ring of characteristic different from 2 with center $Z(R)$, extended centroid C , right Martindale quotient ring Q_r and symmetric Martindale quotient ring Q.

An additive mapping $d : R \to R$ is a *derivation* on R if $d(xy) = d(x)y$ + $xd(y)$ for all $x, y \in R$. Let $a \in R$ be a fixed element. A map $d : R \to R$ defined by $d(x)=[a, x]=ax-xa, x \in R$, is a derivation on R, which is called *inner derivation* defined by a. Many results in literature indicate how the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R . A well-known result of Posner [\[20](#page-11-0)] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either $d = 0$ or R is commutative. In [\[15\]](#page-10-0) Lanski generalizes the result of Posner to a Lie ideal. Later in [\[2](#page-10-1)] the authors prove the following:

Theorem 1. *Let* R *be a prime ring of characteristic different from 2,* L *a non-central Lie ideal of* R *, d a non-zero derivation of* R *such that* $[d(u), u]^n \in$ $Z(R)$, for any $u \in L$. Then R satisfies s_4 .

In particular, if d satisfies $[d(u), u]^n = 0$ *, for any* $u \in L$ *, then R is commutative.*

More recently in [\[9\]](#page-10-2) the author considers a similar situation in the case the derivation d is replaced by a generalized derivation. More specifically an additive map $G: R \to R$ is said to be a generalized derivation if there exists a derivation d of R such that, for all $x, y \in R$, $G(xy) = G(x)y + xd(y)$. Basic

examples of generalized derivations are the usual derivations on R and left or right R-module mappings from R into itself. An important example is a map of the form $G(x) = ax + xb$, for some $a, b \in R$; such generalized derivations are called *inner*.

Generalized derivations have been primarily studied on operator algebras. Therefore, any investigation from the algebraic point of view might be interesting (see for example [\[12,](#page-10-3)[16](#page-10-4)]).

In [\[9\]](#page-10-2) the author proves the following:

Theorem 2. *Let* R *be a prime ring of characteristic different from* 2 *with right quotient ring* U *and extended centroid* $C, G \neq 0$ *a generalized derivation of* R_{*,*} L *a* non-central Lie ideal of R and $n \geq 1$ such that $[G(u), u]^n = 0$, for *all* $u \in L$. Then there exists an element $a \in C$ such that $G(x) = ax$, for all $x \in R$, unless when R satisfies s_4 and there exist $b \in U$, $\beta \in C$ such that $G(x) = bx + xb + \beta x$, for all $x \in R$.

In particular, if $[G(x),x]^n = 0$ *, for all* $x \in R$ *, then there exists an element* $a \in C$ *such that* $G(x) = ax$ *, for all* $x \in R$ *.*

In $[21]$, Wang considers a similar situation in the case the derivation d is replaced by a non-trivial automorphism σ of R and proves the following:

Theorem 3. *Let* R *be a prime ring with center* Z*,* L *a noncentral Lie ideal of* R , and σ *a* nontrivial automorphism of R such that $[u^{\sigma}, u]^n \in Z$ for all $u \in L$ *. If either char* $(R) > n$ *or char* $(R) = 0$ *, then* R *satisfies* s_4 *.*

Here, we continue this line of investigation and we examine what happens in case $F \neq 0$ is a generalized skew derivation of R such that $[F(x), x]^n =$ 0 for all $x \in R$, and $n \geq 1$. More specifically, let α be an automorphism of a ring R. An additive map $D: R \to R$ is called an α -derivation (or a *skew derivation*) on R if $D(xy) = D(x)y + \alpha(x)D(y)$ for all $x, y \in R$. In this case α is called an *associated automorphism* of D. Basic examples of α-derivations are the usual derivations and the map $\alpha - id$, where id denotes the identity map. Let $b \in Q$ be a fixed element. Then a map $D : R \to R$ defined by $D(x) = bx - \alpha(x)b, x \in R$, is an α -derivation on R and it is called an *inner* α*-derivation* (an *inner skew derivation*) defined by b. If a skew derivation D is not inner, then it is called *outer*.

An additive mapping $F: R \to R$ is called a *generalized* α -derivation (or a *generalized skew derivation*) on R if there exists an additive mapping D on R such that $F(xy) = F(x)y + \alpha(x)D(y)$ for all $x, y \in R$. The map D is uniquely determined by F and it is called an *associated additive map* of F. Moreover, it turns out that D is always an α -derivation (see [\[17](#page-10-5)[,18\]](#page-10-6) for more details).

Let us also mention that an automorphism $\alpha : R \to R$ is *inner* if there exists an invertible $q \in Q$ such that $\alpha(x) = qxq^{-1}$ for all $x \in R$. If an automorphism $\alpha \in \text{Aut}(R)$ is not inner, then it is called *outer*.

The result we obtain is the following:

Theorem 4. Let R be a non-commutative prime ring of characteristic $\neq 2$ *with extended centroid* $C, F \neq 0$ *a generalized skew derivation of* R, and

 $n \geq 1$ *such that* $[F(x), x]^n = 0$ *, for all* $x \in R$ *. Then there exists an element* $\lambda \in C$ *such that* $F(x) = \lambda x$ *, for all* $x \in R$ *.*

2. Preliminaries

We denote the set of all skew-derivations on Q by $SDer(Q)$. By a skewderivation word we mean an additive map Δ of the form $\Delta = d_1 d_2 \ldots d_m$, with each $d_i \in SDer(Q)$. Then a skew-differential polynomial is a generalized polynomial, with coefficients in Q, of the form $\Phi(\Delta_i(x_i))$ involving noncommutative indeterminates x_i on which the derivations words Δ_i act as unary operations. The skew-differential polynomial $\Phi(\Delta_i(x_i))$ is said a skewdifferential identity on a subset T of Q if it vanishes for any assignment of values from T to its indeterminates x_i .

To prove our result, we need to recall the following known facts:

Fact 1. In [\[8\]](#page-10-7) Chuang and Lee investigate polynomial identities with skew derivations. More precisely in $[8,$ $[8,$ Theorem 1 they prove that if D is an outer skew derivation of R which satisfies the generalized polynomial identity $\Phi(x_i, D^k(x_i))$, then:

- 1. If D is not left-algebraic modulo inner skew derivations, then R satisfies the generalized polynomial identity $\Phi(x_i, y_{kj})$, where x_i and y_{kj} are distinct indeterminates.
- 2. If D is algebraic modulo inner skew derivations such that the minimal order m of such algebraic dependence is strictly bigger than k , then R satisfies the generalized polynomial identity $\Phi(x_i, y_{kj})$, where x_i and y_{kj} are distinct indeterminates.

As a consequence of this result, we would like to point out that, if $k = 1$, that is $\Phi(x_i, D(x_i))$ is a generalized polynomial identity for R, then, in any case, $\Phi(x_i, y_j)$ is also a generalized polynomial identity for R, where x_i and y_j are distinct indeterminates.

Fact 2. Let R be a prime ring and I a two-sided ideal of R. Then I, R and Q satisfy the same generalized polynomial identities with coefficients in Q (see [\[4\]](#page-10-8)). Furthermore, I, R and Q satisfy the same generalized polynomial identities with automorphisms (Theorem 1 in [\[6\]](#page-10-9)).

Fact 3. Recall that, in case $char(R) = 0$, an automorphism α of Q is called *Frobenius* if $\alpha(x) = x$ for all $x \in C$. Moreover, in case char $(R) = p \geq 2$, an automorphism α is *Frobenius* if there exists a fixed integer t such that $\alpha(x) = x^{p^t}$ for all $x \in C$. In [\[6](#page-10-9), Theorem 2] Chuang proves that if $\Phi(x_i, \alpha(x_i))$ is a generalized polynomial identity for R, where R is a prime ring and $\alpha \in$ $Aut(R)$ an automorphism of R which is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity $\Phi(x_i, y_i)$, where x_i and y_i are distinct indeterminates.

Fact 4. Let R be a domain and $\alpha \in Aut(R)$ an automorphism of R which is outer. In [\[14](#page-10-10)] Kharchenko proves that if $\Phi(x_i, \alpha(x_i))$ is a generalized polynomial identity for R , then R also satisfies the non-trivial generalized polynomial identity $\Phi(x_i, y_i)$, where x_i and y_i are distinct indeterminates.

Finally, let us mention that if R is a prime ring satisfying a non-trivial generalized polynomial identity and α an automorphism of R such that $\alpha(x) = x$ for all $x \in C$, then α is an inner automorphism of R [\[1,](#page-10-11) Theorem 4.7.4].

3. The Inner Case

In this section, we assume there exist $a, b \in Q$ and $F : R \to R$, such that $F(x) = ax + \alpha(x)b$, for all $x \in R$. In particular, we would like to consider the case $[ar + \alpha(r)b, r]^n = 0$ for all $r \in R$. We first prove the case when there exists an invertible element $q \in Q$ such that $\alpha(x) = qxq^{-1}$, for all $x \in R$. To do this, we also need the following lemma (the result is contained in [\[10](#page-10-12)]):

Lemma 1. Let F be a infinite field and $n \geq 2$. If A_1, \ldots, A_k are not scalar *matrices in* $M_n(F)$ *then there exists some invertible matrix* $P \in M_n(F)$ *such that each matrix* $PA_1P^{-1}, \ldots, PA_kP^{-1}$ *has all non-zero entries.*

Proposition 1. *Let* R *be a prime ring of characteristic different from* 2*, and* $a, b, q \in Q$. If q *is an invertible element of* Q *and there exists a fixed integer* $n \geq 1$ *such that*

$$
[ar + qrq^{-1}b, r]^n = 0 \tag{1}
$$

for all $r \in R$ *, then one of the following holds:* 1. a, b, q [∈] ^C*;*

2. *both* $q^{-1}b \in C$ *and* $a + b \in C$ *.*

Proof. First, we notice that in case $q^{-1}b \in C$, then, by [\(1\)](#page-3-0), we get $[(a + b)]$ $(b)r, r]^n = 0$, for all $r \in R$, and by [\[9](#page-10-2)], it follows $a + b \in C$. Moreover, in case $q \in C$, we also have $[ar + rb, r]^n = 0$, for all $r \in R$, and the conclusion follows again by [\[9\]](#page-10-2) (see Theorem [2\)](#page-1-0).

Hence, in the following we may assume that both $q^{-1}b \notin C$ and $q \notin C$, so [\(1\)](#page-3-0) is a non-trivial generalized polynomial identity for R. By Fact [2](#page-2-0) and if we denote $p = q^{-1}b$ in [\(1\)](#page-3-0), it follows that Q satisfies

$$
[ax + qxp, x]^n. \tag{2}
$$

Hence, by $[19]$ $[19]$ Q is a primitive ring, which is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C , containing nonzero linear transformations of finite rank. Suppose first that $\dim_{\mathbb{C}} V \geq 3$. Since $p \notin C$, there exists $v \in V$ such that $\{v, pv\}$ are linearly C-independent. Moreover, since $\dim_{C} V \geq 3$, there is $w \in V$ such that $\{v, pv, w\}$ are linearly C-independent vectors. By the density of Q, there exists $r \in Q$ such that

$$
rv = 0, \quad rw = v, \quad rpv = q^{-1}w.
$$

Hence

$$
0 = [ar + qrp, r]^n v = (-1)^n v \neq 0
$$

which is a contradiction.

Finally, we consider the case: $\dim_{\mathbb{C}} V \leq 2$. Of course if $\dim_{\mathbb{C}} V = 1$, then Q is commutative, a contradiction. Thus, we may assume $\dim_{\mathbb{C}} V = 2$, that

is $Q = M_2(C)$, the ring al 2×2 matrices over the field C. Of course in this case, we may assume that $M_2(C)$ satisfies

$$
[ax + qxp, x]^2.
$$
 (3)

Assume first that C is infinite. Since both $q \notin C$ and $p \notin C$, by Lemma [1](#page-3-1) there exists some invertible matrix $A \in M_2(C)$ such that each matrix AqA^{-1} , AqA^{-1} has all non-zero entries. Moreover, it is easy to prove that

$$
\[(AaA^{-1})x + (AqA^{-1})x(ApA^{-1}), x\]^{2}
$$

is still a generalized identity for $M_2(C)$.

Denote e_{ij} the usual matrix unit, with 1 in the (i, j) -entry and zero elsewhere and $Aa\ddot{A}^{-1} = a'$, $AqA^{-1} = q' = \sum q_{lm}e_{lm}$, $A pA^{-1} = p' = \sum p_{lm}e_{lm}$, for suitable $q_{lm}, p_{lm} \in C$. Let $r = e_{ij}$, for any $j \neq i$, therefore, by [\(3\)](#page-4-0), we have that $(-e_{ij} q e_{ij} p)^2 e_{ij} = 0$, which implies the contradiction $q_{ji} p_{ji} = 0$.

Assume now that C is finite. Let K be an infinite field which is an extension of the field C and let $\overline{R} = M_2(K) \cong R \otimes_C K$. The generalized polynomial identity $[ax + qxp, x]^2$ is homogeneous of degree 4 in the indeterminate x.

Hence its complete linearization is a multilinear generalized polynomial identity $\Theta(x_1, y_1, z_1, t_1)$ in 4 indeterminates, moreover,

$$
\Theta(x_1, x_1, x_1, x_1) = 4[ax_1 + qx_1p, x_1]^2.
$$

Clearly, the multilinear polynomial $\Theta(x_1, y_1, z_1, t_1)$ is a generalized polynomial identity for R and \overline{R} too. Since $char(C) \neq 2$, we obtain $(ar+qrp, r]^2 = 0$, for all $r \in \overline{R}$, and the conclusion follows from the above argument. \Box

Lemma 2. *Let* R *be a non-commutative prime ring of characteristic different from* 2, α : $R \to R$ *an automorphism of* R *, such that* $[\alpha(x), x]^n = 0$ *for all* $x \in R$ *. Then,* α *is the identity map on* R.

Proof. By Main Theorem in $[5]$, the ring R satisfies a generalized polynomial identity. We notice that if there exists an element $q \in Q$ such that $\alpha(x) = qxq^{-1}$, for all $x \in R$, then the conclusion follows from Proposition [1.](#page-3-2) Therefore, we assume that α is an outer automorphism of R and prove that a number of contradictions occurs.

By Theorem 1 in $[6]$ R and Q satisfy the same generalized polynomial identities with automorphisms and hence $[\alpha(x),x]^n$ is also an identity for Q. Since R is a GPI-ring, by $[19]$ $[19]$ Q is a primitive ring, which is isomorphic to a dense subring of the ring of linear transformations of a vector space V over a division ring D.

In case Q is a domain, by Fact [4,](#page-2-1) we have that Q satisfies $[y, x]^n$, which leads to the contradiction that Q is commutative. Thus, we may assume that $\dim_D V \geq 2$.

By [\[13,](#page-10-14) p. 79], there exists a semi-linear automorphism $T \in End(V)$ such that $\alpha(x) = TxT^{-1}$ for all $x \in Q$. Hence, Q satisfies $[TxT^{-1}, x]^n$.

We notice that, if for any $v \in V$ there exists $\lambda_v \in D$ such that $T^{-1}v =$ $v\lambda_v$, then, by a standard argument, it follows that there exists a unique $\lambda \in D$ such that $T^{-1}v = v\lambda$, for all $v \in V$ (see for example Lemma 1 in [\[7](#page-10-15)]). In this case

$$
\alpha(x)v = (TxT^{-1})v = Txv\lambda
$$

and

$$
(\alpha(x) - x)v = T(xv\lambda) - xv = T(T^{-1}xv) - xv = 0
$$

which implies the contradiction that α is the identity map, since V is faithful.

Therefore, there exists $v \in V$ such that $\{v, T^{-1}v\}$ are linearly Dindependent.

Consider first the case $\dim_D V \geq 3$. Thus, there exists $w \in V$ such that $\{w, v, T^{-1}v\}$ are linearly D-independent. Moreover, by the density of Q, there exists $r \in Q$ such that

$$
rv = 0
$$
, $rT^{-1}v = T^{-1}w$, $rw = -v$.

Hence, by the main assumption we get again the contradiction

$$
0 = (TrT^{-1}r - rTrT^{-1})^n v = v \neq 0.
$$

Therefore, we have just to consider the case when $\dim_D V = 2$.

Note that there exists $w \in V$ such that $w \notin vD$ and $Tw \notin vD$: In fact, on the contrary, for all $w \in V$ we have that either $w \in vD$ or $w \in (T^{-1}v)D$. Then it follows that $V = (vD) \cup (T^{-1}v)D$ is union of two proper subspaces, but this is a contradiction since Q is not a domain and $\dim_D V \neq 1$.

Thus, there exist $w \in V$, $\lambda, \mu, \eta, \theta \in D$ (where $\mu \neq 0$ and $\theta \neq 0$) such that

$$
w = v\lambda + (T^{-1}v)\mu \tag{4}
$$

$$
Tw = v\eta + (T^{-1}v)\theta \tag{5}
$$

moreover, by applying the semi-linear automorphism T on (4) , we also get

$$
Tw = (Tv)\tau(\lambda) + v\tau(\mu)
$$
\n(6)

where $\tau : D \to D$ is the automorphism of D associated to T. Notice that $\tau(\mu) \neq 0$, since $\mu \neq 0$.

Comparing (6) with (5) we have

$$
v(\eta - \tau(\mu)) + (T^{-1}v)\theta - (Tv)\tau(\lambda) = 0
$$

where $\tau(\lambda) \neq 0$, since $\theta \neq 0$ and $\{v, T^{-1}v\}$ are *D*-independent. Denote $\tau(\mu)$ = μ' and $\tau(\lambda) = \lambda'$, so that

$$
Tv = (v(\eta - \tau(\mu)) + (T^{-1}v)\theta)\lambda'^{-1}.
$$

By the main assumption, we also know that Q satisfies $[T(x+y)T^{-1}, x+$ $[y]^n$, that is Q satisfies

$$
(TxT^{-1}x - xTxT^{-1} + TyT^{-1}x - xTyT^{-1} + TxT^{-1}y - yTxT^{-1} + TyT^{-1}y - yTyT^{-1})^n
$$
\n
$$
(7)
$$

By the density of Q, there exist $r_1, r_2 \in Q$ such that

$$
r_1v = 0
$$
, $r_2v = 0$, $r_1T^{-1}v = -v$, $r_2T^{-1}v = 0$.

It follows that

$$
r_1(Tv) = v\theta \lambda'^{-1}
$$

$$
r_2(Tv) = 0
$$

$$
(Tr_1T^{-1}r_1 - r_1Tr_1T^{-1} + Tr_2T^{-1}r_1 - r_1Tr_2T^{-1}
$$

$$
+ Tr_1T^{-1}r_2 - r_2Tr_1T^{-1} + Tr_2T^{-1}r_2 - r_2Tr_2T^{-1})v = v\theta \lambda'^{-1}
$$

and by [\(7\)](#page-5-3) we have the following contradiction

$$
0 = (Tr_1T^{-1}r_1 - r_1Tr_1T^{-1} + Tr_2T^{-1}r_1 - r_1Tr_2T^{-1} + Tr_1T^{-1}r_2 - r_2Tr_1T^{-1} + Tr_2T^{-1}r_2 - r_2Tr_2T^{-1})^n v = v(\theta\lambda'^{-1})^n \neq 0.
$$

Lemma 3. *Let* R *be a non-commutative prime ring of characteristic different from* 2, $b, c \in Q$, $\alpha : R \to R$ *an outer automorphism of* R, such that $[bx + \alpha(x)c, x]^n = 0$ for all $x \in R$. Then $b \in C$ and $c = 0$.

Proof. In the following, we assume that either $b \notin C$ or $c \neq 0$.

Hence, by $[5]$ $[5]$ R is a GPI-ring and Q is also GPI-ring by $[4]$. By Martindale's theorem in $[19]$, Q is a primitive ring having non-zero socle and its associated division ring D is finite dimensional over C . Hence Q is isomorphic to a dense subring of the ring of linear tranformations of a vector space V over D, containing non-zero linear transformations of finite rank.

As remarked in Lemma [2,](#page-4-1) there exists a semi-linear automorphism $T \in$ End(V) such that $\alpha(x) = TxT^{-1}$ for all $x \in Q$. Hence, Q satisfies [bx + $TxT^{-1}c, x]^n$.

We notice that, if for any $v \in V$ there exists $\lambda_v \in D$ such that $T^{-1}cv =$ $v\lambda_v$, then, by a standard argument it follows that there exists a unique $\lambda \in D$ such that $T^{-1}cv = v\lambda$, for all $v \in V$. In this case,

$$
(bx + \alpha(x)c)v = (bx + TxT^{-1}c)v = bxv + T(xv\lambda)
$$

$$
bxv + T((xv)\lambda) = bxv + T(T^{-1}c xv)
$$

$$
bxv + c xv = (b + c)xv.
$$

Hence, for all $v \in V$,

$$
(bx + \alpha(x)c - (b + c)x)v = 0
$$

which implies $bx+\alpha(x)c = (b+c)x$, for all $x \in Q$, since V is faithful. Therefore, we have both $[(b+c)x, x]^n = 0$ and $\alpha(x)c = cx$, for all $x \in Q$. Thus, $b+c \in C$ follows from Theorem [2.](#page-1-0) Moreover, since Q satisfies $\alpha(x)c = cx$ and $\alpha(x)$ -word degree is 1 then, by Theorem 3 in [\[6\]](#page-10-9), $yc - cx$ is an identity for Q. This implies $c \in C$. Therefore, $b \in C$ and either $c = 0$ or $\alpha(x) = x$ for all $x \in Q$, that is α is the identity map on Q. In any case, we get a contradiction.

In light of the previous argument, we may suppose there exists $v \in V$ such that $\{v, T^{-1}cv\}$ are linearly D-independent.

Consider first the case $\dim_D V \geq 3$. Thus, there exists $w \in V$ such that $\{w, v, T^{-1}cv\}$ are linearly *D*-independent. Moreover, by the density of *Q*, there exists $r \in Q$ such that

$$
rv = 0
$$
, $rT^{-1}cv = T^{-1}w$, $rw = -v$.

Hence, by the main assumption, we get the contradiction

$$
0 = (br2 + TrT-1cr - rbr - rTrT-1c)nv = v \neq 0.
$$

Therefore, we have just to consider the case when $\dim_D V \leq 2$.

If C is finite, then D is also finite. Thus D is a field by Wedderburn's Theorem. Note that, if $\dim_D V = 1$ then $Q \cong D$ and so Q is commutative, a contradiction.

On the other hand, if $\dim_D V = 2$, then $Q \cong M_2(D)$, for D a field. Of course in this case Q satisfies $[bx + \alpha(x)c, x]^2$. Therefore, the $\alpha(x)$ -word degree is strictly less than $char(R)$, when $char(R) \neq 0$. By Theorem 3 in [\[6\]](#page-10-9), Q satisfies $[bx + yc, x]^2$ and again by Theorem [2,](#page-1-0) we get $b, c \in C$. Moreover, if $c \neq 0$, we also have $[\alpha(x), x]^2 = 0$ for all $x \in Q$ and by Lemma [2,](#page-4-1) α is the identity map on Q, which is again a contradiction.

In light of the previous argument, in all that follows we may consider C infinite.

If α is not Frobenius, then, by Fact [3,](#page-2-2) one has that R satisfies $[bx +$ $yc, x]^n = 0$. In particular, for $x = y$, we get $b, c \in C$ by Theorem [2.](#page-1-0) From this we also have $c[y, x]^n = 0$, which implies the contradiction that R is commutative, since $c \neq 0$.

Let now α be Frobenius. Note that if $char(R) = 0$, we have $\alpha(x) = x$ for all $x \in R$ since α is Frobenius. By [\[1,](#page-10-11) Theorem 4.7.4] this implies that α is inner, a contradiction. Thus, we may assume that $char(R) = p > 2$ and $\alpha(\gamma) = \gamma^{p^t}$, for all $\gamma \in C$ and some nonzero fixed integer t. Moreover, there exists $\lambda \in C$ such that $\lambda^{p^t} \neq \lambda$, that is $\lambda^{p^t-1} \neq 0$.

In particular, we choose $\gamma \in C$ such that $\gamma = \lambda^{p^t-1} \neq 0$. In the main relation we replace x by λx and obtain that R satisfies

$$
[b(\lambda x) + \lambda^{p^t} \alpha(x)c, \lambda x]^n
$$

that is

$$
\lambda^{2n} ([bx, x] + \gamma[\alpha(x)c, x])^{n}.
$$

If denote $\Phi(x)=[bx, x]$ and $\Omega(x)=[\alpha(x)c, x]$, it follows that $(\Phi(r) + \gamma \Omega(r))^n = 0$ for all $r \in R$. Expanding the last one, we get

$$
\sum_{i=0}^{n} \gamma^{i} \left(\sum_{(i,n-i)} \varphi_{1} \cdot \varphi_{2} \cdots \varphi_{n} \right) = 0
$$

where the inside summations are taken over all permutations of $n-i$ terms of the form $\Phi(x)$ and i terms of the form $\Omega(x)$. This means that each summation inside has exactly $n - i$ terms of the form $\Phi(x)$ and i terms of the form $\Omega(x)$ but in some different order. For any $j = 0, \ldots, n$, denote $y_j = \sum_{(j,n-j)} \varphi_1 \cdot$

 $\varphi_2 \ldots \varphi_n$, then we can write

$$
y_0 + \gamma y_1 + \gamma^2 y_2 + \dots + \gamma^n y_n = 0.
$$
 (8)

Replacing in the previous argument λ successively by $1, \lambda, \lambda^2, \ldots, \lambda^n$, the Eq. [\(8\)](#page-8-0) gives the system of equations

$$
y_0 + y_1 + y_2 + \dots + y_n = 0
$$

\n
$$
y_0 + \gamma y_1 + \gamma^2 y_2 + \dots + \gamma^n y_n = 0
$$

\n
$$
y_0 + \gamma^2 y_1 + \gamma^4 y_2 + \dots + \gamma^{2n} y_n = 0
$$

\n
$$
y_0 + \gamma^3 y_1 + \gamma^6 y_2 + \dots + \gamma^{3n} y_n = 0
$$

\n
$$
\dots
$$

\n
$$
y_0 + \gamma^n y_1 + \gamma^{2n} y_2 + \dots + \gamma^{n^2} y_n = 0.
$$

\n(9)

Moreover, since C is infinite, there exist infinitely many $\lambda \in C$ such that $\lambda^{i(p^t-1)} \neq 1$ for $i = 1, \ldots, n$, that is there exist infinitely many $\gamma = \lambda^{p^t-1} \in C$ such that $\gamma^{i} \neq 1$ for $i = 1, ..., n$. Hence, the Vandermonde determinant (associated with the system (9))

$$
\begin{vmatrix}\n1 & 1 & \cdots & \cdots & 1 \\
1 & \gamma & \gamma^2 & \cdots & \gamma^n \\
1 & \gamma^2 & \gamma^4 & \cdots & \gamma^{2n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \gamma^n & \gamma^{2n} & \cdots & \gamma^{n^2}\n\end{vmatrix} = \prod_{0 \le i < j \le n} (\gamma^i - \gamma^j)
$$

is not zero. Thus, we can solve the above system [\(9\)](#page-8-1) and obtain $y_i = 0$ $(i = 0, \ldots, n)$. In particular, $y_0 = 0$, that is $[br, r]^n = 0$ for all $r \in R$. Applying again the result in Theorem [2,](#page-1-0) we have $b \in C$. In light of this, to prove our result, in what follows we can assume $c \neq 0$. Therefore, by the main assumption, it follows that R satisfies $[\alpha(x)c, x]^n$. Now, replace x by $x + \lambda$, so that R satisfies $[\alpha(x)c + \lambda^{p^t} c, x]^n$, that is for all $r \in R$

$$
([\alpha(r)c, r] + \lambda^{p^t} [c, r])^n = 0.
$$

Here, denote $\mu = \lambda^{p^t}, \Delta(r) = [\alpha(r)c, r], \Psi(r) = [c, r],$ thus, $(\Delta(r) + \mu \Psi(r))^n =$ 0, for all $r \in R$. Expanding this last, we get

$$
\sum_{i=0}^{n} \mu^{i} \left(\sum_{(i,n-i)} \chi_{1} \cdot \chi_{2} \cdots \chi_{n} \right) = 0
$$

where, as in the above argument, the summations inside are taken over all permutations of $n - i$ terms of the form $\Psi(x)$ and i terms of the form $\Delta(x)$. For any $j = 0, \ldots, n$, denote $z_j = \sum_{(j,n-j)} \chi_1 \cdot \chi_2 \ldots \chi_n$, then we can write

$$
z_0 + \mu z_1 + \mu^2 z_2 + \dots + \mu^n z_n = 0.
$$
 (10)

Replacing in the previous argument λ successively by $1, \lambda, \lambda^2, \ldots, \lambda^n$, the Eq. [\(10\)](#page-8-2) gives the system of equations

$$
z_0 + z_1 + z_2 + \dots + z_n = 0
$$

\n
$$
z_0 + \mu z_1 + \mu^2 z_2 + \dots + \mu^n z_n = 0
$$

\n
$$
z_0 + \mu^2 z_1 + \mu^4 z_2 + \dots + \mu^{2n} z_n = 0
$$

\n
$$
z_0 + \mu^3 z_1 + \mu^6 z_2 + \dots + \mu^{3n} z_n = 0
$$

\n
$$
\dots
$$

\n
$$
z_0 + \mu^n z_1 + \mu^{2n} z_2 + \dots + \mu^{n^2} z_n = 0.
$$

\n(11)

By repeating the same process above, there exist infinitely many $\lambda \in C$ such that $\lambda^{ip^t} \neq 1$ for $i = 1, ..., n$, that is there exist infinitely many $\mu = \lambda^{p^t} \in C$ such that $\mu^{i} \neq 1$ for $i = 1, \ldots, n$. Hence, the Vandermonde determinant (associated with the system [\(11\)](#page-9-0))

$$
\begin{vmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & \mu & \mu^2 & \cdots & \mu^n \\ 1 & \mu^2 & \mu^4 & \cdots & \mu^{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \mu^n & \mu^{2n} & \cdots & \mu^{n^2} \end{vmatrix} = \prod_{0 \le i < j \le n} (\mu^i - \mu^j)
$$

is not zero. Thus, we can solve the above system [\(11\)](#page-9-0) and obtain $z_i = 0$ $(i = 0, \ldots, n)$. In particular, $z_0 = 0$, that is $[c, r]^n = 0$ for all $r \in R$. By Theorem 2, in [\[11](#page-10-16)], $c \in C$. Since $c \neq 0$, it follows that R satisfies $[\alpha(x), x]^n$ and by Lemma [2,](#page-4-1) we conclude that α is the identity map on R which contradicts the hypothesis that α is an outer automorphism of R. \Box

4. The Proof of Main Result

Here, we can finally prove the main Theorem of this paper. We remark that Chang, in $[3]$ $[3]$ shows that any (right) generalized skew derivation of R can be uniquely extended to the right Martindale quotient ring Q_r of R as follows: a (right) generalized skew derivation is an additive mapping $F: Q_r \longrightarrow Q_r$ such that $F(xy) = F(x)y + \alpha(x)\delta(y)$ for all $x, y \in Q_r$, where δ is a skew derivation of R and α is an automorphism of R. Notice that there exists $F(1) = a \in Q_r$ such that $F(x) = ax + \delta(x)$ for all $x \in R$.

4.1. Proof of Theorem [4](#page-1-1)

As we said above and by our main assumption, R satisfies $[ax + \delta(x), x]^n$.

Assume first that δ is an outer skew derivation. By Fact [1,](#page-2-3) R also satisfies $[ax+y, x]^n$ and in particular the component $[ax, x]^n$. By Theorem [2,](#page-1-0) it follows that $a \in C$, therefore, $[y, x]^n$ is an identity for R, that is R is commutative, a contradiction.

Let now δ be an inner skew derivation, that is there exists $b \in Q$ such that $\delta(x) = bx - \alpha(x)b$, for all $x \in R$. Hence R satisfies $[(a+b)x - \alpha(x)b, x]^n$.

In case there exists an invertible element $q \in Q$ such that $\alpha(x) = qxq^{-1}$, then by Proposition [1](#page-3-2) we get:

- 1. either $a, b, q \in C$, that is $F(x) = ax$.
- 2. or $q^{-1}b \in C$ and $F(x) = ax$, with $a \in C$.

On the other hand, if α is an outer automorphism of R, then, by applying Lemma [3](#page-6-0) we get:

- 1. either $a \in C$ and $b = 0$, that is $F(x) = ax$;
- 2. or $a, b \in C$, α is the identity map on R and $F(x) = ax$.

References

- [1] Beidar, K.I., Martindale, W.S., III, Mikhalev, A.V.: Rings with Generalized Identities, Pure and Applied Mathematics, Dekker, New York (1996)
- [2] Carini, L., De Filippis, V.: Commutators with power central values on a Lie ideal. Pac. J. Math. **193/2**, 296–278 (2000)
- [3] Chang, J.-C.: On the identity $h(x) = af(x)+g(x)b$. Taiwan. J. Math. **7**, 103–113 (2003)
- [4] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. **103**, 723–728 (1988)
- [5] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms I. J. Algebra **149**, 371–404 (1992)
- [6] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms II. J. Algebra **160**, 130–171 (1993)
- [7] Chuang, C.-L, Chou, M.-C, Liu, C.-K: Skew derivations with annihilating Engel conditions. J. Publ. Math. Debrecen **68/1–2**, 161–170 (2006)
- [8] Chuang, C.-L, Lee, T.-K: Identities with a single skew derivation. J. Algebra **288**, 59–77 (2005)
- [9] De Filippis, V.: Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxford J. Math. Sci. **22/2**, 167–175 (2006)
- [10] De Filippis, V., Di Vincenzo, O.M.: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials. Comm. Algebra **40/6**, 1918– 1932 (2012)
- [11] Herstein, I.N.: Center-like elements in prime rings. J. Algebra **60/2**, 567–574 (1979)
- [12] Hvala, B.: Generalized derivations in rings. Comm. Algebra **26**, 1147–1166 (1998)
- [13] Jacobson, N.: Structure of Rings. American Mathematical Society, Providence (1964)
- [14] Kharchenko, V.K.: Generalized identities with automorphisms. Algebra Log. **14**, 132–148 (1975)
- [15] Lanski, C.: Differential identities, Lie ideals and Posner's theorems. Pac. J. Math. **134/2**, 275–297 (1988)
- [16] Lee, T.-K.: Generalized derivations of left faithful rings. Comm. Algebra **27**, 4057–4073 (1999)
- [17] Lee, T.-K.: Generalized skew derivations characterized by acting on zero products. Pac. J. Algebra **216**, 293–301 (2004)
- [18] Lee, T.-K, Liu, K.-S: Generalized skew derivations with algebraic values of bounded degree. Houston J. Math. **39/3**, 733–740 (2013)
- [19] Martindale, W.S. III.: Prime rings satisfying a generalized polynomial identity. J. Algebra **12**, 576–584 (1969)
- [20] Posner, E.C.: Derivations in prime rings. Proc. Am. Math. Soc. **8**, 1093– 1100 (1957)
- [21] Wang, Y.: Power-centralizing automorphisms of Lie ideals in prime rings. Comm. Algebra **34**, 609–615 (2006)

Luisa Carini, Vincenzo De Filippis and Giovanni Scudo Department of Mathematics University of Messina, 98166, Messina, Italy e-mail: lcarini@unime.it

Vincenzo De Filippis e-mail: defilippis@unime.it

Giovanni Scudo e-mail: gscudo@unime.it

Received: February 21, 2014. Revised: October 17, 2014. Accepted: November 13, 2014.