
Mediterr. J. Math. 13 (2016), 483–496
DOI 10.1007/s00009-014-0478-y
0378-620X/16/010483-14
published onlineOctober 21, 2014
c© Springer Basel 2014

Levinson’s Type Generalization
of the Edmundson–Lah–Ribarič Inequality
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Abstract. In this paper the authors give a brief historical remark on
Edmundson–Madansky and Lah–Ribarič inequalities, which are both
special cases of the same inequality, and unify them under the name
of Edmundson–Lah–Ribarič inequality. Furthermore, the authors also
give a Levinson’s type generalization of the Edmundson–Lah–Ribarič
inequality, as well as some refinements of the obtained results by con-
structing certain exponentially convex functions.
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1. Introduction and Some Historical Remarks

The Jensen inequality for convex functions plays a very important role in the
Theory of Inequalities due to the fact that it implies a whole series of other
classical inequalities. One of the most famous ones amongst them is the so
called Lah–Ribarič inequality, which we state in the following theorem.

Theorem 1.1. ([13]) Let μ be a positive measure on [0, 1] and let φ be a
convex function on [m,M ], where −∞ < m < M < +∞. Then for every
μ-measurable function f on [0, 1] such that m ≤ f(x) ≤ M , x ∈ [0, 1], one
has

∫ 1

0
Φ(f)dμ
∫ 1

0
dμ

≤ M − f̄

M − m
Φ(m) +

f̄ − m

M − m
Φ(M), (1.1)

where f̄ =
∫ 1

0
fdμ/

∫ 1

0
dμ.
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It was obtained in 1973 by Lah and Ribarič in their paper [13]. Since
then, there have been many papers written on the subject of its generaliza-
tions and converses. Also, a whole series of monographs in inequalities ([1],
[7], [8], [9], [10] and [11]) has been dedicated to classical inequalities, including
the Lah–Ribarič inequality.

We also give a probabilistic version of the inequality (1.1), which we will
need in this paper:

Theorem 1.2. ([6]) Let X : Ω → [a, b] (−∞ < a < b < +∞) be a random
variable on probability space (Ω, p) and let f : [a, b] → R be a convex function.
Then

E(f(X)) ≤ b − E(X)
b − a

f(a) +
E(X) − a

b − a
f(b). (1.2)

Inequality (1.2) is often referred as Edmundson–Madansky inequality
because it was obtained by Edmundson ([6]) in 1956, and Madansky ([15])
in 1959 was the first one to use it in the context of stochastic programming
for developing upper bounds on the expectation of convex functions.

For a comprehensive list of recent results on the Edmundson–Madansky
inequality, see books [4] and [12].

Next theorem that we state is a generalization of the Lah–Ribarič in-
equality (1.1) for positive linear functionals which is proved in [3] by Beesack
and Pečarić (see also [19, p. 98]):

Theorem 1.3. ([3]) Let φ be convex on I = [m,M ] (−∞ < m < M < ∞). Let
L be a linear class of real-valued functions on E such that af + bg ∈ L for
any f, g ∈ L, a, b ∈ R and 1 ∈ L, and let A be any positive linear functional
on L with A(1) = 1. Then for every f ∈ L such that φ(f) ∈ L (so that
m ≤ f(t) ≤ M for all t ∈ E), we have

A(φ(f)) ≤ M − A(f)
M − m

φ(m) +
A(f) − m

M − m
φ(M). (1.3)

One can see that Theorem 1.3 is also a generalization of Theorem 1.2,
and that inequalities (1.1) and (1.2) are actually the same inequality, but
in different settings. Therefore, from now on we will unify these inequalities
under a common name of the Edmundson–Lah–Ribarič inequality.

2. Preliminaries

A well-known Levinson’s inequality is stated in the following theorem.

Theorem 2.1. ([14]) Let f : 〈0, 2c〉 → R satisfy f ′′′ ≥ 0 and let pi, xi, yi, i =
1, ..., n be such that pi > 0,

∑n
i=1 pi = 1, 0 ≤ xi ≤ c and

x1 + y1 = x2 + y2 = · · · = xn + yn. (2.1)

Then the following inequality is valid
n∑

i=1

pif(xi) − f(x̄) ≤
n∑

i=1

pif(yi) − f(ȳ), (2.2)
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where x̄ =
∑n

i=1 pixi and ȳ =
∑n

i=1 piyi denote the weighted arithmetic
means.

To weaken the assumptions on the differentiability of f , one needs to
work with the divided differences. A kth order difference of a function f : I →
R defined on an interval I at distinct points, x0, x1, ..., xk ∈ I, is defined
recursively by

[xi]f = f(xi), for i = 0, ..., k

[x0, ..., xk]f =
[x1, ..., xk]f − [x0, ..., xk−1]f

xk − x0
.

A function f : I → R is called k-convex if [x0, ..., xk]f ≥ 0 for all choices
of k + 1 distinct points x0, x1, ..., xk ∈ I. If the kth derivative of a convex
function exists, then f (k) ≥ 0, but f (k) may not exist (for properties of divided
differences and k-convex functions see [19]).

Remark 2.2. (i) Bullen [5] rescaled Levinson’s inequality to a general in-
terval [a, b] and showed that if function f is 3-convex and pi, xi, yi, i =
1, ..., n are such that pi > 0,

∑n
i=1 pi = 1, a ≤ xi, yi ≤ b, (2.1) holds for

some c ∈ 〈a, b〉 and

max{x1, ..., xn} ≤ max{y1, ..., yn}, (2.3)

then (2.2) holds.
(ii) Pečarić [17] proved that the inequality (2.2) is valid when one weakens

the previous assumption (2.3) to

xi + xn−i+1 ≤ 2c and
pixi + pn−i+1xn−i+1

pi + pn−i+1
≤ c, for i = 1, 2, ..., n

(iii) Mercer [16] made a significant improvement by replacing condition (2.1)
with a weaker one, i.e. he proved that the inequality (2.2) holds under
the following conditions:

f ′′′ ≥ 0, pi > 0,
n∑

i=1

pi = 1, a ≤ xi, yi ≤ b,max{x1, . . . , xn} ≤ max{y1, . . . , yn}

n∑

i=1

pi(xi − x̄)2 =

n∑

i=1

pi(yi − ȳ)2. (2.4)

(iv) Witkowski [20] showed that it is enough to assume that f is 3-convex in
Mercer’s assumptions. Furthermore, Witkowski weakened the assump-
tion (2.4) and showed that equality can be replaced by inequality in a
certain direction.

Furthermore, Baloch, Pečarić and Praljak in their paper [2] introduced
a new class of functions K1

c(a, b) that extends 3-convex functions and can be
interpreted as functions that are “3-convex at point c ∈ 〈a, b〉”. They showed
that K1

c(a, b) is the largest class of functions for which Levinson’s inequality
(2.2) holds under Mercer’s assumptions, i.e. that f ∈ K1

c(a, b) if and only if
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inequality (2.2) holds for arbitrary weights pi > 0,
∑n

i=1 pi = 1 and sequences
xi and yi that satisfy xi ≤ c ≤ yi for i = 1, 2, ..., n.

We give definition of the class K1
c(a, b) extended to an arbitrary interval

I in R.

Definition 2.3. Let f : I → R and c ∈ I◦, where I◦ is the interior of I. We
say that f ∈ K1

c(I) (f ∈ K2
c(I)) if there exists a constant D such that the

function F (x) = f(x) − D
2 x2 is concave (convex) on 〈−∞, c] ∩ I and convex

(concave) on [c,+∞〉 ∩ I.

Throughout this paper, E(Z) and Var(Z) denote expectation and vari-
ance, respectively, of a random variable Z. Pečarić, Praljak and Witkowski
in [18] proved the following probabilistic version of Levinson’s inequality.

Theorem 2.4. ([18]) Let X : Ω1 → I and Y : Ω2 → I be two random variables
on probability spaces (Ω1, p) and (Ω2, q), respectively, such that there exists
c ∈ I◦ such that

ess supω∈Ω1
X(ω) ≤ c ≤ ess supω∈Ω2

Y (ω) (2.5)

and

Var(X) = Var(Y ) < ∞.

Then for every f ∈ K1
c(I) such that E(f(X)) and E(f(Y )) are finite one has

E(f(X)) − f(E(X)) ≤ E(f(Y )) − f(E(Y )).

As a simple consequence of the previous theorem, they obtained further
generalization of the results obtained in [2].

Corollary 2.5. ([18]) If xi ∈ I ∩ 〈−∞, c], yj ∈ I ∩ [c,+∞〉, pi > 0, qj > 0
for i = 1, ..., n and j = 1, ...,m are such that

∑n
i=1 pi =

∑m
j=1 qj = 1 and

∑n
i=1 pi(xi − x̄)2 =

∑m
j=1 qj(yj − ȳ)2, then

n∑

i=1

pif(xi) − f(x̄) ≤
m∑

j=1

qjf(yj) − f(ȳ) (2.6)

holds for every f ∈ K1
c(I).

The aim of this paper is to build on the method of Pečarić, Praljak
and Witkowski seen in [18] to obtain a Levinson’s type generalization of
the Edmundson–Lah–Ribarič inequality, as well as to give refinements of the
obtained results by constructing certain exponentially convex functions.

3. Results

Our main result is a Levinson’s type generalization of the Edmundson–Lah–
Ribarič inequality and it is stated in the next theorem.
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Theorem 3.1. Let −∞ < a ≤ A ≤ b ≤ B < +∞. Let X : Ω1 → [a,A] and
Y : Ω2 → [b,B] be two random variables on probability spaces (Ω1, p) and
(Ω2, q), respectively, such that (2.5) holds and

A − E(X)
A − a

a2 +
E(X) − a

A − a
A2 − E(X2) =

B − E(Y )
B − b

b2+
E(Y ) − b

B − b
B2−E(Y 2).

(3.1)

Then for every f ∈ K1
c(a,B) such that E(X) and E(Y ) are finite one has

A − E(X)
A − a

f(a) +
E(X) − a

A − a
f(A) − E(f(X))

≤ B − E(Y )
B − b

f(b) +
E(Y ) − b

B − b
f(B) − E(f(Y )). (3.2)

Proof. Let F (x) = f(x) − D
2 x2, where D is the constant from Definition 2.3.

Since F : [a,A] → R is concave, from the Edmundson–Madansky inequality
(1.2) we have

0 ≥ A − E(X)
A − a

F (a) +
E(X) − a

A − a
F (A) − E(F (X))

=
A − E(X)

A − a
f(a) +

E(X) − a

A − a
f(A) − E(f(X))

−D

2

(A − E(X)
A − a

a2 +
E(X) − a

A − a
A2 − E(X2)

)
,

and if we rearrange it, we get

−D

2

(A − E(X)
A − a

a2 +
E(X) − a

A − a
A2 − E(X2)

)

≤ −A − E(X)
A − a

f(a) − E(X) − a

A − a
f(A) + E(f(X)). (3.3)

Similarly, F : [b,B] → R is convex, so in the same way we obtain

0 ≤ B − E(Y )
B − b

F (b) +
E(Y ) − b

B − b
F (B) − E(F (Y ))

=
B − E(Y )

B − b
f(b) +

E(Y ) − b

B − b
f(B) − E(f(Y ))

− D

2

(
B − E(Y )

B − b
b2 +

E(Y ) − b

B − b
B2 − E(Y 2)

)

,

and after rearranging we get

D

2

(
B − E(Y )

B − b
b2 +

E(Y ) − b

B − b
B2 − E(Y 2)

)

≤ B − E(Y )
B − b

f(b) +
E(Y ) − b

B − b
f(B) − E(f(Y )). (3.4)
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Now if we add up (3.3) and (3.4), we get

0 =
D

2

(
B − E(Y )

B − b
b2 +

E(Y ) − b

B − b
B2 − E(Y 2)

− A − E(X)
A − a

a2 − E(X) − a

A − a
A2 + E(X2)

)

≤ B − E(Y )
B − b

f(b) +
E(Y ) − b

B − b
f(B) − E(f(Y ))

− A − E(X)
A − a

f(a) − E(X) − a

A − a
f(A) + E(f(X))

which completes the proof. �

Remark 3.2. It is obvious from the proof of the previous theorem that the
inequality (3.2) holds if we replace the equality (3.1) by a weaker condition

D

(
B − E(Y )

B − b
b2 +

E(Y ) − b

B − b
B2 − E(Y 2)

− A − E(X)
A − a

a2 − E(X) − a

A − a
A2 + E(X2)

)

≥ 0.

Since f ′′
−(c) ≤ D ≤ f ′′

+(c) (see [2]), if additionally f is convex (resp. concave),
this condition can be further weakened to

B − E(Y )
B − b

b2 +
E(Y ) − b

B − b
B2 − E(Y 2)

− A − E(X)
A − a

a2 − E(X) − a

A − a
A2 + E(X2) ≥ 0 (resp. ≤ 0 ).

Remark 3.3. One can easily see from (3.3) and (3.4) that the inequality (3.2)
can be rewritten as

A − E(X)
A − a

f(a) +
E(X) − a

A − a
f(A) − E(f(X)) ≤ 0

≤ B − E(Y )
B − b

f(b) +
E(Y ) − b

B − b
f(B) − E(f(Y ))

and

A − E(X)
A − a

f(a) +
E(X) − a

A − a
f(A) − E(f(X)) ≤ D

2
C

≤ B − E(Y )
B − b

f(b) +
E(Y ) − b

B − b
f(B) − E(f(Y )),

where C is equal to any of the sides in equality (3.1).

The following result gives us a discrete version of Levinson’s type gen-
eralization of the Edmundson–Lah–Ribarič inequality, and it is obtained as
a simple consequence of the previous theorem.
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Corollary 3.4. Let −∞ < a ≤ A ≤ c ≤ b ≤ B < +∞. If xi ∈ [a,A],
yj ∈ [b,B], pi > 0, qj > 0 for i = 1, ..., n and j = 1, ...,m are such that∑n

i=1 pi =
∑m

j=1 qj = 1 and

A − x̄

A − a
a2 +

x̄ − a

A − a
A2 −

n∑

i=1

pix
2
i =

B − ȳ

B − b
b2 +

ȳ − b

B − b
B2 − ∑m

j=1 qjy
2
j , (3.5)

where x̄ =
∑n

i=1 pixi and ȳ =
∑m

j=1 qjyj, then for every f ∈ K1
c(a,B) we

have

A − x̄

A − a
f(a) +

x̄ − a

A − a
f(A) −

n∑

i=1

pif(xi)

≤ B − ȳ

B − b
f(b) +

ȳ − b

B − b
f(B) −

m∑

j=1

qjf(yj). (3.6)

Proof. Let X be a discrete random variable that takes value xi with proba-
bility pi for i = 1, 2, ..., n and let Y be a discrete random variable that takes
value yj with probability qj for j = 1, 2, ...,m. One can immediately see that
X and Y satisfy the conditions from Theorem 3.1, so the inequality (3.6)
follows directly from (3.2). �

4. Exponential Convexity

Let −∞ < a ≤ A ≤ b ≤ B < +∞. For fixed random variables X : Ω1 → [a,A]
and Y : Ω2 → [b,B] on probability spaces (Ω1, p) and (Ω2, q), respectively,
such that (2.5) and (3.1) hold.

Motivated by the inequality (3.2), we define the following linear func-
tional, which represents the difference between the right and the left side of
the aforementioned inequality with

Γ(f) =
B − E(Y )

B − b
f(b) +

E(Y ) − b

B − b
f(B) − E(f(Y ))

−A − E(X)
A − a

f(a) − E(X) − a

A − a
f(A) + E(f(X)) (4.1)

for functions f : [a,B] → R such that E(f(X)) and E(f(Y )) are finite.
From Theorem 3.1 it follows that Γ(f) ≥ 0 for f ∈ K1

c(a,B).
First we will give two mean value results.

Theorem 4.1. Let −∞ < a ≤ A < c < b ≤ B < +∞. Let X : Ω1 → [a,A]
and Y : Ω2 → [b,B] be two random variables on probability spaces (Ω1, p) and
(Ω2, q), respectively, such that (2.5) and (3.1) hold and let Γ be the linear
functional defined by (4.1). Then for f ∈ C3([a,B]) there exists ξ ∈ [a,B]
such that

Γ(f) =
f ′′′(ξ)

6

[
B − E(Y )

B − b
b3 +

E(Y ) − b

B − b
B3 (4.2)

− A − E(X)
A − a

a3 − E(X) − a

A − a
A3 − E(Y 3 − X3)

]

(4.3)
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Proof. Let f ∈ C3([a,B]). Function f is bounded, so E(f(X)) and E(f(Y ))
are finite and the functional Γ(f) is well defined. Furthermore, there exist
m = minx∈[a,B] f

′′′(x) and M = maxx∈[a,B] f
′′′(x). The functions

f1(x) = f(x) − m

6
x3 and f2(x) =

M

6
x3 − f(x)

are 3-convex because f ′′′
1 (x) ≥ 0 and f ′′′

2 (x) ≥ 0. Consequently, by Theo-
rem 3.1 we have Γ(f1) ≥ 0 and Γ(f2) ≥ 0, so we directly get

m

6
Γ(f̃) ≤ Γ(f) ≤ M

6
Γ(f̃) (4.4)

where f̃(x) = x3. Since the function f̃ is 3-convex, by Theorem 3.1 we have

0 ≤ Γ(f̃) =
B − E(Y )

B − b
b3 +

E(Y ) − b

B − b
B3

− A − E(X)
A − a

a3 − E(X) − a

A − a
A3 − E(Y 3 − X3)

If Γ(f̃) = 0, then (4.4) implies Γ(f) = 0, so (4.2) holds for every ξ ∈ [a,B].
Otherwise, dividing (4.4) by 0 < Γ(f̃)/6 we get

m ≤ 6Γ(f)
Γ(f̃)

≤ M,

and continuity of f ′′′ insures the existance of ξ ∈ [a,B] satisfying (4.2). �

Theorem 4.2. Let a, A, c, b, B, X, Y and Γ be as in Theorem 4.1 and let
f, g ∈ C3([a,B]). If Γ(g) 
= 0, then there exists ξ ∈ [a,B] such that

Γ(f)
Γ(g)

=
f ′′′(ξ)
g′′′(ξ)

,

or

f ′′′(ξ) = g′′′(ξ) = 0.

Proof. Let us define function h ∈ C3([a,B]) by h(x) = Γ(g)f(x) − Γ(f)g(x).
Due to the linearity of Γ we have Γ(h) = 0. Theorem 4.1 implies that exist
ξ, ξ1 ∈ [a,B] such that

0 = Γ(h) =
h′′′(ξ)

6
Γ(f̃),

0 
= Γ(g) =
g′′′(ξ1)

6
Γ(f̃),

where f̃(x) = x3. Therefore, Γ(f̃) 
= 0, otherwise we would have Γ(g) = 0,
which is contradiction with the assumption Γ(g) 
= 0, and

0 = h′′′(ξ) = Γ(g)f ′′′(ξ) − Γ(f)g′′′(ξ),

which gives us the claim of the theorem. �

Next we will give some definitions and basic results regarding the ex-
ponential convexity that we will need in the rest of this section. Throughout
this section I will denote an interval in R.
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Definition 4.3. A function f : I → R is n-exponentially convex in the Jensen
sense on I if

n∑

i,j=1

ξiξjf

(
xi + xj

2

)

≥ 0

holds for all choices of ξi ∈ R and every xi ∈ I, i = 1, . . . , n.
A function f : I → R is n-exponentially convex if it is n-exponentially

convex in the Jensen sense and continuous on I.

Remark 4.4. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also,
n-exponentially convex functions in the Jensen sense are k-exponentially con-
vex in the Jensen sense for every k ∈ N, k ≤ n.

Definition 4.5. A function f : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for all n ∈ N.

A function f : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous on I.

Remark 4.6. It is known (and easy to show) that f : I → R
+ is log-convex

in the Jensen sense, i.e.

f
(x1 + x2

2

)
≤ f(x1)f(x2) for all x1, x2 ∈ I (4.5)

if and only if

l2f(x1) + 2lmf

(
x1 + x2

2

)

+ m2f(x2) ≥ 0

holds for each l,m ∈ R and x1, x2 ∈ I.

It follows that a positive function is log-convex in the Jensen sense if
and only if it is 2-exponentially convex in the Jensen sense. Also, using basic
convexity theory it follows that a positive function is log-convex if and only
if it is 2-exponentially convex.

The following lemma is equivalent to the definition of convex functions
(see [19]).

Lemma 4.7. ([19]) A function f : I → R is convex if and only if the inequality

(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3) ≥ 0

holds for all x1, x2, x3 ∈ I such that x1 < x2 < x3.

We will also need the following result (see [19]).

Lemma 4.8. ([19]) If f is a convex function on an interval I and if x1 ≤
y1, x2 ≤ y2, x1 
= x2, y1 
= y2, then the following inequality is valid

f(x2) − f(x1)
x2 − x1

≤ f(y2) − f(y1)
y2 − y1

. (4.6)

If the function f is concave then the inequality reverses.

The following result will enable us to construct some new families of
exponentially convex functions.
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Theorem 4.9. Let −∞ < a ≤ A ≤ b ≤ B < +∞. Let X : Ω1 → [a,A]
and Y : Ω2 → [b,B] be two random variables on probability spaces (Ω1, p) and
(Ω2, q), respectively, such that (2.5) and (3.1) hold and let Γ be given by (4.1).
Furthermore, let Υ = {ft : [a,B] → R|t ∈ J}, where J is an interval in R, be
a family of functions such that for every t ∈ J E(ft(X)) and E(ft(Y )) are
finite, and for every four distinct points, u0, u1, u2, u3 ∈ [a,B], the mapping
t �−→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen sense. Then
the mapping t �−→ Γ(ft) is n-exponentially convex in the Jensen sense on
J . If additionally the mapping t �−→ Γ(ft) is continuous on J , then it is is
n-exponentially convex on J .

Proof. For ξi ∈ R and ti ∈ J , i = 1, 2, ldots, n, we define

f(x) =
n∑

i,j=1

ξiξjf ti+tj
2

(x).

Due to linearity of divided differences, from the assumption that the function
t �−→ [u0, u1, u2, u3]ft is n-exponentially convex, we have

[u0, u1, u2, u3]f =
n∑

i,j=1

ξiξj [u0, u1, u2, u3]f ti+tj
2

≥ 0.

This implies that f is 3-convex, so f ∈ Kc
1. Due to the linearity of expectation,

E(f(X)) and E(f(Y )) are finite, so by Theorem 3.1 we have

0 ≤ Γ(f) =
n∑

i,j=1

ξiξjΓ(f ti+tj
2

).

Therefore, the mapping t �−→ Γ(ft) is n-exponentially convex in the Jesen
sense. If it is also continuous, it is n-exponentially convex by definition. �

If the assumptions of Theorem 4.9 hold for all n ∈ N, then we immedi-
ately get the following corollary.

Corollary 4.10. Let −∞ < a ≤ A ≤ b ≤ B < +∞. Let X : Ω1 → [a,A]
and Y : Ω2 → [b,B] be two random variables on probability spaces (Ω1, p) and
(Ω2, q), respectively, such that (2.5) and (3.1) hold and let Γ be given by (4.1).
Furthermore, let Υ = {ft : [a,B] → R|t ∈ J}, where J is an interval in R, be
a family of functions such that for every t ∈ J E(ft(X)) and E(ft(Y )) are
finite, and for every four distinct points, u0, u1, u2, u3 ∈ [a,B], the mapping
t �−→ [u0, u1, u2, u3]ft is exponentially convex in the Jensen sense. Then the
mapping t �−→ Γ(ft) is exponentially convex in the Jensen sense on J . If
additionally the mapping t �−→ Γ(ft) is continuous on J , then it is is expo-
nentially convex on J .

Corollary 4.11. Let −∞ < a ≤ A ≤ b ≤ B < +∞ and let X, Y and Γ
be as in Corollary 4.10. Let Υ = {ft : [a,B] → R|t ∈ J}, where J is an
interval in R, be a family of functions such that for every t ∈ J E(ft(X)) and
E(ft(Y )) are finite, and for every four distinct points, u0, u1, u2, u3 ∈ [a,B],
the mapping t �−→ [u0, u1, u2, u3]ft is 2-exponentially convex in the Jensen
sense. Then the following statements hold.
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(i) If the mapping t �−→ Γ(ft) is continuous on J , then for r, s, t ∈ J such
that r < s < t we have

Γ(fs)t−r ≤ Γ(fr)t−sΓ(ft)s−r (4.7)

(ii) If the mapping t �−→ Γ(ft) is strictly positive and differentiable on J ,
then for all s, t, u, v ∈ J such that s ≤ u and t ≤ v we have

Bs,t(Υ) ≤ Bu,v(Υ),

where

Bs,t(Υ) =

⎧
⎪⎨

⎪⎩

(
Γ(fs)
Γ(ft)

) 1
s−t

, s 
= t,

exp
(

d
dt (Γ(fs))

Γ(fs)

)
, s = t.

(4.8)

Proof. By Theorem 4.9 the mapping t �−→ Γ(ft) is 2-exponentially convex in
the Jensen sense. From the comment after Remark 4.6 one can see that this
mapping is either identically equal to zero (in which case the inequality (4.7)
holds with both sides equal to zero) or it is strictly positive and log-convex.
Hence if we take r < s < t and f(t) = log Γ(ft) in Lemma 4.7 we get

(t − s) log Γ(fr) + (r − t) log Γ(fs) + (s − r) log Γ(ft) ≥ 0,

which is equivalent to inequality (4.7).
From (i) it follows that the mapping t �−→ Γ(ft) is log-convex on J ,

which means that the function t �−→ log Γ(ft) is convex on J . Hence, using
Lemma 4.8 with s ≤ u, t ≤ y, s 
= t, u 
= v, we obtain

log Γ(fs) − log Γ(ft)
s − t

≤ log Γ(fu) − log Γ(fv)
u − v

,

which is

Bs,t(Υ) ≤ Bu,v(Υ).

Finally, the limiting cases s = t and u = v are obtained by taking the limits
s → t and u → v. �

Now let us consider the following family of functions

Υ1 = {ft : [a,B] → R | t ∈ R}, [a,B] ⊂ 〈0,+∞〉,
defined by

ft(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
t(t − 1)(t − 2)

xt, t 
= 0, 1, 2,

1
2

ln x, t = 0,

−x ln x, t = 1,
1
2
x2 ln x, t = 2.

(4.9)

From now on we assume that E(ft(X)) and E(ft(Y )) are finite for all
the functions ft given by (4.9).
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Since f ′′′
t (x) = xt−3 ≥ 0, the functions ft are 3-convex, and the function

f(x) =
n∑

i,j=1

ξiξjf ti+tj
2

(x)

satisfies

f ′′′(x) =
n∑

i,j=1

ξiξjf
′′′
ti+tj

2

(x) =

(
n∑

i=1

ξie
(ti−3) ln x

)2

≥ 0,

so f is convex. Therefore we have

0 ≤ [u0, u1, u2, u3]f =
n∑

i,j=1

ξiξj [u0, u1, u2, u3]f ti+tj
2

(x),

so the mapping t �−→ [u0, u1, u2, u3]ft is n-exponentially convex in the Jensen
sense. Since this holds for every n ∈ N, we see that family Υ1 satisfies the as-
sumptions of Corollary 4.10. Hence, the mapping t �−→ Γ(ft) is exponentially
convex in the Jensen sense. It is easy to check that that it is also continuous,
so the mapping t �−→ Γ(ft) is exponentially convex.

If we apply Theorem 4.2 for functions f = ft and g = fs given by (4.9),
we can conclude that there exists ξ ∈ [a,B] ⊂ 〈0,+∞〉 such that

ξ =
(

f ′′′
s

f ′′′
t

)−1 (
Γ(fs)
Γ(ft)

)

=
(

Γ(fs)
Γ(ft)

) 1
s−t

, s 
= t.

Therefore, Bs,t(Υ1) given by (4.8) for the family of functions Υ1 is a
mean of the segment [a,B]. The limiting cases s → t can be calculated, and
are equal to:

Bs,t(Υ1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Γ(fs)
Γ(ft)

) 1
s−t

, s 
= t,

exp
(

2Γ(fsf0)
Γ(f0)

− 3s2 − 6s + 2
s(s − 1)(s − 2)

)

, s = t 
= 0, 1, 2,

exp
(

Γ(f2
0 )

Γ(f0)
+

3
2

)

, s = t = 0,

exp
(

Γ(f0f1)
Γ(f1)

)

, s = t = 1,

exp
(

Γ(f0f2)
Γ(f2)

− 3
2

)

, s = t = 2.

From Corollary 4.11(ii) it follows that the means Bs,t(Υ1) are monotone in
parameters s and t.
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[9] Furuta, T., Mičić Hot, J., Pečarić, J., Seo, Y.: Mond-Peari method in operator
inequalities inequalities for bounded selfadjoint operators on a Hilbert space.
Monographs in inequalities 1, Element, Zagreb (2005)
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