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1. Introduction

The fractional calculus represents a powerful tool in applied mathematics to
study a myriad of problems from different fields of science and engineering,
with many break-through results found in mathematical physics, finance, hy-
drology, biophysics, thermodynamics, control theory, statistical mechanics,
astrophysics, cosmology and bioengineering [12,26]. There has been a sig-
nificant development in fractional differential equations and in the impulse
theory in recent years; see the monographs of Abbas et al. [7], Kilbas et al.
[19], Lakshmikantham et al. [20], Miller and Ross [23], Samoilenko and Per-
estyuk [30], the papers of Abbas et al. [1-6,8], Vityuk et al. [32,33], and the
references therein.

The stability of functional equations was originally raised by Ulam in
1940 in a talk given at Wisconsin University (for more details see [31]). The
first answer to Ulam’s question was given by Hyers in 1941 in the case of
Banach spaces in [13]. Thereafter, this type of stability is called the Ulam—
Hyers stability. In 1978, Rassias [27] provided a remarkable generalization of
the Ulam—Hyers stability of mappings by considering variables. The concept
of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. Thus,
the stability question of functional equations is how do the solutions of the
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inequality differ from those of the given functional equation? Considerable
attention has been given to the study of the Ulam—Hyers and Ulam-Hyers—
Rassias stability of all kinds of functional equations; one can see the mono-
graphs of [14,15]. Bota-Boriceanu and Petrusel [9], Petru et al. [24,25], and
Rus [28,29] discussed the Ulam-Hyers stability for operatorial equations and
inclusions. Castro and Ramos [10], and Jung [17] considered the Hyers-Ulam—
Rassias stability for a class of Volterra integral equations. Ulam stability for
fractional differential equations with Caputo derivative is proposed by Wang
et al. [35,36]. Some stability results for fractional integral equation are ob-
tained by Wei et al. [38]. More details from historical point of view, and
recent developments of such stabilities are reported in [16,22,28,34,37,38].
In this paper, we discuss the existence and the Ulam-Hyers-Rassias sta-

bility for the following fractional partial impulsive discontinuous differential
inclusions of the form

Dy, (%) € G(z,y,u(z,y));  (z,y) € Jp; k=0,...,m,

u(z),y) = u(zy,y) + L(u(zy,,y);  ye€[0,b], k=1,....m, (1)

u(@,0) = p(x);  we(0a], u0y)=v(y); yel0,b],

where a,b > 0, Jy = [0,21]x[0,b], Ji := (g, xx4+1]¥[0,0]; k=1,...,m, O =
(xr,0); k= 0,...,m, 0 =20 < 71 < +++ < Ty < Tppp1 = a, Dy, s
the fractional Caputo derivative of order r = (r1,72) € (0,1] x (0,1], f :
J x R — R* is a given continuous function, J = [0, a] x [0,b], R* = R\{0},
G :J xR — PR), P(R) is the class of all nonempty subsets of R, I} :
R — R; k=1,...,m are given functions satisfying suitable conditions and
v :10,a] = R, ¢ :[0,b] — R are given absolutely continuous functions with
©(0) = (0). Here, u(z;,y) and u(z; ,y) denote the right and left limits
of u(x,y) at x = xy, respectively. We introduce some concepts about Ulam
stability of impulsive partial fractional differential inclusions.

2. Preliminaries

Denote L'(J) the space of Lebesgue-integrable functions u : J — R with the

norm
a b
e = [ [ ute )l dyd.
0 0

As usual, by AC(J) we denote the space of absolutely continuous functions
from J into R, and C := C(J) is the Banach space of all continuous functions
from J into R with the norm ||.||o defined by

[ulloc = sup |u(z,y)].
(z,y)ed

In all what follows consider the Banach space
PC::{u:J—JR:uEC’(Jk); kE=0,1,...,m,
and there exist u(z; ,y) and u(z},y); k=1,...,m,

with u(z;,y) = u(ay,y) for each y € [0,b]},
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with the norm

|ullpc = sup |u(z,y)|.
(z,y)eJ

Define a multiplication “-” by
(u ’ U)(xvy) = u(x,y)v(x,y) for each (xvy) €J

Then, PC is a Banach algebra with above norm and multiplication.

Let (X, d) be a metric space induced from the normed space (X, ||.||). De-
note Py(X) ={Y € P(X) : Yclosed}, Ppy(X) = {Y € P(X) : Y bounded},
Pep(X) = {Y € P(X) : Y compact} and Pepo(X) = {Y € P(X) :
Y compact and convex}.

Definition 2.1. A multivalued map T : X — P(X) is convex (closed) valued
if T(x) is convex (closed) for all z € X, T is called upper semicontinuous
(u.s.c.) on X if for each g € X, the set T'(z() is a nonempty closed subset
of X, and if for each open set N of X containing T'(z), there exists an open
neighborhood Ny of zp such that T'(Ny) € N. T is lower semicontinuous
(Ls.c.) if the set {t € X : T(t) N B # 0} is open for any open set Bin X.T
is said to be completely continuous if T'(B) is relatively compact for every
B € Ppa(X). T has a fixed point if there is € X such that z € T'(z). The
fixed point set of the multivalued operator T will be denoted by Fiz(T). The
graph of T' will be denoted by Graph(F) := {(u,v) € X X P(X) :v € T'(u)}.

Consider Hy : P(X) x P(X) — [0,00) U {oo} given by

Hy(A, B) = max {sup d(a, B),supd(A, b)} ,
acA beB

where d(A,b) = inf,e 4 d(a,b), d(a, B) = infyep d(a,b). Then, (Ppg,a(X), Hy)
is a Hausdorff metric space.

Definition 2.2. For each u € C, define the set of selections of the multivalued

F:JxC—"P() by
Spu ={v:e L*(J) 1 v(2,y) € F(z,y,u(z,y)); (z,y) € J}.
Definition 2.3. A multivalued map G : J — P (X) is said to be measurable

if for every v € E the function (z,y) — d(v,G(z,y)) = inf{d(v,z) : z €
G(z,y)} is measurable.

Definition 2.4. A multivalued map G : J x R — P(R) is said to be
Carathéodory if
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(i) (x,y) — G(z,y,u) is measurable for each u € R;
(ii) w+— G(z,y,u) is upper semicontinuous for almost all (z,y) € J.
G is said to be L'-Carathéodory if (i), (ii) and the following condition
hold;
(iii) For each ¢ > 0, there exists a positive function o, € L*(J) such that
HG(.’E,y, U)HP = Sup{”gll ‘g€ G($7yau)}
< oc(z,y) for all |u| < c and for a.e. (z,y) € J.
Lemma 2.5. [18] Let G be a completely continuous multivalued map with

nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e., Up — u, Wy, — w, wy € G(uy) imply w € G(u)).

Lemma 2.6. [21] Let X be a Banach space. Let G : J x X — P(X) be an
LY-Carathéodory multivalued mapping with Sg . # 0, and let L be a linear
continuous mapping from L'(J, X) into C(J, X), then the operator

Lo SG,u : C(JaX) - PCp,CU(C(JvX))v

u— L(Seu)(u),
is a closed graph operator in C(J, X) x C(J, X).

Now, we introduce notations and definitions concerning to partial frac-
tional calculus theory.

Definition 2.7. [32] Let § = (0,0), r1,r2 € (0,00) and r = (ry,r3). For
f € L'(J), the expression

(I3 1) (a,y) = W / ) / Y@ — sy — 7 (s, 1) de ds,

is called the left-sided mixed Riemann—Liouville integral of order r, where I'(.)
is the (Euler’s) Gamma function defined by T'(¢) = [; t*"te~"dt; & > 0.

In particular,
(15 )z, y) = f(z.y). (15 f)(x,y)
= / /y f(s,t)dtds; for almost all (z,y) € J,
o Jo

where o = (1, 1).
For instance, I} f exists for all 71,72 € (0,00), when f € L'(J). Note
also that when u € C, then (I} f) € C, moreover,

Ly f)(z,0) = (15 f)(0,y) = 0; 2 € [0,a], y €[0,0].
Ezample 2.8. Let \,w € (—=1,0) U (0,00) and r = (r1,72) € (0,00) X (0, 00),
then
B r1+ M1 +w)
T4+ A+ )T +w+7)

Iyt 2Tyt for almost all (z,y) € J.

By 1—r we mean (1—71,1—73) € [0,1) x[0,1). Denote by D2, := %;y’

the mixed second-order partial derivative.
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Definition 2.9. [32] Let » € (0,1] x (0,1] and f € L'(J). The Caputo
fractional-order derivative of order r of f is defined by the expression

of(@,y) = (I D3, f(z.y)

1 D2, f(s,t)
F(l—rl)l"l—rg // (x—s)(y —t)m dtds.

The case 0 = (1, 1) is included and we have

(‘Dg f)(z,y) = (Diyf)(x,y); for almost all (z,y) € J.

Ezample 2.10. Let \,w € (=1,0) U (0,00) and r = (ry,72) € (0,1] x (0, 1],
then

F(l +)‘)F(1 +(")) ZZT)\ Ty, Ww— rz

cpr A ; | Call B
0Ty F1+XA—r)I'(14+w—r1g) Y or almost all (z,y) €

Let a1 € [0,a], z = (a1,0), J, = (a1,a] x [0,b], 71,72 > 0 and r =
(r1,72). For u € L*(J,), the expression

1 rory
ITu)(x,y) = 7/ / z—s) "y — )2 tu(s, t) dtds,
00 = gy |, [ @9 =0 e
is called the left-sided mixed Riemann—Liouville integral of order 7 of .

Definition 2.11. [32] For u € L(J.) where D?cyu is Lebesgue integrable on
[k, xkr1] X [0,0], & = 0,...,m, the Caputo fractional-order derivative of
order r of u is defined by the expression

(“DLf)(x,y) = (17" D2, f)(@,y).

Let
Mk(x y) _ u(w, 0) u(z:, y) _ u(x:’ 0) .
’ f(@,0,u(x,0)) ~ flaf,yu@l,y)  flaf,0,u(z],0))
k=0,....,m

For the existence of solutions for the problem (1), we need the following
Lemmas. Let g € G(z, y,u(x,y)).

Lemma 2.12. [1] A functionu € AC(Jy); k=0,...,m is said to be a solution
of the differential equation

o (e N
Dek(f( y)))—m W (@) € i @)

:1:7 y7 u(x7
if and only if u(x,y) satisfies

u(e,y) = flo.y,ul@,y) (pele,y) + TG0@ ) (@) el ()

Let p := po.
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Lemma 2.13. [1] A function u is a solution of the fractional integral equations

u(z,y) = f(w y,u 'Y)
(r2) / / )T 1 ft)”_lg(s,t)dtds]; if(z,y) € Jo,

u(z,y) = f(z, y7( y) [z, y)

k _
z,; ay)) o [l(u(xz 70))
*Z < s ,y,um ) f<wj,o,u<a:i+7o>>>

r1—1 ro—1
+7 T, —5) " —t)"? s,t)dtds
()T (ra) 1/17 1/ ( )y =) g(s,t)

(ZE 7’1 1 _t)T2*1 . B
/ﬁk/ Tl)F(TZ) g(S,t)dtdS ) lf(l‘,y) E Jk, k'— ].,,..7771,

if and only if u is a solution of the problem (1).

Remark 2.14. Using Lemma 2.13, solutions of the problem (1) are solutions
of the fixed point inclusion u € N(u) where N : PC — P(PC) is the multi-
valued operator defined by

(Nu)(z,y)
(z,y) = f(z,y,u(z,y) [z, y)

/ / m_smnlr(r_z)t) 719(5’”‘““};

9 € Sc,u, (z,y) € Jo,

= f(z,y,u(z,y)[p(z,v)
—{nerc: " Ll ,y) __Liu(zi.0) >
g < x ,y,u(:vz ) ff,0,u(@l,0)

/ / i =) Ty — )2 g(s, t) dtds
T1 F(’I‘Q i—1/ Ty
_ m 1 y—t ro—1
/ / z=9) ) g(s,t)dt ds} ;
) F(T’l 7"2)

g€ Sgu, (x,y) €Jk, k=1,...,m.

Let us give the definition of Ulam—Hyers stability of a fixed point inclu-
sion due to Rus.

Definition 2.15. [29] Let (X,d) be a metric space and A : X — X be an
operator. The fixed point equation = A(z) is said to be Ulam—Hyers stable
if there exists a real number ¢4 > 0 such that: for each real number ¢ > 0
and each solution y* of the inequality d(y, A(y)) < ¢, there exists a solution
x* of the equation © = A(z) such that

d(y*,z*) <eca; v € X.

In the multivalued case, we have the following definition.
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Definition 2.16. [25] Let (X,d) be a metric space and A : X — P(X) be
a multivalued operator. The fixed point inclusion v € A(u) is said to be
generalized Ulam—Hyers stable if and only if there exists ¥ : [0, 00) X [0, 00)
increasing, continuous at 0 and ¥(0) = 0 such that for each € > 0 and for
each solution v* of the inequality Hg(u, A(u)) < €, there exists a solution u*
of the inclusion u € A(u) such that

du*,v") < ¥(e); xe€X.

From the above definition, we shall give four types of Ulam stability
of the fixed point inclusion v € A(u). Let € be a positive real number and
®:J — [0,00) be a continuous function.

Definition 2.17. The fixed point inclusion u € A(u) is said to be Ulam—Hyers
stable if there exists a real number ¢4 > 0 such that for each ¢ > 0 and for
each solution u of the inequality Hy(u(x,y), (Au)(z,v)) <€ (x,y) € J, there
exists a solution v of the inclusion u € A(u) with

HU(.T7y) - ’U({I?,y)“E < €CA; (%y) e J

Definition 2.18. The fixed point inclusion u € A(u) is said to be generalized
Ulam—Hyers stable if there exists an increasing function ©4 € C([0,00),
[0,00)), ©4(0) = 0 such that for each ¢ > 0 and for each solution u of the
inequality Hg(u(z,y), (Au)(x,y)) <€ (x,y) € J, there exists a solution v of
the inclusion u € A(u) with

lu(z,y) —v(z,y)[|e < Oale); (x,y) € J.

Definition 2.19. The fixed point inclusion u € A(u) is said to be Ulam—Hyers—
Rassias stable with respect to ® if there exists a real number c4,¢ > 0 such
that for each € > 0 and for each solution w of the inequality Hy(u(x,y), (Au)
(z,y)) < e®(z,y); (x,y) € J, there exists a solution v of the inclusion u €
A(u) with

[u(z,y) —v(z, y)lle < ecan®(z,y);  (z,y) €J.

Definition 2.20. The fixed point inclusion u € A(u) is said to be generalized
Ulam—-Hyers—Rassias stable with respect to ® if there exists a real number
ca,a > 0such that for each solution u of the inequality Hq(u(x,y), (Au)(z,y))
< ®(x,y); (z,y) € J, there exists a solution v of the inclusion u € A(u) with

u(z,y) —v(z,y)lle < caa®(z,y); (z,y) €J

Remark 2.21. 1t is clear that

(i) Definition 2.17 = Definition 2.18,
(ii)  Definition 2.19 = Definition 2.20,
(iii)  Definition 2.19 for ®(z,y) =1 = Definition 2.17.

We use the following fixed point theorem by Dhage [11] for proving the
existence of solutions for our problem.

Theorem 2.22. Let X be a Banach algebra and let A,B : X — X be two
operators satisfying



1252 S. Abbas and M. Benchohra MJOM

(a) A is Lipschitz with a Lipschitz constant c,

(a) B is compact and upper semicontinuous, and

(a) 2Ma <1, where M = ||B(X)|| := sup{||Bul| : v € X}.
Then, either

(i)  the operator inclusion w € AuBu has a solution, or
(i) the set E={ue€ X : du € AuBu; X > 1} is unbounded.

3. Existence and Ulam Stability Results

In this section, we present the main results for the existence and the Ulam—
Hyers—Rassias stability of the problem (1).

Definition 3.1. A function w € PC such that its mixed derivative Dgy exists
and is integrable on Ji; k= 0,...,m, is said to be a solution of the problem
(1) if and only if there exists g € Sg.4, such that

w(z,y)
fz,y,w(z,y))

(ii)  w satisfies “Dj, (%) g(x,y) on Ji and the conditions
w(zf,y) = wlay,y) + I(wzy,y); y € 0,0, k=1,...,m,
w(z,0) = ¢(z);  €[0,a], w(0,y) = P(y); y € [0,0],

are satisfied.

(i)  the function (z,y) — is absolutely continuous, and

The following hypotheses will be used in the sequel.
(H1) There exists a strictly positive function « € C such that

|f(z,y,u) — f(2,y,0)| < a(z,y)|lu—7u|; forall (z,y) € Jand u,u €R,

(Hy)  The multifunction G is L'-Carathéodory, and G(z,y,w) has compact
and convex values for each (z,y,w) € JxR, and there exists a positive
function h € LY (J) N L*°(J) such that

IG(z,y,u)||p < h(z,y); ae (z,y) €J, foraluéeckR,
(H3)  There exists a positive function § € C such that

’ ’<ﬁmy) for all (z,y) € J, and allu € R.
fxy,

Theorem 3.2. Assume that hypotheses (Hy)—(Hs) hold. If
2a"1b"2 || h]| Lo 1
L = 2 7 4
lleoo {Iuloo +2m| B0 + T )l <2 (4)

then the problem 1 has at least one solution on J. Moreover, if the following
hypothesis

(Hy), there exists Ag > 0 such that, for each (x,y) € J and u € R we have

|f($,y,u)| < )\@(D(x,y),

holds, then the fized point inclusion u € N(u) is generalized Ulam—Hyers—
Rassias stable.
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Proof. Define two operators A and B on PC by
(Au)(z,y) = f(z,y,u(z,y)); (2,y) € J,

(Bu)(z,y) = p(z,y) + +/ / T8 y(;)t)” G(s,t,u(s,t))dtds;

(xvy) € J07

and

(Bu)(z,y)
k —
x ) ’y)) _ Il(u(xz 70))
Y +;< z,y7 u(@,y)) f(ivv*,OW(wﬁO)))

/ / )1y — )2 G (s, t, uls, 1)) dt ds

_ 7“1 1 —)r2—1
/ / z=5) ) G(s,t,u(s,t))dtds; (x,y) € Jg;
Ty (TQ)
k=1,...,m

Clearly, A and B define the operators A : PC — PC and B : PC —
Pep.co(PC). Solving the problem (1) is equivalent to solving the operator
inclusion

u(z,y) € (Au)(z,y)(Bu)(z,y); (z,y) € J. (5)
We show that operators A and B satisfy all the assumptions of Theorem
2.22. The proof will be given in several steps and claims. O

Step 1. A is a Lipschitz operator. Let uy,us € PC. Then, by (Hy), we have

|Au1(1‘,y) - AUQ(:Cayﬂ = |f(z,y,u1(z,y)) - f(z,y,uz(z,y))\
< a(z,y)lur(z,y) — u2(2,y)|
< lleflssllur = uallpe-

A

Thus,

[Auy — Aug|[po < [laflocllur — uzllpe,
Hence, A is a Lipschitz with a Lipschitz constant ||| co-

Step 2. B is compact and upper semicontinuous with convexr values on PC.
The proof of this step will be given in several claims.

Claim 1. B has convex values on PC.
Let w1, ws € B(u). Then, there exist g1,g92 € Sg. such that for each
(z,y) € Jo, we have

_ 7"1 1 — )21
wi(z,y) = u(@,y) // . y(mt) gi(s, 1) dtds; 1€ {1,2},
2
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and for each (z,y) € Jk; k=1,...,m, we have

oo vag) fi<u<x;,o>>

Sy / / )1y — )2 gy (s, t) dt ds

_ =)y =) g (s s; .
+F(r1)F(T2)/wk/0( y o (s ) deds; € {1,2}

Let 0 < A < 1. Then, for each (z,y) € Jy, we have
[)\U)l + (1 - )

rl 1 _t)rgfl
w(z,y) / / () [Ag1 + (1 — N)go](s,t) dtds,

and, for each (z,y) € Jy; k = 1, ...,m, we have
[Awy + (1 = Mws](z, y)

uo 5w)  L(u(a;,0)

Y +Z< z»yv ( z?y)) f(.’E+ Ovu(ijLVO))>
/ / 7"1 1 _t)?"g—l

[)‘91 + (1 - (s,t)dtds

/ / xr — S ’I“1 1 t)’l“g*l
L(ri)T(r2) Jo,

x[Ag1 + (1 — N)g2](s, ) dt ds.
Since Sg,, is convex (because G has convex values), we have that
Awy + (1 — Nwsa(z,y) € B(u).

Claim 2. B maps bounded sets into bounded sets of PC.
Let w € B(u) for some u € S, where S is a bounded set of PC. Then,
there exists g € S,y such that for each (z,y) € Joy

w(zr,y) = p(z,y) + (T () // )1y — )2 g (s, t) dt ds,

and, for each (z,y) € Ji; k=1,...,m, we have,
S L(u(a,y) Li(u(x;,0)
wloy) = ulay) + Z <f(xf,y7u(wi+,y)) i o,u<xr,o>>>

Jr / / Yy — )2 (s, t) dt ds
Ti—1
/ / )y — )2 g (s, t) dt ds.
[(r2)
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From (Hz) and (Hj), for each (z,y) € Ji; k=1,...,m, we get

2a"0"2||h| L o
P(1+r)0(1+r0)

Claim 3. B maps bounded sets into equicontinuous sets of PC.
Let w € B(u) for some u € S, where S is a bounded set of PC, and let

(11,y1), (m2,92) € J, with 7 < 7 and y1 < y2. Then, there exists g € Sg 4
such that for each (z,y) € Jy, we have

lwllpe <o +2m]1B]leo +

lw(T2,y2) — w(Te, y1)| < (T, y1) — (72, y2)]

T1 Y1
g L] = e = = (= =
T1 2
| (s,t)|dtds

(r2 =)™ " Hyz2 — )27 g(s, 1) dt ds

. /L/ " (g — 1) g(s, 1) di ds
Y1

+F(n>F(rz>/n /0 (2= 8)" (g2 — 1) (s, t)| dt ds.

Thus, that for each (z,y) € Jo, we get

[w(T2,y2) — w(Te, y1)| < |p(T1,y1) — (72, y2)|
< i, y1) — (72, 92)|

|l Lo .
2" _ 149,71 _ ro
+ 1—|—F(r1)1"(1+r2)[ Yo' (12 — 1) +275" (Y2 —y1)

1yt =ty = 20 = )" (y2 — yn)"™)
Again, for each (x,y) € Ji; k=1,...,m, we have
[w(T2, y2) — w(T1,51)]

Z; ayl)) o Ik(u(x];ayQ))
€, 7y17 ( xz; 73/1)) f(xz7y27u(xi+7y2))

1 L Y1 1 1 -
*NmmeLHA(“”>[@‘” ST

x|g(s, )Idtds

T(r2) Z/x /1 — )"y — )2 g(s, )| dtds

+4447?/ J R A DG TR
x|g(s,t |dtds

/ / T2 — ) (s — 1) L|g(s, )| dt ds
7’2 Y1

< |u(ri,y1) — (12, ¥2)
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1 T1 Y2 1 oy 1
+fgﬁﬂ—f/ [ e gt s
Y1
/ | = s = gt e s
L(r)T(rz)

Hence, for each (z,y) € Ji; k=1,...,m, we get

\w(TQ,yz) —w(n,yl)|

z; 72/1)) Li(u(z; ,y2))
S |M(Tl,y1) T27y2 ‘+Z‘ Z; 7y17 Z; >y1)) - f(‘rj7y2>u(mj7y2)>

|h||LOC yl rl—l _ op\ro—1 _ p\re—1
Z [(y2 —1) (1 — 1) ]dtds
y2
|h”L Z/ / 8) Hyg — )21 dtds
Y1

thlLoo
1+P(T1)F(1+7"2
+ 1Y = Ty Yt — 2(me — ) (Y2 — y1) "]

)[29§2(T2 =71)" + 275" (Y2 — )"

As 11 — 15 and y; — ¥2, the right-hand side of the above inequality tends
to zero. As a consequence of Claims 1 to 3 together with the Arzeld—Ascoli
theorem, we can conclude that B is compact. Moreover,

2a" 02 || || e
F(Tl + ].)F(?"Q + 1)7

M =|B(PO)| < |llloc +2m]|5]lce +

and so, by assumption (4), we get
2M ||| oo < 2L < 1.

Step 3. B has a closed graph.
Let u, — ux, h, € B(u,) and h, — h,. We need to show that
hs € B(uy). hy, € B(u,,) means that there exists g, € Sp,, such that

hdww=fuym4zmﬂMaw

/ / (@—s)"~ 1?@) )Mlgn(s,t)dtds]; (z,y) € Jo,

() = f@ymdxwﬂan

k
@) (e ,0)
+;( Mwuww @0, un(wf,0 Q

p(h (r2) Z/z / (i — )" "Ny — 1) gn(s,t)dtds
+/x/ Chb) (T;)t)m 19n(87t)dtds]; (z,y) € Ty, k=1,...,m
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We must show that there exists g. € Sg ., such that,

h*(x y f(x y,u*(l' y)) M(CC y)
/ / z—s)"" T_Q)t)Tr g« (s,t) dtds} > (2,9) € Jo,

h (x,y) f(x,y,u*(m,y)) {u(m,y)

k -
i (s (2 ,y)) B Ii(u*(xi ,0))
+; (f ey, u(zly)  fa, 0, ua () 0))>

P

'r 1 ro—1
i—s) )" t)dtd
)F 'r2 Z;L 11/ (f 15 (y ) (5 ) s
/ / (x — T—)t) g*(s,t)dtds}; (,y) € Ju, k=1,...,m
T 2

Clearly, we have

[(hn = 1) = (he = p)llpc = [|hn = hullpc — 0 as n — oc.

Thus, we have (h,, — 1) — (hs — u) as n — oo. Now, consider the continuous
linear operator £ : L'(J) — PC; g— (Lg)(x,y), such that

(Lg)(a,y) = f@y(xwﬂme

eyt »
+/0 i T () g(s,t) dtds] i (z,y) € Jo,

wmmw:fu%<wmﬂMaw

L LGy Lug,o)
+Z<ﬂ”%<wm ﬂxOMw®J

1
/ / —8)" T (y — )2 g (s, ) dt ds

y _ T1 11 )7‘2 1
/ / ( ] g(s, t)dtds]; (,y) €, k=1,....,m
T2

From Lemma 2.6, it follows that LoS¢q ,, is a closed graph operator. Moreover
we have

(hn(m,y) - u(m,y)) € L(Sc,u,,)-

Since u, — U, we have that (h.(z,y)

—u(z,y)) € L(Sa,u. ) Therefore, there
exists g« € Sg,u, such that
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hi(z,y) = f(z,y, us(z,9)) {u(w,y)

//(x T;llr(r;)t)rrlg*(s’t)dtdS};(xyy)eJo,

h (:c,y) f(:c,y,u*(m,y)) {,u(w,y)

k _
7)) Ii(u. (x7,0))
2 (f T o m(xr,o»)

z ,y,u*(:cl 7y))

=1
F(Tl)F r2) Z/ / C l(y )" lg*(s t)dtds
T 7‘1111 —t ro—1
" / 7“1);‘?;(7“2)) g*(S,t)dtds:| ; («T,y)EJk, k=1,...,m
T

Thus, the multivalued operator B has closed graph and consequently it is
(u.s.c.) on PC in view of compactness of B.

Step 4. the conclusion (ii) of Theorem 2.22 is not possible.
Let u € PC be any solution to (1), such that for any A € (0,1) we have
u € AN (u). Then, there exists g € Sg.,,, such that

ule,y) = M (e, ule, ))[ )

/ / —s” 1y( ))TQ : (Svt)dtds]; (x,y) € Jo,

w(e,y) = My, ulz,y)) [mx,y)
k _
. ,y I(u(y ,0)
+Z<f Fuulety) | fa@d0,u( to»)

i=1
1)11“(7"2)2/% 1/ )y — ) (s, t) dt ds
/ /Oy R (Tz) . 9(s, t)dtds]; (z,y) € Jy, k=1,...,m

Therefore,

2a"b"2 || k|| 1o
e )| < 17, w9 (11 )]+ 2180+ 71 5 72))

< [If @y, ulz,y)) = f(z,5,0) + [ f(z,,0)]]

24" 6" ||h]| oo
2 o
x (e )l + 208l + 5 s )

2a" 0" || b Lo )

< [lelosu(z, y)| + £7] (Ilulloo +2m|| B0 + (1 +r)0(1+13)
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where f* = sup{|f(z,y,0)|: (z,y) € J}. Hence,

*L
|mmchHf

— = M".
al|oo(l — L)

Thus, the conclusion (ii) of Theorem 2.22 does not hold for A* = + > 1.
Consequently, the problem (1) has a solution on J.

Step 5. The Ulam—Hyers—Rassias stability.

Now, we prove the generalized Ulam—Hyers—Rassias stability of the mul-
tivalued operator N. Let u € PC be a solution of the inequality |u — N (u)| <
®(x,y) on J, and let v be a solution of the fixed point inclusion v € N(u).
Then, there exists g, € Sg,v, such that

vle.9) = Flapo(o) o)
/ / (f”_srl i (T;)t)mlgv(&t)dtds]; if (z,y) € Jo,

w%w=fu%wawﬂMaw
k
w(ry)  L(,0)
+§:< f<“&miﬁ»>

72=1 7. ,’y,’U(Il 7y))
11 _ p\T2—1
+ﬁZL 1/ (i =) (y— 1) gu(s,t)dtds
(CL' 7‘1 1 7t)'r2 1 . B
/ / T(r1)T(r2) go(s, t)dtds|; if (z,y) € Jy, k=1,...,m
Then, for each (z,y) € J, it follows that

(e, y) — vz, y)| < Ha(u(z,y), (Nv)(z,y))
< Ha(u(z,y) — (Nu)(2,y)) + Ha((Nu)(z,y) — (Nv)(z,9))
< ®(z,y) + Ha((Nu)(z,y) — (Nv)(z,9)).

Thus, there exists g € Sg 4, such that for each (z,y) € Jy, we have

u(z, y) — vz, y)| < @(z,y) + |f(2,y,u(z,y)) - (I y,v(z,y))]

w(z,y) / / T 8)7( TT(ra) )72_19(5,15) dtds

+ [f (@, y,0(z,9))
r—s)ty — )2t
/ / zéw)) \g(s,t) —gv(s,t)|dtds
< Borg) + [elmtologs o)
[+ il
T +r)l(1+72)
2a"b" || Lo
L1 +7)l(1+72)

)\4>(I>(‘r7 y)
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2L
< q)(zay) + L|U(l‘,y) - U(I7y)‘ + WAQq)(z,y),

and for each (z,y) € Ji; k=1,...,m, we get
I'LL(.’E y) - (il' y)| < (I)((E y) + |f(x,y,u(w,y)) - f(l'vyav(xay)”

:,C i ,y)) _ Ii(u(x;70))
y +Z< z’y7 ( 17y)) f(xj,(),u(xj70))>

) Z/xl/ (s —8)"* My — )2 g(s, t) dt ds

/mk/ i (rz)t)rzlg(s,t)dtds

+ [ f(z,y,v(z ,y))l
S| G(ur,y)  L(e(er,y)
" [Z; f(ﬂff’yaU(%‘f’y)) f(xf,yvv(xf,y))‘

+Z

:0)  L(v(z,0)) ‘
fxf 0 u(x ,0))  f(z,0,v(z],0))

/ / Ty ) g(s,8) — gu(s, )] de ds
Ti—1

/ / x_s” ! (,;)t)w 19<S»t)—gv<s,t)|dtds}

L
—— Ao ®(z,y).

[lev]] oo

Hence, by (4) for each (z,y) € Ji; k=0,...,m, we get
1 2L\
o) = vl < 2 (14 2200 ) @l

lleelf oo
=cn,0P(z,y).

Consequently, the fixed point inclusion u € N(u) is generalized Ulam—Hyers—
Rassias stable.

4. More Existence and Ulam Stability Results

Now, we present (without proof) some existence and Ulam stability results
to the following problem

{CDzk (7ot ) € Glay, ulw,y); (2,9) € J = [0,a] x [0,
u(z,0) = p(x); z €[0,al, u(0,y) =v(y); y€[0,b],

where a,b >0, 6 = (0,0), °Dj is the Caputo’s fractional derivative of order
r=(r,r2) € (0,1] x (0,1], f:J xR — R* is a given continuous function,
G:J xR —P[R)and ¢ € AC([0,qa]), 1 € AC(]0,b]) with ©(0) = 9(0).

(6)
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Remark 4.1. Solutions of the problem (6) are solutions of the fixed point
inclusion u € N(u) where N : C — P(C) is the operator defined by

(Nu)(x,y)
[z, y,u(x 13/))[#(33,2/)

=< hecl: — )1y — )t
/ / z=9) Zérg)) g(s,t)dtds} i €S

Theorem 4.2. Assume that hypotheses (H1) and (Hz) hold. If
a™b"2||h|| e 1

- 7

F(1+r1)F(1+r2)} ) @)
then the problem (6) has at least one solution on J. Moreover, if the hypothesis

(Hy) holds, then the fized point inclusion u € N(u) is generalized Ulam—
Hyers—Rassias stable.

oo 1l +

5. An Example

Consider the following partial functional discontinuous differential inclusions
of the form

°Dj, (i) € Gla,y,ulw,y), () € [0,1] % [0,1), @ £ 3, k=0,1,

o(3) (1) 41 (a(3)). we ol
u(z,0) = ¢(z), u(0,y)=v(y); =yel0,1],
where 6; = (3,0), f:[0,1] x[0,1] xR = R*, G:[0,1] x [0,1] x R — P(%
and I; : R — R are defined by
{m}, if u<0,

1
G(.’I},y,U) = |:0, ﬁ}; if u= 0,

H@y,u) = e q 5 a))

{0}; if uw>0,
and

s (u) B (8 + 6_10)2
YT 512¢10(1 + [u))?”

The functions ¢, : [0,1] — R are defined by

{’”22610; if z € [0, 1],

wle) = 2?e7 10 if x € (3,1,

N

and
Y(y) =ye 10 forally €[0,1].

We can see that the solutions of the problem (8) are solutions of the fixed
point inclusion u € A(u) where A : PC([0,1] x [0,1],R) — P(PC([0,1] x
[0,1],R)) is the multivalued operator defined by



1262 S. Abbas and M. Benchohra MJOM

(Au)(z,y)

h(xv y) = f(l’, Y, u(xv y))[ﬂ(l’,y)
+15G(z,y, u(z,y))];
(z,y) € Jo :=[0, 3] x [0,1],

= e PC0 X [0.1LR) 2  h(w,y) = f(z,, u(z, y)[u(z, )

(I(u(z ") Li(u(3,0)
Fgwau(l ) U0z 0)
+G(5,y,u(5,9) + 15, G2,y u(z,y)));

(z,y) € J1:=(3,1] x [0,1].

We show that the functions ¢, v, f, G and I satisfy all the hypotheses of
Theorem 3.2. Clearly, the function f is continuous and satisfies (H;) with
o(z,y) = gzt~ Then, [|o]lso = 1om0. Also, the multifunction G satisfies
(Hs) with h(z,y) = s, and so ||h] L~ = 1/e®. The condition (H3) holds

with B(z,y) = 81;;; Z. This gives ||f]|oc = %11622. A simple computation gives

[#llos < 4e. The condition (4) holds. Indeed, I'(1 + ;) > %; i = 1,2, and a
simple computation shows that

2071572 |h| L }

9L = 2lla Oo[ 0 +2m 0o T
lalloo [ 12 1Bl + F 0 T DT 2

< 71 [4 +78162 +§} <
5el0 [*° 7" 256 T 8
1
Finally, we can see that the hypothesis (Hy) is satisfied with ®(x,y) = -
e

and A\g = 1. Consequently, Theorem 3.2 implies that the problem (8) has a
solution defined on [0,1] x [0, 1], and the fixed point inclusion v € A(u) is
generalized Ulam—-Hyers—Rassias stable.
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