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Abstract. In this paper, we introduce a PC-almost automorphic func-
tion and establish the composition theorem, which is an important re-
sult from application point of view. As an application, we study the
existence of almost automorphic solution to impulsive fractional func-
tional differential equations with the assumption that the forcing term is
almost automorphic. The results are established by fixed point methods
and α-resolvent family of bounded linear operators. At the end, some
examples are given to illustrate our analytic findings.
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1. Introduction

In this paper, we establish existence of PC-almost automorphic solution
of impulsive fractional semilinear differential equations (1.1, 1.2, 1.3) using
α-resolvent family of bounded linear operators, Sadovskii’s fixed point the-
orem and Schaefer fixed point theorem. Uniqueness of the solution is estab-
lished by using Banach’s contraction principle. Problems, under consideration
in this paper, are given below point by point.

1.1. Problem Description

We consider the following impulsive fractional differential equations:

P-1: Impulsive fractional differential equation of order α ∈ (1, 2).
CDαx(t) = Ax(t) + Dα−1

t (f(t, x(t))), t ∈ R, t �= tk,

Δx(t)|t=tk
= Ik(x(t−k )), k = 1, 2, . . . ,

x(0) = x0, (1.1)
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where f ∈ C(R × X,X), Ik : X → X and x0 ∈ X. 0 = t0 < t1 <
t2 < · · · < tn < · · · ,Δx(t)|t=tk

= x(t+k ) − x(t−K), x(t+k ) = limh→0 x(t +
h) and x(t−k ) = limh→0 x(t − h).

P-2: Impulsive fractional functional semilinear evolution equation of order
α ∈ (1, 2).

Dα
t x(t) = Ax(t) + Dα−1

t (g(t, xt)), t ∈ R, t �= tk

Δx(t)|t=tk
= Jk(x(t−k )), k = 1, 2, . . . ,

x(s) = φ(s) s ∈ [−r, 0], (1.2)

where g : R × Cr → X, Cr = PC([−r, 0],X), Jk : X → X, and the
operator A : D(A) ⊂ X → X is a linear close and densely defined of
sectorial type in a separable Banach space X with norm ‖ · ‖X .

P-3: Impulsive fractional functional semilinear evolution equation of order
α ∈ (1, 2).

Dα
t x(t) = Ax(t) + Dα−1

t (h(t, x(t), xt)), t ∈ R, t �= tk

Δx(t)|t=tk
= Jk(x(t−k )), k = 1, 2, . . . ,

x(s) = φ(s) s ∈ [−r, 0], (1.3)

where R × X × Cr → X, Cr = PC([−r, 0],X), Jk : X → X, and the
operator A : D(A) ⊂ X → X is a linear close and densely defined of
sectorial type in a separable Banach space X with norm ‖ · ‖X .

1.2. Almost Automorphic Solution

Since the introduction of almost periodic functions by Bohr [4], there have
been various important generalizations of this concept. One important gen-
eralization is the concept of almost automorphic functions which was intro-
duced by Bochner. This concept is no exception and many mathematicians
applied this in the field of fractional differential equations, for more details
one can see the [14,15] and references therein. It can be argued that many
phenomena exhibit regularity behavior periodicity. These kinds of phenomena
can be modeled by considering more general notion such as almost periodic,
almost automorphic, pseudo-almost automorphic and asymptotically almost
automorphic. One of the very important question in the field of differential
equations is that if the force function possesses a special characteristic then
whether the solution possesses the same characteristic or not. In this work,
we introduce a PC-almost automorphic function and establish the composi-
tion theorem, which is an important result from application point of view.
As an application, we study the existence of PC-almost automorphic solution
to impulsive fractional functional differential equations with the assumption
that the forcing term is almost automorphic.

1.3. Impulsive Differential Equations

Impulsive differential equation provides a realistic framework of modeling sys-
tems in fields like population dynamics, control theory, physics, biology and
medicine, when the dynamics undergo some abrupt changes at certain mo-
ments of time like earthquake, harvesting, shock and so forth. Milman and
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Myshkis [17] first introduced impulsive differential equations in 1960. Fol-
lowed by their work (Milman and Myshkis), there are several monographes
and papers written by many authors like Bainov and Simeonov [2], Ben-
chohra et al. [3], Lakshmikantham et al. [13], Samoilenko and Perestyuk [23]
and Mahto et al. [16]. In several fields like biology, population dynamics and
so forth problems with hereditary are best modeled by delay/functional dif-
ferential equations [10]. The problems with impulsive effects and hereditary
properties could be modeled by impulsive functional differential equations.

1.4. Fractional Differential Equations

Last few decades have witnessed tremendous works on fractional differen-
tial equations. In the beginning, researchers were focusing mainly on theo-
retical study of these equations. But, recently, fractional differential equa-
tions attracted many mathematicians and scientists because of their use-
fulness in the various problems arising from engineering and physical sci-
ences. It has been shown that many physical systems can be represented
more accurately through fractional derivative formulation [19]. Therefore, the
theory has been applied to many fields, for example, in the field of viscoelas-
ticity, feedback amplifiers, electrical circuits, control theory, electro analyt-
ical chemistry, fractional multi-poles, neuron modeling encompassing differ-
ent branches of physics, chemistry and biological sciences. For more details,
one can see one excellently written book by Podlubny [20]. Many physical
processes appear to exhibit fractional-order behavior that may vary with
time or space. The fractional calculus has allowed the operations of integra-
tion and differentiation to any arbitrary order. The order may take any real or
imaginary value. The existence and uniqueness of the solutions of fractional
differential equations have been shown by many authors [1,11,12,15,20].

There are many evolutionary systems, which encounter delay, impulse
effects and anomalous characteristics in together. The combination of all these
three characteristics, in modeling the dynamics of those systems, allows to
consider an impulsive fractional functional differential equation. In spite of
rich applicability, the analysis and the application of impulsive fractional
functional differential equations is in infancy. Guo et al. [8] discussed natural
formula of solution of impulsive fractional functional differential equation
and establish existence and uniqueness of the solution by virtue of Schauder
fixed-point theorem and Banach contraction principle. Stamova et al. [22]
established stability solution of impulsive fractional functional differential
equations using comparison principle.

2. Preliminaries

This section is devoted to basic definitions and results, which are necessary
to follow this work. Let us denote B(X), the Banach space of all linear and
bounded operators on X endowed with the norm ‖·‖B(X) and C = C(R,X) the
set of all continuous functions from R to X. It is important to define sectorial
operator to define the mild solution of any fractional abstract equations. So,
let us begin this section with this definition.
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Definition 2.1. Sectorial operator: A closed linear operator A is said to be
sectorial of type ω and angle θ if there exists 0 < θ < π

2 ,M1 > 0 and ω ∈ R

such that its resolvent exists outside the sector

ω + Sθ := {ω + λ : λ ∈ C, |arg(−λ)| < θ},

and satisfies

‖(λ − A)−1‖B(X) ≤ M1

|λ − ω| , λ �∈ ω + Sθ.

Sectorial operators are well studied in the literature, for more details,
one could see [9]. It is easy to verify that an operator A is sectorial of type ω
if and only if λI − A is sectorial of type 0.

Definition 2.2. Let A be a closed linear and densely defined operator with
domain D(A) defined on a Banach space X and α > 0. A is the generator
of an α-resolvent family if there exists ω ≥ 0 and an strongly continuous
function Sα : R+ → B(X) such that {λα : 	(λ) > ω} and

(λα − A)−1x =
∫ ∞

0

e−λtSα(t)xdt.

In this case, Sα(t) is α-resolvent family generated by A.
Cuevas and Lizama [15] have shown that the Eq. (1.3) can be thought

of a limiting case of the equation

z′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
Az(s)ds + h(t, x(t), xt), t ≥ 0,

z(s) = φ(s), s ∈ [−r, 0], (2.1)

in the sense that the solutions are asymptotic to each other as t → ∞. If the
operator A is sectorial of type ω with θ ∈ [0, π(1 − α

2 )), then the problem
(2.1) is well posed (see [15]). Thus using variation of parameter formula, one
can obtain

z(t) = Sα(t)(φ(0)) +
∫ t

0

Sα(t − s)h(s, x(s), xs)ds, t ≥ 0, (2.2)

where

Sα(t) =
1

2πi

∫

γ

eλtλα−1(λαI − A)−1dλ, t ≥ t0.

Here the path γ lies outside the sector ω + Sθ. Further, if Sα(t) is integrable
then the solution is given by

x(t) =
∫ t

−∞
Sα(t − s)h(s, x(s), xs)ds. (2.3)

Subtracting Eq. (2.3) from Eq. (2.2), we get

z(t) − x(t) = Sα(t)(φ(0)) −
∫ ∞

t

Sα(s)h(t − s, x(t − s), xt−s).

Hence for f ∈ Lp′
(R+ × X,X), where p′ ∈ [1,∞), we have v(t) − u(t) → 0

as t → ∞.
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Recently, an important result has been proved by Cuesta [5] (Theorem
1) that if A is a sectorial operator of type ω < 0 for some M > 0 and
θ ∈ [0, π(1 − α

2 )), then there exists C > 0 such that

‖Sα(t)‖B(X) ≤ CM

1 + |ω|tα
for t ≥ 0.

For reader’s convenience, we define the following class of spaces:

• PC(R,X) =
{

φ : R → X : φ is continuous for every t /∈ {tk}, limh→0

φ(tk + h) = φ(t+k ), limh→0 φ(tk − h) = φ(t−k ) exist and φ(tk) = φ(t−k )
}

.

• PC(R × X,X) =
{

φ : R × X → X : φ is continuous for every t /∈
{tk}, limh→0 φ(tk + h, x) = φ(t+k , x), limh→0 φ(tk − h, x) = φ(t−k , x)

exist andφ(tk, x) = φ(t−k , x)
}

.

• AAp(R,X) =
{

φ ∈ PC(R,X) : φ is almost automorphic function
}

• AAp(R × X,X) =
{

φ ∈ PC(R × X,X) : φ is almost automorphic

function
}

• AAS(Z,X) =
{

φ : Z → X is an almost automorphic sequence
}

The definition of PC-almost automorphic operator has been given by
N’Guéré kata and Pankov [7]. Now we state the following definitions in the
framework of impulsive systems.

Definition 2.3. A function f ∈ PC(R,X) is called a PC-almost automorphic
if

(i) sequence of impulsive moments {tk} is a PC-almost automorphic se-
quence,

(ii) for every real sequence (sn), there exists a sub-sequence (snk
) such that

g(t) = lim
n→∞ f(t + snk

)

is well defined for each t ∈ R and

lim
n→∞ g(t − snk

) = f(t)

for each t ∈ R.
Denote by AAp(R,X) the set of all such functions.

Definition 2.4. A function f ∈ PC(R×X,X) is called PC-almost automorphic
in t uniformly for x in compact subsets of X if

(i) sequence of impulsive moments {tk} is an almost automorphic sequence,
(ii) for every compact subset K of X and every real sequence (sn), there

exists a sub-sequence (snk
) such that

g(t, x) = lim
n→∞ f(t + snk

, x)

is well defined for each t ∈ R, x ∈ K and
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lim
n→∞ g(t − snk

, x) = f(t, x)

for each t ∈ R, x ∈ K.

Denote by AAp(R × X,X) the set of all such functions.

Definition 2.5. A sequence of continuous functions, Ik : X → X is almost
automorphic, if for integer sequence {k

′
n}, there exists a sub-sequence {kn}

such that

lim
n→∞ I(k+kn)(x) = I∗

k(x)

and

lim
n→∞ I∗

(k−kn)(x) = Ik(x)

for each k and x ∈ X.

Definition 2.6. A bounded sequence x : Z+ → X is called an almost auto-
morphic sequence, if for every real sequence (k

′
n), there exists a sub-sequence

(kn) such that

y(k) = lim
n→∞ x(k + kn)

is well defined for each m ∈ Z and

lim
n→∞ y(k − kn) = x(k)

for each k ∈ Z
+. We denote AAS(Z,X), the set of all such sequences.

Definition 2.7 (Solution). A piece-wise continuous function x ∈ PC([t0,∞),
X) and which satisfies the integral equation

x(t) = Sα(t)x0 +
∫ t

t0

Sα(t − s)f(s, x(s))ds, t ∈ [t0, t1] = Sα(t)x0

+
∑

t0<tk<t

Sα(t − tk)Ik(x(tk)) +
∑

t0<tk<t

∫ tk

tk−1

Sα(tk − s)f(s, x(s))ds

+
∫ t

tk

Sα(t − s)f(s, x(s))ds, t ∈ (tk, tk+], k = 1, 2, . . . , (2.4)

is solution of the problem (1.1).

By taking t0 → −∞, the solution (2.4) becomes

x(t) =
∑
tk<t

Sα(t − tk)Ik(x(tk)) +
∫ t

−∞
Sα(t − s)f(s, x(s))ds. (2.5)

Similarly, the solutions of problems (1.2) and (1.3) are

x(t) =
∑
tk<t

Sα(t − tk)Ik(x(tk)) +
∫ t

−∞
Sα(t − s)g(s, xs)ds. (2.6)
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and

x(t) =
∑
tk<t

Sα(t − tk)Ik(x(tk)) +
∫ t

−∞
Sα(t − s)h(s, x(s), xs)ds. (2.7)

respectively.

Definition 2.8 (Definition 11.1 [24]). Kuratowskii non-compactness measure:
Let M be a bounded set in metric space (X, d), then Kuratowskii non-
compactness measure, μ(M) is defined as inf{ε : M covered by a finite many
sets such that the diameter of each set ≤ ε}.

Definition 2.9 (Definition 11.6 [24]). Condensing map: Let Φ : X → X be a
bounded and continuous operator on Banach space X such that μ(Φ(B)) <
μ(B) for all bounded set B ⊂ D(Φ), where μ is the Kuratowskii non-
compactness measure, then Φ is called condensing map.

Definition 2.10. Compact map: A map f : X → X is said to be compact if
the image of every bounded subset of X under f is pre-compact (closure is
compact).

Theorem 2.11 ([21]). Let B be a convex, bounded and closed subset of a
Banach space X and Φ : B → B be a condensing map. Then, Φ has a
fixed point in B.

Lemma 2.12 (Example 11.7, [24]). A map Φ = Φ1 + Φ2 : X → X is k-
contraction with 0 ≤ k < 1 if

(a) Φ1 is k-contraction, i.e., ‖Φ1(x) − Φ1(y)‖X ≤ k‖x − y‖X and
(b) Φ2 is compact,

and hence Φ is a condensing map.

3. Existence of PC-Almost Automorphic Solution

In this section, we establish composition theorem for PC-almost
automorphic functions. As an application, we study the existence of PC-
almost automorphic solution of impulsive fractional functional differential
equations. We first prove the existence of PC-almost automorphic solution
of Eq. (1.1) by using Sadovskii’s fixed-point theorem. Secondly, the exis-
tence of the PC-almost automorphic solutions of Eqs. (1.2, 1.3) using Schae-
fer’s fixed-point theorem. The uniqueness of each solution of these three
Eqs. (1.1, 1.2, 1.3) is established using Banach’s contraction principle.

Lemma 3.1. Let Ik : X → X is a sequence of almost automorphic functions
and K ∈ X be a compact subset. If Ik satisfies Lipschitz condition on X, i.e.,
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‖Ik(x) − Ik(y)‖ ≤ L‖x − y‖,∀x, y ∈ X,∀k,

then the sequence {Ik(x) : x ∈ K} is almost periodic.

Lemma 3.2. Let Ik : X → X is a sequence of almost automorphic functions
and φ ∈ AAp(R,X). If Ik satisfies Lipschitz condition on X, i.e.,

‖Ik(x) − Ik(y)‖ ≤ L‖x − y‖,∀x, y ∈ X,∀k,

then the sequence {Ik(φ(tk))} is almost automorphic.

Proof. From definition of PC-almost automorphic function and almost auto-
morphic sequence, we get

‖Ik+kn
(x(tk+kn

)) − I∗
k(x(tk))‖ ≤ ‖Ik+kn

(x(tk+kn
)) − Ik+kn

(x(tk))‖
+‖Ik+kn

(x(tk)) − I∗
k(x(tk))‖

≤ L‖x(tk+kn
) − x(tk)‖

+‖Ik+kn
(x(tk)) − I∗

k(x(tk))‖. (3.1)

Using Lemma 3.1 and the above expression (3.1), we see that the sequence
{Ik(φ(tk))} is almost automorphic. �

Lemma 3.3. Composition theorem: Let f ∈ AAp(R × X,X) and uniformly
continuous on any compact set of AAp(R,X). If φ ∈ AAp(R,X), then
f(·, φ(·)) ∈ AAp(R × X,X).

Proof. The range of φ is relatively compact in AAp(R,X), means K = {φ(t) :
t ∈ R} is compact. Compactness of K follows from the fact that it is bounded
and close in X. Now, from the definition of almost automorphy of f and φ
for any sub-sequence {snk

} of {sn} there exist functions g and ψ such that

lim
k→∞

f(t + snk
, x) = g(t, x) and lim

k→∞
g(t − snk

, x) = f(t, x)∀t ∈ R.

Using definition of convergence of sequences, for every ε > 0 there exists
positive integer K1,K2 such that

‖f(t + snk
, x) − g(t, x)‖ <

ε

2
∀k ≥ K1,∀t ∈ R uniformly in x, (3.2)

and
‖φ(t + snk

) − ψ(t)‖ <
ε

2
∀k ≥ K2,∀t ∈ R. (3.3)

Using Eqs. (3.2, 3.3), we see that

‖f(t + snk
, φ(t + snk

)) − g(t, φ(t))‖≤‖f(t + snk
, φ(t+snk

))−g(t, φ(t+snk
))‖

+‖f(t, φ(t + snk
)) − g(t, φ(t))‖

<
ε

2
+

ε

2
= ε.

And hence, lemma. �

Lemma 3.4. Let Sα(t) be a strongly continuous family of bounded linear oper-
ators such that ‖Sα(t)‖ ≤ CM

1+|ω|tα . If f : R → X is a PC-almost automorphic

function then
∫ t

−∞ Sα(t − s)f(s)ds +
∑

t>tk
Sα(t − tk)Ik(x(tk)) is PC-almost

automorphic.
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Proof. Let {tnk
} be an sub-sequence of an arbitrary sequence {tn}. Since f

is PC-almost automorphic, there exists g such that

lim
k→∞

f(t + tnk
) = g(t) ∀t ∈ R

and
lim

k→∞
g(t − tnk

) = f(t) ∀t ∈ R.

We define

F (t) =
∫ t

−∞
Sα(t − s)f(s)ds +

∑
t>tk

Sα(t − tk)Ik(x(tk))

and

G(t) =
∫ t

−∞
Sα(t − s)g(s)ds +

∑
t>tk

Sα(t − tk)Ik(x(tk)).

Using continuity of Sα(t) and Lebesgue’s dominated convergence theorem,
wee see that∫ t

−∞
Sα(t − s)f(s + tnk

)ds →
∫ t

−∞
Sα(t − s)g(s)ds. (3.4)

Also, ∑
t+tnk

>tk

Sα(t + tnk
− tk)Ik(x(tk)) =

∑
t>tk

Sα(t − tk)Ik(x(tk + tnk
))

→
∑
t>tk

Sα(t − tk)I∗
k(x(tk)). (3.5)

So, using Eqs. (3.4, 3.5) we see that

lim
k→∞

F (t + tnk
) = G(t) ∀t ∈ R

Similarly, we can prove that

lim
k→∞

G(t − tnk
) = F (t) ∀t ∈ R

And hence the result. �

3.1. Impulsive Fractional Differential Equation

Consider the PC-almost automorphic forcing term f of Eq. (1.1) in a per-
turbed form f = f1 + f2 which satisfies the following assumptions:
(Af.1) f1 is bounded and Lipschitz, in particular, there exists a Lesbegue

1-integrable function M1 : R → R+, a positive constant L1, such that
‖f1(t, x)‖X ≤ M1(t) and ‖f1(t, x) − f1(t, y)‖X ≤ L1‖x − y‖X for all
(t, x), (t, y) ∈ R × X,

(Af.2) f2 is compact and bounded, in particular, there exists a Lesbegue 1-
integrable function M2 : R → R+ such that‖f2(t, x)‖X ≤ M2(t) for
all (t, x) ∈ R × X,

(AI.3) Ik ∈ C(X,X) is a sequence of almost automorphic function and sat-
isfies ‖Ik(x) − Ik(y)‖X ≤ L2‖x − y‖X for some positive constant L2.
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Theorem 3.5. Existence of solution using Sadovskii’s fixed-point theorem un-
der the assumptions (Af.1), (Af.2), (AI.3), the Eq. (1.1) has a PC-almost
automorphic solution.

Proof. Let Bλ be the closed bounded and convex subset of AAp(R,X), where
Bλ is defined as Bλ = {x ∈ AAp(R,X) : ‖x‖ ≤ λ}.

Define the operator F : Bλ → AAp(R,X) as follows:

Fx(t) =
∫ t

−∞
Sα(t − s)f(s, x(s))ds +

∑
t>tk

Sα(t − tk)Ik(x(tk)).

Let us consider

F1x(t) =
∫ t

−∞
Sα(t − s)f1(s, x(s))ds +

∑
t>tk

Sα(t − tk)Ik(x(tk))

F2x(t) =
∫ t

−∞
Sα(t − s)f2(s, x(s))ds.

Now, we need to establish the following results for existence of almost
automorphic solution:
(i) F is well defined,
(ii) F is self-mapping,
(ii) F1 is continuous and contraction,
(iv) F2 is compact,
(v) F is condensing.

Step 1 F is well defined. Using composition theorem (3.3), we see that for
x ∈ AAp(R,X), s → f(s, x(s)) is almost automorphic and hence bounded.
Integrability of 1

1+|ω|tα on R+ for α > 1 guarantees the existence of Fx(t).
And further using Lemma 3.4, we get Fx ∈ AAp(R,X). Hence F is well
defined.

Step 2 F is self-mapping.

‖Fx(t)‖ ≤ ‖
∫ t

−∞
Sα(t − s)f(s, x(s))ds‖+‖

∑
t>tk

Sα(t−tk)Ik(x(tk))‖

(1 + |ω|tα)‖Fx(t)‖ ≤ CM1‖
∫ t

−∞

1 + |ω|tα
1 + |ω|(t − s)α

M∗(s)ds‖ + (1 + |ω|tα)

×‖
∑
t>tk

Sα(t − tk)(Ik(x(tk))‖,

where M∗(t) = M1(t) + M2(t)

(1 + |ω|tα)‖Fx(t)‖ ≤ CM2α‖
∫ t

−∞
(1 + |ω|sα)M∗(s)ds‖ + (1 + |ω|tα)

×‖
∑
t>tk

Sα(t − tk)Ik(x(tk))‖,

(∵ 1 + |ω|tα
1 + |ω|(t − s)α

≤ 2α(1 + |ω|sα))
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(1 + |ω|tα)‖Fx(t)‖ ≤ CM2α(1 + |ω|tα)‖M∗‖1
+(1 + |ω|tα)‖

∑
t>tk

Sα(t − tk)Ik(x(tk))‖‖Fx(t)‖

≤ CM2α(1 + |ω|tα)‖M∗‖1
+‖

∑
t>tk

Sα(t − tk)(Ik(x(tk)) − Ik(0))‖

+‖
∑
t>tk

Sα(t − tk)Ik(0)‖

‖Fx(t)‖ ≤ C1 + λL2

∑
t>tk

1
1 + |ω|(t − tk)α

≤ λ,C1=CM2α(1+|ω|tα)‖M∗‖1+‖
∑
t>tk

Sα(t−tk)Ik(0)‖.

Also, from Lemma 3.4, Fx is PC-almost automorphic. So, F (Bλ) ⊂ Bλ.
Hence, F is self-mapping.

Step 3 F1 is continuous.

‖F1x
n(t) − F1x(t)‖

= ‖
∫ t

−∞
Sα(t − s)f1(s, xn(s))ds +

∑
t>tk

Sα(t − tk)Ik(xn(tk))

−
∫ t

−∞
Sα(t − s) × f1(s, x(s))ds +

∑
t>tk

Sα(t − tk)Ik(x(tk))‖

≤ ‖
∫ t

−∞
Sα(t − s)(f1(s, xn(s)) − f1(s, x(s)))ds‖

+‖
∑
t>tk

Sα(t − tk)(Ik(xn(tk)) − Ik(x(tk)))‖

≤
(πCML1|ω|− 1

α

α sin(π
α )

+ L2

∑
t>tk

1
1 + |ω|(t − tk)α

)
‖xn − x‖.

Therefore, as n → ∞, Fxn → Fx, hence the F is continuous on Bλ.

Step 4 F1 is contraction.

‖F1x(t) − F1y(t)‖ = ‖
∫ t

−∞
Sα(t − s)(f1(s, x(s)) − f1(s, y(s)))ds

+
∑
t>tk

Sα(t−tk) × (Ik(x(tk)) − Ik(x(tk)))‖

=
(∫ t

−∞
‖Sα(t − s)‖L(s)ds + l

∑
t>tk

‖Sα(t − tk)‖
)
‖x − y‖

≤
(πCML1|ω|− 1

α

α sin(π
α )

+ L2

∑
t>tk

1
1 + |ω|(t − tk)α

)
‖x − y‖.
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Therefore, F1 is contraction on Bλ provided, provided that
(

πCML1|ω|− 1
α

α sin( π
α ) +

L2

∑
t>tk

1
1+|ω|(t−tk)α

)
< 1.

Step 5 F2 is compact.

For tk < τ1 < τ2 ≤ tk+1.

‖F2x(τ2) − F2x(τ1)‖
= ‖

∫ τ2

−∞
Sα(τ2 − s)f2(s, x(s))ds −

∫ τ1

−∞
Sα(τ1 − s)f2(s, x(s))ds‖

≤ ‖
∫ τ1

−∞
(Sα(τ2 − s) − Sα(τ1 − s))f2(s, x(s))ds‖

+‖
∫ τ2

τ1

Sα(τ2 − s)f2(s, x(s))ds‖

≤ ‖
∫ τ1

−∞
Sα(τ1 − s)(f2(τ2 − s, x(τ2 − s)) − f2(τ1 − s, x(τ1 − s)))ds‖

+‖
∫ τ2

τ1

Sα(τ2 − s)f2(s, x(s))ds‖

≤ ‖f2(τ2 − ·, x(τ2 − ·)) − f2(τ1 − ·, x(τ1 − ·))‖πCM |ω|− 1
α

α sin(π
α )

+‖
∫ τ2

τ1

Sα(τ2 − s)f2(s, x(s))ds‖.

We can easily establish that the right-hand side of the above expression does
not depend on x and → 0 as τ2 → τ1. Thus using Arzela–Ascoli theorem for
equi-continuous functions (Diethelm, Theorem D.10 [6]), we conclude that
F2(Bλ) is relatively compact and hence F2 is completely continuous. And
thus F2 is compact.

Step 6 F is condensing.
As F = F1 + F2, F1 is continuous, contraction and F2 is compact, so

using the Lemma 2.12, F is condensing map on Br.
And hence using the Theorem 2.11, we conclude that Eq. (1.1) has a

PC-almost automorphic solution in Bλ. �

Theorem 3.6. If f is bounded and Lipschitz, in particular, ‖f(t, x)−f(t, y)‖X

≤ L∗
1‖x − y‖X for all (t, x), (t, y) ∈ R, then the problem (1.1) has a unique

solution in Bλ, provided that(
πCML∗

1|ω|− 1
α

α sin(π
α )

+ L2

∑
t>tk

1
1 + |ω|(t − tk)α

)
< 1.

Proof. We define an operator F : AAp(R,X) → AAp(R,X) as follows:

Fx(t) =
∫ t

−∞
Sα(t − s)f(s, x(s))ds +

∑
t>tk

Sα(t − tk)Ik(x(tk)).
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Step 1 F is well defined. The proof is similar to the proof in Step 1 of Theo-
rem 3.5.
Step 2 F is self-mapping. The proof is similar to the proof in Step 2 of
Theorem 3.5.
Step 3 F is continuous. The proof is similar to the proof in Step 3 of Theo-
rem 3.5.
Step 4 F is contraction. The proof is similar to the proof in Step 4 of Theo-
rem 3.5.

Now by applying Banach’s contraction principle, we get the operator
has a unique fixed point in AAp(R,X). And hence, the problem (1.1) has a
unique solution in AAp(R,X). �

3.2. Impulsive Fractional Functional Differential Equation

Consider the PC-almost automorphic forcing term g of Eq. (1.2) and which
satisfies the following assumptions.
(Ag.1) g ∈ C(I × Cr,X) also g is bounded, in particular, there exists a

positive constant M3, such that ‖f(t, φ)‖X ≤ M3(1 + ‖φ‖r) for all
(t, φ) ∈ R × Cr,

(AJ.3) Jk ∈ C(X,X) is a sequence of almost automorphic function and sat-
isfies ‖Jk(x) − Jk(y)‖X ≤ L∗

2‖x − y‖X for some positive constant L∗
2

and ∀x, y ∈ X.

Theorem 3.7. Existence of solution using Schaefer’s fixed-point theorem:
Under the assumptions (Ag.1), (AJ.3), the Eq. (1.2) has a PC-almost
automorphic solution.

Proof. Define the operator G : AAp(R,X) → AAp(R,X) by

Gx(t) =
∫ t

−∞
Sα(t − s)g(s, xs)ds +

∑
t>tk

Sα(t − tk)Jk(x(tk)).

We establish the following:
(i) G is well defined,
(ii) G is continuous,
(iii) G maps bounded set into bounded set,
(iv) G maps bounded set into equi-continuous set,
(v) there exists a priori bound.

Step 1 G is well defined. Using composition theorem (3.3), we see that for
x ∈ AAp(R,X), s → g(s, x(s)) is almost automorphic and hence bounded.
Integrability of 1

1+|ω|tα on R+ for α > 1 guarantees the existence of Gx(t).
And further using Lemma 3.4, we get Gx ∈ AAp(R,X). Hence G is well
defined.

Step 2 G is continuous.

‖Gxn(t) − Gx(t)‖
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= ‖
∫ t

−∞
Sα(t − s)g(s, xn

s )ds +
∑
t>tk

Sα(t − tk)Jk(xn(tk))

−
∫ t

−∞
Sα(t − s)g(s, xs)ds +

∑
t>tk

Sα(t − tk)Jk(x(tk))‖

≤ ‖
∫ t

−∞
Sα(t − s)(g(s, xn

s ) − g(s, xs))ds‖

+‖
∑
t>tk

Sα(t − tk)(Jk(xn(tk)) − Jk(x(tk)))‖

≤ πCM |ω|− 1
α

α sin(π
α )

‖(g(·, xn
(·)) − g(·, x(·)))‖ + L∗

2

∑
t>tk

1
1 + |ω|(t − tk)α

‖xn − x‖.

Therefore, as n → ∞, Gxn → Gx, hence the G is continuous on AAp(R,X).

Step 3 G maps bounded set into bounded set. It is enough to prove that for
any δ > 0, there exists r = such that x ∈ B = {x ∈ AAp(R,X)|‖x‖ < δ}
and we have ‖Gx‖ ≤ λ. For t ∈ R, we have

‖Gx(t)‖ ≤ ‖
∫ t

−∞
Sα(t − s)g(s, xs)ds‖ + ‖

∑
t>tk

Sα(t − tk)Jk(x(tk))‖

≤ πCMM3(1 + ‖x‖)|ω|− 1
α

α sin(π
α )

+L∗
2

∑
t>tk

1
1 + |ω|(t − tk)α

‖(x(tk))‖+C2.

Step 4 G maps bounded set into equi-continuous set. For tk < τ1 < τ2 ≤ tk+1.

‖Gx(τ2) − Gx(τ1)‖
= ‖

∫ τ2

−∞
Sα(τ2 − s)g(s, xs)ds −

∫ τ1

−∞
Sα(τ1 − s)g(s, xs)ds‖

≤ ‖
∫ τ1

−∞
(Sα(τ2 − s) − Sα(τ1 − s))g(s, xs)ds‖ + ‖

∫ τ2

τ1

Sα(τ2 − s)g(s, xs)ds‖

≤ ‖
∫ τ1

−∞
Sα(τ1 − s)(g(τ2 − s, x(τ2−s)) − g(τ1 − s, x(τ1−s)))ds‖

+‖
∫ τ2

τ1

Sα(τ2 − s)g(s, xs)ds‖ ≤ ‖g(τ2 − ·, x(τ2−·))

−g(τ1 − ·, x(τ1−·))‖πCM |ω|− 1
α

α sin(π
α )

+ ‖
∫ τ2

τ1

Sα(τ2−s)g(s, xs)ds‖.

We can easily establish that the right-hand side of the above expression does
not depend on x and → 0 as τ2 → τ1. Thus, using Arzela–Ascoli theorem for
equi-continuous functions (Diethelm, Theorem D.10 [6]), we conclude that G
is completely continuous. And thus, G is compact.

Step 5 A priori bound: now we prove that the set,

E(G) = {x ∈ AAp(R,X)|x = λGx for some λ ∈ (0, 1)}
is bounded.
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We observe that for t ∈ R and x ∈ E(G), x(t) = λGx(t) and

‖x(t)‖ ≤ ‖Gx(t)‖

≤ ‖
∫ t

−∞
Sα(t − s)g(s, xs)ds‖ + ‖

∑
t>tk

Sα(t − tk)Jk(x(tk))‖

≤ πCMM3(1 + ‖x‖)|ω|− 1
α

α sin(π
α )

+ L2

∑
t>tk

1
1 + |ω|(t − tk)α

‖(x(tk))‖ + C2

‖x‖ ≤
πCMM3|ω|− 1

α +C2
α sin( π

α )

1 − α sin( π
α )|ω| 1

α

πCMM3
− L∗

2

∑
t>tk

1
1+|ω|(t−tk)α

.

This shows that E(G) is bounded. Hence, using Schaefer’s fixed-point theo-
rem, the Eq. (1.2) has at least one solution. �

Theorem 3.8. If g is bounded and Lipschitz, in particular, there exists a pos-
itive constant L3, such that ‖g(t, φ) − g(t, ψ)‖X ≤ L3‖φ − ψ‖r for all (t, φ),
(t, ψ) ∈ R× Cr, then the problem (1.2) has a unique solution in Bλ, provided
that (

πCML3|ω|− 1
α

α sin(π
α )

+ L∗
2

∑
t>tk

1
1 + |ω|(t − tk)α

)
< 1.

Proof. The proof is similar to the proof of Theorem 3.6. �

Consider the PC-almost automorphic forcing term h of Eq. (1.3), which
satisfies the following assumptions.

(Ah.1) h ∈ C(I × X × Cr,X) also h is bounded, in particular, there exists
positive constant M4 such that ‖h(t, x, φ)‖X ≤ M4(1 + ‖x‖X + ‖φ‖r)
for all (t, x, φ) ∈ I × X × Cr.

(AJ.3) Jk ∈ C(X,X) is a sequence of almost automorphic function and sat-
isfies ‖Jk(x) − Jk(y)‖X ≤ L∗

2‖x − y‖X , for some positive constant L∗
2

and ∀x ∈ X.

Theorem 3.9. Under the assumptions (Ah.1), (AJ.3),, the Eq. (1.3) has a
PC-almost automorphic solution.

Proof. The proof is similar to the proof of Theorem 3.7. �

Theorem 3.10. If h is bounded and Lipschitz, in particular, there exists a
positive constants L4, L5, such that ‖h(t, x, φ)−h(t, y, ψ)‖X ≤ L4‖x− y‖X +
L5‖φ−ψ‖r for all (t, x, φ), (t, y, ψ) ∈ R×X ×Cr, then the problem (1.3) has
a unique solution in Bλ, provided that(

πCM(L4 + L5)|ω|− 1
α

α sin(π
α )

+ L∗
2

∑
t>tk

1
1 + |ω|(t − tk)α

)
< 1.

Proof. The proof is similar to the proof of Theorem 3.6. �
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4. Examples

To illustrate the analytical findings of our work, we consider the following
examples of fractional order α ∈ (1, 2):

Example 4.1. Consider the following fractional relaxation oscillation equa-
tion,

∂α
t u(t, y) = ∂2

yu(t, y) − μu(t, y) + ∂α−1
t (βu(t, y)

×(cost + cos
√

2t + βe−|t|sin(u(t, y))),
Δu(tk, y) = Ik(u(tk, y)),

u(t, 0) = u(t, π) = 0,∀t ∈ R, y ∈ [0, π],
u(0, ξ) = u0(ξ), ξ ∈ [0, π], μ > 0. (4.1)

Let x(t)y = u(t, y) and assume that

f(t, x(t)) = cost + cos
√

2t + βe−|t|sin(u(t, y))

is a continuous function with respect to t and satisfies Lipschitz condition in
x.

Define the operators

Ax =
∂2x

∂y2
− ωx with domain

D(A) = {x ∈ L2(0, π) : x, x
′
are absolutely continuous and

x, x
′
, x

′′ ∈ L2(0, π)}.

It is well known that for α = 1, the sectorial operator A = ∂2

∂y2 − ω generates

an analytic semigroup and for α = 2, the sectorial operator A = ∂2

∂y2 − ω

generates a cosine family of operators. Therefore, the above problem can be
posed as an abstract problem (1.1) defined on X = L2(0, π). We assume that
our function satisfies all the assumptions of Theorem 3.5. Hence, the problem
(4.1) has a PC-almost automorphic solution.

Example 4.2. Consider the following delay fractional relaxation oscillation
equation,

∂α
t u(t, y) = ∂2

yu(t, y) − pu(t, y) + ∂α−1
t (cost + cos

√
2t

+sin

(∫ t

−∞
e(t−s)u(s, y)ds

)
,

Δu(tk, y) = Ik(u(tk, y)),
u(t, 0) = u(t, π) = 0,∀t ∈ R, y ∈ [0, π],
u(0, ξ) = u0(ξ), ξ ∈ [0, π], τ, p > 0,

u(t, y) = φ(t, y), t ∈ [−π, 0]. (4.2)

Let x(t)y = u(t, y) and assume that

f(t, xt) = cost + cos
√

2t + sin

(∫ t

−∞
e(t−s)u(s, y)ds

)
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is a continuous function with respect to t and satisfies Lipschitz condition in
xt.

Define the operators

Ax =
∂2x

∂y2
− ωx with domain

D(A) = {x ∈ L2(0, π) : x, x
′
are absolutely continuous and

x, x
′
, x

′′ ∈ L2(0, π)}.

It is well known that for α = 1, the sectorial operator A = ∂2

∂y2 − ω generates

an analytic semigroup and for α = 2, the sectorial operator A = ∂2

∂y2 − ω

generates a cosine family of operators. Therefore, the above problem can be
posed as an abstract problem (1.2) defined on X = L2(0, π). We assume that
our function satisfies all the assumptions of Theorem 3.7. Hence the problem
(4.2) has a PC-almost automorphic solution.

Example 4.3. Consider the following fractional relaxation oscillation equa-
tion,

∂α
t u(t, y) = ∂2

yu(t, y) − μu(t, y) + ∂α−1
t (βu(t, y)(cost + cos

√
2t

+βe−|t|sin(u(t, y)) + sin

(∫ t

−∞
e(t−s)u(s, y)ds

)
,

Δu(tk, y) = Ik(u(tk, y)),
u(t, 0) = u(t, π) = 0,∀t ∈ R, y ∈ [0, π],
u(0, ξ) = u0(ξ), ξ ∈ [0, π], μ > 0. (4.3)

Let x(t)y = u(t, y) and assume that

f(t, x(t), xt)=cost + cos
√

2t+βe−|t|sin(u(t, y))+sin

(∫ t

−∞
e(t−s)u(s, y)ds

)

is a continuous function with respect to t and satisfies Lipschitz condition in
xandxt.

Define the operators

Ax =
∂2x

∂y2
− ωx with domain

D(A) = {x ∈ L2(0, π) : x, x
′
are absolutely continuous and

x, x
′
, x

′′ ∈ L2(0, π)}.

It is well known that for α = 1, the sectorial operator A = ∂2

∂y2 − ω generates

an analytic semigroup and for α = 2, the sectorial operator A = ∂2

∂y2 − ω

generates a cosine family of operators. Therefore, the above problem can be
posed as an abstract problem (1.3) defined on X = L2(0, π). We assume that
our function satisfies all the assumptions of Theorem 3.9. Hence, the problem
(4.3) has a PC-almost automorphic solution.
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Example 4.4. Consider a fractional relaxations oscillation equation

∂α
t u(t, y) = ∂2

yu(t, y) + ∂α−1
t (f1(t, u(t, y))

+
∫ t

−r

h(t − s)f2(s, u(s, y))ds), t ∈ R, y ∈ Ω = [0, π],

x(t, 0) = x(t, π) = 0 t ∈ R,

Δu(tk, y) = −u(tk, y) k = 1, 2, . . . ,

u(s, y) = φ(s, y) s ∈ [−r, 0]. (4.4)

Let x(t)y = u(t, y) and assume that

f(t, x(t), xt) = f1(t, u(t, y)) +
∫ t

−r

h(t − s)f2(s, u(s, y))ds

is a continuous function with respect to t �= tk and PC-almost automorphic.
Also, f1 satisfies Lipschitz condition in x and xt.

Define the operators

Ax =
∂2x

∂y2
− ωx with domain

D(A) = {x ∈ L2(0, π) : x, x
′
are absolutely continuous and

x, x
′
, x

′′ ∈ L2(0, π)}.

It is well known that for α = 1, the sectorial operator A = ∂2

∂y2 − ω generates

an analytic semigroup and for α = 2, the sectorial operator A = ∂2

∂y2 − ω

generates a cosine family of operators. Therefore, the above problem can be
posed as an abstract problem (1.3) defined on X = L2(0, π) = U. We assume
that our function satisfies all the assumptions of Theorem 3.9. Hence, the
problem (4.4) has a PC-almost automorphic solution.

5. Discussion

Since, the introduction of almost periodic functions by Bohr [4], there have
been various important generalization of this concept. One important gen-
eralization is the concept of almost automorphic functions which was intro-
duced by Bochner. After that, we encounter several important generalization
of these functions like:

i. Pseudo-almost periodic and automorphic,
ii. Weighted pseudo-almost periodic and automorphic,
iii. Stepanov almost periodic and automorphic,
iv. Stepanov type pseudo-almost periodic and automorphic,
v. Stepanov type weighted pseudo-almost periodic and automorphic,

and many more. For origin and details of these functions, one can see [4] and
references therein. The application of these functions in the area of differen-
tial equations attracted many mathematicians and extensive research have
been done. In recent year, the applications of these functions in the field of
fractional differential equations got a lot of attention after the introduction
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of the α-resolvent family of bounded linear operators, Sα(t), for detail, we
refer to [14,15].
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