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Approximations of a Complex Brownian
Motion by Processes Constructed
from a Lévy Process

Xavier Bardina and Carles Rovira

Abstract. In this paper, we show an approximation in law of the complex
Brownian motion by processes constructed from a stochastic process
with independent increments. We give sufficient conditions to the char-
acteristic function of the process with independent increments that en-
sure the existence of such an approximation. We apply these results to
Lévy processes. Finally we extend these results to the m-dimensional
complex Brownian motion.
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1. Introduction and Main Result

The purpose of this paper is to research a weak approximation of a complex
Brownian motion. The most typical processes taken as approximations to
Gaussian processes are usually based on Donsker approximations (the func-
tional central limit theorem) or on Kac-Stroock type approximations. In this
paper, we will deal with this last type of approximations.

Kac [7] described the solution of the telegrapher’s equation in terms of
a Poisson process. Later, Stroock [9] showed the weak convergence of this
solution to a Brownian motion. More precisely, given {Nt, t ≥ 0} a standard
Poisson process, the laws of the processes xε{

xε(t) = ε

∫ t
ε2

0

(−1)Nsds, t ∈ [0, T ]

}

converge weakly towards the law of a standard Brownian motion in the space
of continuous functions on [0, T ].
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These results have been extended to obtain approximations of other
processes as, among others: m-dimensional Brownian motion [5], stochastic
partial differential equations driven by Gaussian white noise [2], fractional
stochastic differential equations [4], multiple Wiener integrals [3] or complex
Brownian motion [1].

Although all these cases are built beginning with a Poisson process, a
detailed study of the proofs shows that the authors use only some properties
of the Poisson process that can be found in a bigger class of processes as
Lévy processes. Actually, we will deal with approximations of the complex
Brownian motion built from a unique stochastic process with independent
increments. Let us recall that {Bt, t ∈ [0, T ]} is a complex Brownian motion
if it takes values on C and its real part and its imaginary part are two
independent standard Brownian motions.

We consider the processes{
xθ

ε(t) = c(θ)ε
∫ 2t

ε2

0

eiθXsds, t ∈ [0, T ]

}
, (1)

where {Xt, t ≥ 0} is a stochastic process with independent increments and
c(θ) is a constant, depending on θ, that we will determine later. Let us recall
that our approximations can be written as

xθ
ε(t) = εc(θ)

∫ 2t
ε2

0

cos(θXs)ds + iεc(θ)
∫ 2t

ε2

0

sin(θXs)ds.

When X is a Poisson process in [1] it has been proved that for θ �= 0
and θ �= π the limit is a complex Brownian motion. Furthermore, for θ = π
we obtain an alternative version of Stroock’s results since

eiθXs = (−1)Xs .

The aim of this paper is to study the weak limits of the processes (1)
when ε tends to zero, showing that Lévy processes can be used to approximate
a complex Brownian motion.

Having this type of approximation ensures the robustness of the process
limit, in our case the Brownian motion, to be used as a model in practical
situations. In addition, we can obtain expressions that can be useful for sim-
ulation.

In Sect. 2, we recall some basic facts about Lévy processes and we
present the classical methodology to obtain weak approximations of Gaussian
processes. Section 3 is devoted to give the main results of the paper. First
we give some conditions on the characteristic functions of the process X that
ensures the weak convergence of (1) to a complex Brownian motion. Then,
we discuss when the characteristic functions of Lévy processes satisfy such
conditions. Finally, in Sect. 4, we study the m-dimensional case, proving that
we can obtain a m-dimensional complex Brownian motion from a unique
Lévy process.

Throughout the paper K denotes positive constants, not depending on
ε, which may change from one expression to another one. The real part and
the imaginary part of a complex number will be denoted by Re[·] and Im[·].
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2. Preliminaries

2.1. Lévy Processes

Set {Xs, s ≥ 0} a Lévy process, that is, X has stationary and indepen-
dent increments, is continuous in probability, is càdlàg and X0 = 0, and
it is defined on a complete probability space (Ω,F , P ). Some examples of
Lévy processes are, among others, Brownian motion, Poisson Process, jump-
diffusion processes, stable processes or subordinators.

Consider φXt
(u) its characteristic function. Remember that it can be

written as

φXt
(u) = E

(
eiuXt

)
= e−tψX(u),

where ψX(u) is called the Lévy exponent of X.
It is well known that the Lévy exponent can be expressed, by the Lévy-

Khintchine formula, as

ψX(u) = −aiu +
1
2
σ2u2 −

∫
R\{0}

(eiux − 1 − iuxI|x|<1)η(dx), (2)

where a ∈ R, σ ≥ 0 and η is a Lévy measure, that is,
∫
R\{0} min{x2, 1}η(dx)

< ∞.
For notation and simplicity along the paper we set

a(u) := Re[ψX(u)] =
1
2
σ2u2 −

∫
R\{0}

(cos(ux) − 1)η(dx), (3)

and

b(u) = Im[ψX(u)] = −au −
∫
R\{0}

(sin(ux) − uxI|x|<1)η(dx). (4)

Notice that a(−u) = a(u) and b(−u) = −b(u).
We refer the reader to [8] for more information about Lévy processes.

2.2. Weak Approximations of the Complex Brownian Motion

For any ε > 0, set {xε(t), t ∈ [0, T ]} a complex stochastic process with
xε(0) = 0. Consider Pε the image law of xε in the Banach space C([0, T ],C)
of continuous functions on [0, T ].

To prove that Pε converges weakly as ε tends to zero towards the law on
C([0, T ],C) of a complex Brownian motion we have to check that the family
Pε is tight and that the law of all possible weak limits of Pε is the law of two
independent standard Brownian motions.

The tightness of the family Pε can be proved checking that the laws
corresponding to the real part and the imaginary part of the processes xε

are tight. Using the Billingsley criterium (see Theorem 12.3 of [6]) and that
our processes are null on the origin, it suffices to prove that there exists a
constant K such that for any s < t

sup
ε

(
E((Re[xε(t) − xε(s)])4) + E((Im[xε(t) − xε(s)])4)

) ≤ K(t − s)2. (5)

The second part of the proof consists in the identification of the limit
law. Let {Pεn

}n be a subsequence of {Pε}ε (that we will also denote by
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{Pε}) weakly convergent to some probability P . We want to see that the
canonical process X = {Xt(x) =: x(t)} is a complex Brownian motion under
the probability P , that is, the real part and the imaginary part of this process
are two independent Brownian motions. Using Paul Lévy’s theorem it suffices
to prove that under P , the real part and the imaginary part of the canonical
process are both martingales with respect to the natural filtration, {Ft},
with quadratic variations < Re[X], Re[X] >t= t, < Im[X], Im[X] >t= t
and covariation < Re[X], Im[X] >t= 0.

To see that under P the real part and the imaginary part of the canonical
process X are martingales with respect to its natural filtration {Ft}, we have
to prove that for any s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t and for any bounded
continuous function ϕ : Cn −→ R,

EP

[
ϕ(Xs1 , ...,Xsn

)(Re[Xt] − Re[Xs])
]

= 0,

EP

[
ϕ(Xs1 , ...,Xsn

)(Im[Xt] − Im[Xs])
]

= 0.

Since Pε
w⇒ P , and taking into account (5), we have that,

lim
ε→0

EPε

[
ϕ(x(s1), ..., x(sn))(Re[x(t)] − Re[x(s)])

]
= EP

[
ϕ(x(s1), ..., x(sn))(Re[x(t)] − Re[x(s)])

]
,

and we get the same with the imaginary part. So, it suffices to see that

lim
ε→0

E
(
ϕ(xε(s1), ..., xε(sn))

(
Re[xε(t)] − Re[xε(s)]

))
= 0, (6)

lim
ε→0

E
(
ϕ(xε(s1), ..., xε(sn))

(
Im[xε(t)] − Im[xε(s)]

))
= 0. (7)

To deal with the quadratic variation, it is enough to prove that for any
s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t and for any bounded continuous function
ϕ : Cn −→ R,

lim
ε→0

E
[
ϕ(xε(s1)..., xε(sn))

(
(Re[xε(t)] − Re[xε(s)])2 − (t − s)

)]
= 0, (8)

lim
ε→0

E
[
ϕ(xε(s1)..., xε(sn))

(
(Im[xε(t)] − Im[xε(s)])2 − (t − s)

)]
= 0. (9)

Finally to prove that < Re[X], Im[X] >t= 0, it suffices to check that for
any s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t and for any bounded continuous function
ϕ : Cn −→ R,

lim
ε→0

E
[
ϕ(xε(s1)..., xε(sn))(Re[xε(t)]−Re[xε(s)])(Im[xε(t)]−Im[xε(s)])

]
= 0.

(10)

3. Approximations to a Complex Brownian Motion

We built our approximations from a stochastic process X with independent
increments. We will deal with X using the study of its characteristic function
φX . Let us introduce a set of useful hypothesis (Hθ) for the characteristic
function φX of a process X:
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(Hθ1) for any 0 ≤ s < t there exists a constant K(θ) such that for any ε > 0,

ε2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φXy−Xx
(θ)|dxdy ≤ K(θ)(t − s),

(Hθ2) for any 0 ≤ s < t there exists a constant c(θ) such that

lim
ε→0

ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ x

2s
ε2

[φXx−Xy
(θ) + φXx−Xy

(−θ)]dydx = 2(t − s),

(Hθ3) for any 0 ≤ s < t

• limε→0 ε2
∫ 2t

ε2
2s
ε2

∫ y
2s
ε2

|φXy−Xx
(θ)||φXx−X 2s

ε2
(2θ)|dxdy = 0.

• limε→0 ε
∫ 2t

ε2
2s
ε2

|φXx−X 2s
ε2

(θ)|dx = 0,

This set of hypothesis gives some sufficient conditions on the character-
istic function of the process {Xs, s ≥ 0} to get the convergence to a complex
Brownian motion, as we will see in the next Theorem. Furthermore, in The-
orem 3.3 we check that Lévy processes satisfy such hypothesis.

Theorem 3.1. Let {Xs, s ≥ 0} be a stochastic process with independent incre-
ments and characteristic function φX . Set CX = {θ, such that φX satisfies
(Hθ)}.

Define for any ε > 0 and θ ∈ CX{
xθ

ε(t) = εc(θ)
∫ 2t

ε2

0

eiθXsds, t ∈ [0, T ]

}

where c(θ) is the constant given by hypothesis (Hθ2).
Consider P θ

ε the image law of xθ
ε in the Banach space C([0, T ],C) of

continuous functions on [0, T ]. Then, P θ
ε converges weakly as ε tends to zero,

towards the law on C([0, T ],C) of a complex Brownian motion.

Remark 3.2. These kinds of kernels can be used to obtain approximations
in law to Gaussian processes that can be characterized using a representa-
tion with respect to the Brownian motion. For instance, they could be used
to get approximations for stochastic partial differential equations driven by
Gaussian white noise, fractional stochastic differential equations or multiple
Wiener integrals.

Proof of Theorem 3.1: We will follow the method explained in Subsect. 2.2.

Step 1: Tightness We have to check (5), that is, that there exists a constant
K(θ) such that for any s < t

sup
ε

(
E(εc(θ)

∫ 2t
ε2

2s
ε2

cos(θNx)dx)4 + E(εc(θ)
∫ 2t

ε2

2s
ε2

sin(θNx)dx)4
)

≤ K(θ)(t − s)2.
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From the properties of the complex numbers we have that

E

(
εc(θ)

∫ 2t
ε2

2s
ε2

cos(θXx

)
dx)4 + E

(
εc(θ)

∫ 2t
ε2

2s
ε2

sin(θXx

)
dx)4

≤ 2E|xθ
ε(t) − xθ

ε(s)|4

= 2c(θ)4ε4E

(∫ 2t
ε2

2s
ε2

eiθXvdv

∫ 2t
ε2

2s
ε2

e−iθXudu

)2

= 2c(θ)4ε4
∫
[ 2s

ε2
, 2t

ε2
]4

E
(
eiθ[(Xv1−Xu1 )+(Xv2−Xu2 )]

)
dv1dv2du1du2. (11)

Using that for x1 < x2 < x3 < x4 and ρi ∈ {0, 1} for i = 1, 2, 3, 4 with∑4
i=1 ρi = 2 we can write

(−1)ρ4Xx4 + (−1)ρ3Xx3 + (−1)ρ2Xx2 + (−1)ρ1Xx1

= (−1)ρ4(Xx4 − Xx3) +
(
(−1)ρ4 + (−1)ρ3

)
(Xx3 − Xx2)

+
(
(−1)ρ4 + (−1)ρ3 + (−1)ρ2

)
(Xx2 − Xx1),

and the last expression (11) can be written as the sum of 24 integrals of the
type

2c(θ)4ε4
∫ 2t

ε2

2s
ε2

∫ x4

2s
ε2

∫ x3

2s
ε2

∫ x2

2s
ε2

E
(
eiθ[c1(Xx4−Xx3 )+c2(Xx3−Xx2 )+c3(Xx2−Xx1 )]

)
×dx1dx2dx3dx4. (12)

where c1 ∈ {1,−1}, c2 ∈ {−2, 0, 2} and c3 ∈ {1,−1}. Notice that since the
process X has independent increments, we have that

E
(
eiθ[c1(Xx4−Xx3 )+c2(Xx3−Xx2 )+c3(Xx2−Xx1 )]

)
= E

(
eiθc1(Xx4−Xx3 )

)
E

(
eiθc2(Xx3−Xx2 )

)
E

(
eiθc3(Xx2−Xx1 )]

)
,

and we obtain,∣∣∣E (
eiθ[c1(Xx4−Xx3 )+c2(Xx3−Xx2 )+c3(Xx2−Xx1 )]

)∣∣∣
≤ |φXx4−Xx3

(c1θ)||φXx2−Xx1
(c3θ)|

≤ |φXx4−Xx3
(θ)||φXx2−Xx1

(θ)|,
where we have used that for any random variable Z, |φZ(−u)| = |φZ(u)|.

So, each one of the 24 integrals of the type (12) is bounded by

c(θ)4ε2
∫ 2t

ε2

2s
ε2

∫ x4

2s
ε2

|φXx4−Xx3
(θ)|dx3dx4ε

2

∫ 2t
ε2

2s
ε2

∫ x2

2s
ε2

|φXx2−Xx1
(θ)|dx1dx2.

Clearly, hypothesis (Hθ1) completes the proof of this step.

Step 2: Martingale property It is enough to check (6) and (7). So, it suffices
to see that

E

(
ϕ(xθ

ε(s1), ..., x
θ
ε(sn))εc(θ)

∫ 2t
ε2

2s
ε2

cos(θXx)dx

)
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and,

E

(
ϕ(xθ

ε(s1), ..., x
θ
ε(sn))εc(θ)

∫ 2t
ε2

2s
ε2

sin(θXx)dx

)

converge to zero when ε tends to zero.
Thus, it is enough to prove that∣∣∣∣∣E

(
ϕ(xθ

ε(s1), ..., x
θ
ε(sn))εc(θ)

∫ 2t
ε2

2s
ε2

eiθXxdx

)∣∣∣∣∣
converges to zero when ε tends to zero.

But this expression is equal to∣∣∣∣∣E
(
ϕ(xθ

ε(s1), ..., x
θ
ε(sn))e

iθX 2s
ε2

)
εc(θ)

∫ 2t
ε2

2s
ε2

E

(
e
iθ

(
Xx−X 2s

ε2

))
dx

∣∣∣∣∣
≤ Kεc(θ)

∣∣∣∣∣
∫ 2t

ε2

2s
ε2

E

(
e
iθ

(
Xx−X 2s

ε2

))
dx

∣∣∣∣∣
≤ Kεc(θ)

∫ 2t
ε2

2s
ε2

∣∣∣∣φXx−X 2s
ε2

(θ)
∣∣∣∣ dx,

that from (Hθ3) converges to zero when ε tends to zero.

Step 3: Quadratic variations It is enough to check (8) and (9), that is that
for any s1 ≤ s2 ≤ · · · ≤ sn ≤ s < t and for any bounded continuous function
ϕ : Cn −→ R,

aε := E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

(
(Re[xθ

ε(t)] − Re[xθ
ε(s)])

2 − (t − s)
)]

and

bε := E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

(
(Im[xθ

ε(t)] − Im[xθ
ε(s)])

2 − (t − s)
)]

converge to zero when ε tends to zero.
To prove that aε and bε converge to zero, when ε goes to zero, it is

enough to show that aε + bε and aε − bε converge to zero. But,

aε + bε

= E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

(|xθ
ε(t) − xθ

ε(s)|2 − 2(t − s)
)]

= E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

(
ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ 2t
ε2

2s
ε2

eiθ(Xv−Xu)dvdu − 2(t − s)
)]

=E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn)

]
)E

(
ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ 2t
ε2

2s
ε2

eiθ(Xv−Xu)dvdu−2(t−s)

)

= E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn)

]
)

[
E

(
ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ v

2s
ε2

eiθ(Xv−Xu)dudv
)

+ E

(
ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ u

2s
ε2

e−iθ(Xu−Xv)dvdu

)
− 2(t − s)

)]
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= E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn)

]
)

×
[
ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ x

2s
ε2

[φXx−Xy
(θ) + φXx−Xy

(−θ)]dydx − 2(t − s)

]
.

Clearly, (Hθ2) yields that limε→0(aε + bε) = 0.
It remains to see that aε − bε converges to zero. Indeed

aε − bε = E
[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

× (
εc(θ)

∫ 2t
ε2

2s
ε2

cos(θXx)dx
)2 − (

εc(θ)
∫ 2t

ε2

2s
ε2

sin(θXx)dx
)2]

=
1
2
E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

×
(

εc(θ)
∫ 2t

ε2

2s
ε2

eiθXxdx

)2

+

(
εc(θ)

∫ 2t
ε2

2s
ε2

e−iθXxdx

)2
⎤
⎦ , (13)

where in the last step we have used that 2(α2 − β2) = (α + βi)2 + (α − βi)2.
We will show that this two last terms go to zero. For the first we have that,

1
2
E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

(
εc(θ)

∫ 2t
ε2

2s
ε2

eiθXxdx
)2]

= E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))ε2c(θ)2

∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

eiθ(Xx+Xy)dxdy

]

= E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

×ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

e
iθ(Xy−Xx)+2iθ(Xx−X 2s

ε2
)+2iθX 2s

ε2 dxdy

]

= E

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))e

2iθX 2s
ε2

]

×ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

φXy−Xx
(θ) · φXx−X 2s

ε2
(2θ)dxdy.

Notice that this last expression can be bounded by

Kε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φXy−Xx
(θ)||φXx−X 2s

ε2
(2θ)|dxdy

that from (Hθ3) converges to zero when ε goes to zero. Following the same
computations, and using that, in general, for any random variable Z, |φZ(−u)|
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= |φZ(u)| we obtain the same bound and the convergence to zero, for the
second term of expression (13).

Step 4: Quadratic covariation It is enough to check (10). Using that

αβ =
1
4
i[(α − βi)2 − (α + βi)2],

the term in the left side of (10) is equal to

E
(
ϕ(xθ

ε(s1), ..., x
θ
ε(sn))

(
εc(θ)

∫ 2t
ε2

2s
ε2

cos(θXx)dx

) (
εc(θ

∫ 2t
ε2

2s
ε2

sin(θXx)dx)

)

=
1
4
iE

[
ϕ(xθ

ε(s1)..., x
θ
ε(sn))

×
(

εc(θ)
∫ 2t

ε2

2s
ε2

e−iθXxdx

)2

−
(

εc(θ)
∫ 2t

ε2

2s
ε2

eiθXxdx

)2
⎤
⎦ .

We have already shown in the study of (13) that this term goes to zero. �
Let us state now the main result of the paper. We prove that the ap-

proximations built from a Lévy process converge to a complex Brownian
motion.

Theorem 3.3. Define for any ε > 0{
xθ

ε(t) = εc(θ)
∫ 2t

ε2

0

eiθXsds, t ∈ [0, T ]

}

where {Xs, s ≥ 0} is a Lévy process with Lévy exponent ψX and

c(u) =

√
|ψX(u)|2

2Re[ψX(u)]
.

Consider P θ
ε the image law of xθ

ε in the Banach space C([0, T ],C) of
continuous functions on [0, T ]. Then, for θ such that Re[ψX(θ)]Re[ψX(2θ)] �=
0, P θ

ε converges weakly as ε tends to zero, towards the law on C([0, T ],C) of
a complex Brownian motion.

Proof. The result follows as a particular case of Theorem 3.1. It suffices to
check that the characteristic function φX of the Lévy process X satisfies (Hθ)
for any θ such that a(θ)a(2θ) �= 0 [recall definitions (3) and (4)].

Proof of (Hθ1): We can write

ε2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φXy−Xx
(θ))|dxdy = ε2

∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

e−(y−x)a(θ)dxdy

≤ 2
a(θ)

(t − s).

Using that a(θ) > 0 we complete the proof of (Hθ1).
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Proof of (Hθ2): Note first that

ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ x

2s
ε2

φXx−Xy
(θ)dydx

= ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ x

2s
ε2

e−(x−y)(a(θ)+b(θ)i)dydx

= ε2
c(θ)2

a(θ) + b(θ)i

∫ 2t
ε2

2s
ε2

(
1 − e−(x− 2s

ε2
)(a(θ)+b(θ)i)

)
dx

= o(ε) + 2(t − s)
c(θ)2

a(θ) + b(θ)i
.

Following the same computations and taking into account that a(−θ) = a(θ),
and that b(−θ) = −b(θ) we obtain that

ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ x

2s
ε2

φXx−Xy
(−θ)dydx

= o(ε) + 2(t − s)
c(θ)2

a(θ) − b(θ)i
.

So

ε2c(θ)2
∫ 2t

ε2

2s
ε2

∫ x

2s
ε2

[φXx−Xy
(θ) + φXx−Xy

(−θ)]dydx

= o(ε) + 2(t − s)
(

c(θ)2

a(θ) + b(θ)i
+

c(θ)2

a(θ) − b(θ)i

)
= o(ε) + 2(t − s),

and (Hθ2) is clearly true.

Proof of (Hθ3): Notice that

Kε2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φXy−Xx
(θ)||φXx−X 2s

ε2
(2θ)|dxdy

= Kε2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

e−(y−x)a(θ)e−(x− 2s
ε2

)a(2θ)dxdy

≤ Kε2
1

a(θ)

∫ 2t
ε2

2s
ε2

e−(x− 2s
ε2

)a(2θ)dx

≤ Kε2
1

a(θ)a(2θ)
,

that converges to zero when ε goes to zero.
To prove the second steep of (Hθ3) notice that

Kε

∫ 2t
ε2

2s
ε2

|φXx−X 2s
ε2

(θ)|dx = Kε

∫ 2t
ε2

2s
ε2

e−(x− 2s
ε2

)a(θ)dx ≤ K

a(θ)
ε,

that converges to zero when ε tends to zero. �
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Remark 3.4. Given a Lévy process with characteristic function given by the
Lévy-Khintchine formula (2), the condition Re[ψX(θ)] = 0 is equivalent to

1
2
σ2θ2 −

∫
R\{0}

(cos(θx) − 1)η(dx) = 0,

that is, σ = 0 and ∫
R\{0}

(cos(θx) − 1)η(dx) = 0.

So, the condition Re[ψX(θ)]Re[ψX(2θ)] �= 0 can be written as σ �= 0 or(∫
R\{0}

(cos(θx) − 1)η(dx)

) (∫
R\{0}

(cos(2θx) − 1)η(dx)

)
�= 0.

Remark 3.5. When we consider {Xt, t ≥ 0} a standard Poisson process it is
well-known that it is a Lévy process with Lévy exponent

ψX(u) = −(cos(u) − 1) − i sin(u)

that corresponds to the Lévy-Khintchine formula (2) with a = 0, σ = 0 and
η = δ{1}. Then the condition Re[ψX(θ)]Re[ψX(2θ)] �= 0 yields that θ �= kπ
for any k ≥ 1.

When θ = (2k + 1)π, we have that

xθ
ε(t) = c((2k + 1)π)ε

∫ 2t
ε2

0

cos((2k + 1)πXs)ds = ε

∫ 2t
ε2

0

(−1)Xsds, (14)

that is a real process that can not converge to a complex Brownian motion.
Nevertheless part of the same proof done in Theorem 3.1 (steps 1 and 2 and
study of aε, note that bε = 0) works to prove that the processes defined by
(14) converge weakly to a standard Brownian motion.

On the other hand, when θ = 2kπ, we have that

xθ
ε(t) = c(2kπ)ε

∫ 2t
ε2

0

cos(2kπXs)ds = 0.

4. The m-Dimensional Case

The aim of this section is to extend this result to a m-dimensional case for
any m ≥ 1. We will give the extensions of Theorem 3.1 and 3.3.

We define for any ε > 0 and for any 1 ≤ j ≤ m{
xθj

ε (t) = ε

∫ 2t
ε2

0

eiθjXsds, t ∈ [0, T ]

}
,

where {Xs, s ≥ 0} is a stochastic process with independent increments and
we consider {

xθ
ε(t) =

(
xθ1

ε , . . . , xθm
ε

)
(t), t ∈ [0, T ]

}
.

To simplify computations and notation we will denote by θ the m values
θ1, θ2, . . . , θm . Since we have to control more quadratic covariations we will
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need to introduce new hypothesis on θ, (H̄θj ,θh) for a characteristic function
φX : (H̄θj ,θh) For any c1 ∈ {−1, 1}

lim
ε→0

ε2
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φXy−Xx
(θj)||φXx−X 2s

ε2
(θj + c1θh)|dxdy = 0.

Then, the extension of Theorem 3.1, reads as follows:

Theorem 4.1. Let {Xs, s ≥ 0} be a stochastic process with independent in-
crements and characteristic function φX . Set Cm

X = {θ ∈ R
m, such that φX

satisfies (Hθj ) for any j = 1, . . . ,m and satisfies (H̄θj ,θh) for any h �= j}.
Define for any ε > 0 and for any 1 ≤ j ≤ m{

xθj
ε (t) = εc(θj)

∫ 2t
ε2

0

eiθjXsds, t ∈ [0, T ]

}
,

where c(θj) is the constant given by hypothesis (Hθ2).
Consider P θ

ε the image law of xθ
ε =

(
xθ1

ε , . . . , xθm
ε

)
in the Banach space

C([0, T ],Cm) of continuous functions on [0, T ]. Then, if θ ∈ Cm
X , P θ

ε converges
weakly as ε tends to zero towards the law on C([0, T ],Cm) of a m-dimensional
complex Brownian motion.

Proof. The proof follows applying the computations done for the one-
dimensional case combined to the method used in [5]. We will only give some
hints of the proof.

Notice that the proof of the tightness, the martingale property of each
component and the quadratic variations can be done following exactly the
proof of the one-dimensional case. So, only to study all the covariations re-
mains. As it can be seen in Section 3.1 in [5], it suffices to prove that for j �= h
and for any s1 ≤ s2 ≤ · · · ≤ sk ≤ s < t and for any bounded continuous
function ϕ : Cmk −→ R,

E

(
ϕ

(
xθ

ε(s1), . . . , x
θ
ε(sk)

) (
ε

∫ 2t
ε2

2s
ε2

c(θj) cos(θjXx)dx

)

×
(

ε

∫ 2t
ε2

2s
ε2

c(θh) cos(θhXy)dy

))
,

E

(
ϕ

(
xθ

ε(s1), . . . , x
θ
ε(sk)

) (
ε

∫ 2t
ε2

2s
ε2

c(θj) sin(θjXx)dx

)

×
(

ε

∫ 2t
ε2

2s
ε2

c(θh) sin(θhXy)dy

))

and

E

(
ϕ

(
xθ

ε(s1), . . . , x
θ
ε(sk)

) (
ε

∫ 2t
ε2

2s
ε2

c(θj) cos(θjXx)dx

)

×
(

ε

∫ 2t
ε2

2s
ε2

c(θh) sin(θhXy)dy

))
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converge to zero when ε tends to zero. But, using that cos(θ) = eiθ+e−iθ

2 and
sin(θ) = eiθ−e−iθ

2i , and the symmetry between x and y (interchanging the
roles of j and h), it is enough to show that

lim
ε→0

ε2

∣∣∣∣∣E
(

ϕ
(
xθ

ε(s1), . . . , x
θ
ε(sk)

) ∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

ei(c1θjXx+c2θhXy)dxdy

)∣∣∣∣∣ = 0,

(15)
for any c1, c2 ∈ {−1, 1}. But,∣∣∣∣∣E

(
ϕ

(
xθ

ε(s1), . . . , x
θ
ε(sk)

) ∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

ei(c1θjXx+c2θhXy)dxdy

)∣∣∣∣∣
=

∣∣∣∣∣E(ϕ
(
xθ

ε(s1), . . . , x
θ
ε(sk)

)

×
∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

eic2θh(Xy−Xx)e
i(c1θj+c2θh)(Xx−X 2s

ε2
)
e
i(c1θj+c2θh)X 2s

ε2 dxdy)

∣∣∣∣∣
≤ K

∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

|φ(Xy−Xx)(c2θh)||φ(Xx−X 2s
ε2

)(c1θj + c2θh)|dxdy,

≤ K

∫ 2t
ε2

2s
ε2

∫ y

2s
ε2

|φ(Xy−Xx)(θh)||φ(Xx−X 2s
ε2

)(θj + c3θh)|dxdy,

for c3 ∈ {−1, 1} and (15) follows from (H̄θj ,θh). �
Finally, we state the extension of Theorem 3.3.

Theorem 4.2. Assume now that {Xs, s ≥ 0} is a Lévy process with Lévy
exponent ψX and set

c(u) =

√
|ψX(u)|2

2Re[ψX(u)]
.

Consider P θ
ε the image law of xθ

ε in the Banach space C([0, T ],Cm) of
continuous functions on [0, T ]. Then, for θ such that Re[ψX(θj)]Re[ψX(2θj)]
�= 0 for all j ∈ {1, . . . , m} and Re[ψX(θj +c1θh)] �= 0 for all j, h ∈ {1, . . . , m}
and c1 ∈ {−1, 1}, P θ

ε converges weakly as ε tends to zero, towards the law on
C([0, T ],Cm) of a m-dimensional complex Brownian motion.

Proof. As in the one-dimensional case it suffices to check that the character-
istic function φX of the Lévy process satisfies (Hθj ) for any j = 1, . . . ,m and
satisfies (H̄θj ,θh) for any j �= h. Only the second part remains to be seen and
can be easily checked that, for c1 ∈ {−1, 1}∫ 2t

ε2

2s
ε2

∫ y

2s
ε2

|φ(Xy−Xx)(θj)||φ(Xx−X 2s
ε2

)(θj + c1θh)|dxdy

≤ Kε2
1

a(θj)a(θj + c1θh)
.

�
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Universitat Autònoma de Barcelona
08193 Bellaterra, Spain
e-mail: Xavier.Bardina@uab.cat

Carles Rovira
Facultat de Matemàtiques
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