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Abstract. We determine the structure of a generalized a-biderivation of
a noncommutative prime ring R. Moreover, we also consider the case
when the ring R is semiprime.
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1. Introduction and the Main Result

Throughout, R will represent a ring. For all z,y € R, the symbol [z,y] will
denote the commutator zy — yx. Recall that a ring R is prime if 2Ry = 0,
x,y € R, implies that x = 0 or y = 0, and it is semiprime if 2Rz = 0,
r € R, implies that x = 0. As usual, we will denote by C, Q,., and Q; the
extended centroid, the right Martindale ring of quotients, and the symmetric
Martindale ring of quotients of a semiprime ring R, respectively. The set of
all idempotents in C' will be denoted by Idem(C'). For the explanation of the
extended centroid as well as the right and the symmetric Martindale ring of
quotients, we refer the reader to [2].

Let o be an automorphism of a ring R. An additive map d: R — R is
called a derivation of R if d(xy) = d(x)y+xd(y) for all 2,y € R, and is called
an a-derivation of R if d(zy) = d(z)y + a(x)d(y) for all x,y € R. Moreover,
an additive map g : R — R is called a generalized derivation of R if there
exists a derivation d of R such that g(zy) = g(z)y + zd(y) for all z,y € R.
The concept of generalized derivations has been introduced by Bresar [3].
For results concerning generalized derivations we refer to [7,9,11,12], where
further references can be found. Let us also point out that a-derivations and
generalized derivations are two natural generalizations of usual derivations.

In the recent years, a-derivations and generalized derivations of associa-
tive rings and algebras have been widely investigated by many people in pure
algebraic context and operator algebras. The natural question here is whether
there exists a unification of both, the definition of a generalized derivation
and that of an a-derivation. Based on this idea, we write a definition which
is a common generalization of the previous two definitions. An additive map
g: R — R is called a generalized a-derivation of R if there exists an additive
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map d : R — R such that g(zy) = g(z)y + a(x)d(y) for all z,y € R. It turns
out that the map d is uniquely determined by g and is called an associated
additive map of g. Moreover, d is always an a-derivation of R (see [12,13] for
more details).

A biadditive map D : R x R — R is called a biderivation of a ring R if
for all x,y € R, the maps x — D(z,y) and y — D(x,y) are derivations of R.
Similarly, a biadditive map D : R x R — R is called an «a-biderivation of R
if for all z,y € R, the maps z — D(z,y) and y — D(x,y) are a-derivations
of R. In [5] Bresar, Martindale III, and Miers characterized biderivations of
a noncommutative prime ring R and in [4] Bresar determined the structure
of an arbitrary a-biderivation of R.

Argac [1] introduced the following definition. Let D,G : R x R — R
be two biadditive maps. A map G : R Xx R — R is called a generalized
D-biderivation if for every y € R, the map z +— G(z,y) is a generalized
derivation of R associated with the additive map = — D(z,y), and for every
x € R, the map y — G(z,y) is a generalized derivation of R associated
with the additive map y — D(z,y). Argag proved that every generalized
D-biderivation G of a noncommutative prime ring R has the form G(x,y) =
Az, y], v,y € R, for some A € C' [1, Theorem 4.1].

Motivated by the above results we introduce the following definition.

Definition. Let R be a ring and D,G : R x R — R two biadditive maps.
A map G : R xR — R is called a generalized a-biderivation with the
associated biadditive map D if for every y € R, the map = — G(z,y) is a
generalized a-derivation of R associated with the additive map x — D(x,y),
and for every x € R, the map y — G(x,y) is a generalized a-derivation of R
associated with the additive map y — D(x,y).

The above definition yields that for all x,y, 2 € R, we have

G(zy,z) = G(z,2)y + a(x)D(y, 2)
and
G(z,yz) = G(x,y)z + a(y)D(z, 2).
Of course, every a-biderivation is a generalized a-biderivation, but the

converse is not generally true.

Example. Let R be a ring, a an automorphism of R, and D an arbitrary
a-biderivation of R. If ¢ : R x R — R is any biadditive map such that
d(xy, 2) = d(x, z)y and ¢(x,yz) = ¢(x,y)z for all x,y,z € R, then D + ¢
is a generalized a-biderivation of R with the associated biadditive map D.
Namely, for all z,y, z € R, we have

(D +¢)(zy,2) = (D + ¢)(z, 2)y + a(z)D(y, 2)

and

(D + ¢)(z,yz) = (D + ¢)(2,y)z + a(y)D(z, 2).
The aim of our paper is to determine the structure of a generalized a-

biderivation of a noncommutative prime ring and to give the generalization
of Theorem 4.1 in [1].
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Theorem 1. Let R be a noncommutative prime ring and D : R X R — R
a biadditive map. Suppose that G : R X R — R is a nonzero generalized
a-biderivation with the associated biadditive map D. Then there exists an
invertible ¢ € Q, such that a(x) = quq~! for all x € R and

G(x,y) = D(x,y) = qlz,y], x,y€cR.

Recall that if R is commutative, then any two a-derivations dy,ds of R
generate a generalized a-biderivation defined by (z,y) — di(z)d2(y). Thus,
the assumption that R is noncommutative cannot be removed in Theorem 1.

2. The Proof

Throughout this section, R will represent a noncommutative prime ring and
« an automorphism of R. Recall that an automorphism « is X-inner if there
exists an invertible ¢ € Q; such that a(z) = qzg~! for all z € R.

Lemma 1. ([14, Lemma 12.1]) If there exist nonzero elements q1,qz2,q3,qs €
Q. such that qyxqs = qza(x)qy for all x € R, then « is X-inner.

The next Lemma is a well-known result (see [8, Lemma 1.3.2] and [10,
Theorem 1] for the generalization).

Lemma 2. Let n > 0 be an integer, T a nonzero ideal of R, and x;,y; € Q.,
i=1,...,n. If Y0 wizy; =0 for all z € I, then a;’s are linearly dependent
over C' and b;’ are linearly dependent over C.

The following result is a generalization of [1, Lemma 4.2].

Lemma 3. Let R be a prime ring, T a nonzero ideal of R, and S any set.
Suppose that maps F1, Fy, F3: S — Q,. satisfy the identity

Fy(2)2F(y) = Fa(2)2F3(y)
forallz,y e S, z€T. If F5 # 0, then there exists A € C' such that
Fi(z) = F3(z) = AFs(x)
forallz e S.

Proof. Let x € S be an arbitrary element. If Fy(x) = 0, then Fy(z) = F5(z)
= 0. Namely, Fy(2)zFy(y) = Fo(x)zF3(y) = 0 for all y € S, z € Z. Since
F5 # 0 there exists y € S such that F5(y) # 0 and since R is prime, it follows
that Fy(z) = 0. Similarly, we can show that F5(z) = 0.

Suppose that F(z) # 0 and recall that Fy(z)zFy(x) = Fa(z)zF3(x) for
all z € Z. By Lemma 2, there exists A, € C such that Fy(z) = A\, Fa(x).
Thus, Fy(z)z(AsFa(z) — F5(z)) = 0 for all z € T and F3(z) = A\, Fa(z), as
well. At the end, we have to show that A, is independent of an element x € S.
So, assume that Fy(z) # 0 and Fy(y) # 0. Then the relation Fy(x)zFs(y) =
F>(x)zF3(y) can be written in the form Fy(z)z(Ay — A\y)Fa(y) = 0. Since R
is prime, we have A\; = Ay, = A, as desired. O

In the proof of our main theorem we will need the following partial
results.
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Lemma 4. Let R be a semiprime ring and D : RXxR — R an additive map. If
G: R XR — R is a generalized a-biderivation with the associated biadditive
map D, then D is an a-biderivation.

Proof. For all z,y,z,w € R, we have
Glryz, w) = G((zy)z,w) = Gzy, w)z + a(zy) D(z,w)
= G(z,w)yz + a(z)D(y,w)z + a(zy)D(z,w).
On the other hand,
Glayz, w) = Gla(y), w) = Gla, w)yz + a(z)D(yz,w).
Comparing the relations, we get
a(@)(D(yz,w) — D(y,w)z — a(y)D(z,w)) = 0

for all z,y,z,w € R. Since R is semiprime, we see that for all y € R, the
map x — D(z,y) is an a-derivation. With the same idea, we can show that
for all z € R, the map y — D(x,y) is an a-derivation, as well. The proof is
completed. O

Lemma 5. Let D : R x R — R be an additive map and G: R X R — R a
generalized a-biderivation with the associated biadditive map D. Then

G(21,y1)z[w2, y2] = [a(@1), a(y1)]a(2) D (w2, y2)
for all x1,y1,22,y2,2 € R.
Proof. Using Lemma 4, we obtain
G(z122,91y2) = G(21,y192)72 + (1) D(22, Y1Y2)

= G(z1,y1)y222 + a(y1)D(z1, y2)z2 + a(z1) D (22, y1)y2
+a(r1y1) D(x2, y2)-

On the other hand,
G(z129,y192) = G(2122,91)y2 + a(y1) D(2172, Y2)

= G(x1,y1)x2y2 + o(x1) D (22, y1)y2 + a(y1) D (21, y2) 2
+a(y121)D(z2, y2).

Comparing the above relations, we get
G(z1,91)[r2, 2] = [a(z1), a(y1)]D (22, y2)
for all z1,y1,22,y2 € R. Replacing x5 by zzs and using Lemma 4 we get the

desired identity. O

Note that in the proof of Lemma 4 and in the proof of Lemma 5 we did
not use the primeness of a ring R.

We are now in a position to prove Theorem 1. The main idea of the
proof comes from [4].
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Proof of Theorem 1. According to Lemma 5, we have

G(z1,y1)z[x2, y2] = [a(z1), a(yr)]e(z) D(z2, y2)
for all z1,y1,x2,y2,2 € R. Since G is nonzero and R is noncommutative we
can find z1,y1, 22,52 € R such that G(z1,y1) = q1 # 0, [22,y2] = ¢2 # 0,
[a(x1),a(y1)] = g3 # 0, and D(x2,y2) = qa # 0. Namely, it is easy to see that
D is also nonzero. Moreover, [a(x1),a(y1)] # 0 if and only if G(x1,y1) # 0
and [z2,y2] # 0 if and only if D(x2,y2) # 0.
So, we have ¢1zq2 = gza(z)qy for all z € R and, according to Lemma 1,

« is X-inner. Thus, there exists an invertible ¢ € Qg such that a(z) = qgrg~!
for all x € R. It follows that

G(w1,y1)z[72, y2] = qlw1,91)2¢ ' D(22, y2)

for all z1,y1,x2,y2,2z € R. Multiplying the above identity from the left by

¢~ ', we obtain

¢ Gz, y1)z[e2, yo] = [w1,y1)2¢7 D@2, o).
Let us define maps Fy, Fy,F3 : R x R — R by Fi(z,y) = ¢ 'G(z,y),
Fy(z,y) = [x,y], and F3(x,y) = ¢ D(x,y). Then
Fi(z1,y1)2F2(22,y2) = Fa(21,y1) 2 F3(72, y2)
and, by Lemma 3, there exists A € C' such that
Fi(z,y) = Fs(a,y) = Az, y]

for all x,y € R. If we denote gy = Ag, then G(z,y) = D(z,y) = qo[z,y)].
Note that g # 0 is invertible and a(z) = qoxqo_l, z € R. The proof is
completed. 0

3. The Semiprime Case

Let R be a semiprime ring and « an automorphism of R. In [6], Eremita
observed the structure of a-biderivations D : R x R — R. More precisely,
he considered the identity F(z)zF(y) = F3(z)a(z)Fy(y), v,y € S, z € R,
where S is an arbitrary set and Fy, Fo, F3, Fy : S — R are any maps.

Theorem 2. ([6, Theorem 3.1]) Let R be a semiprime ring and S any set.
Suppose that maps Fy, Fy, F3,Fy : § — R satisfy the identity

Fi(z)zFa(y) = Fs(x)a(z)Fa(y)
for all z,y € S, z € R. Then there exist €, €a, €3, €4, €5 € Idem(C) and an
invertible ¢ € Qg such that ;e; = 0, 1 # j, e1 + €2+ €3+ €a + €5 = 1,
e1a(z) = e1qzq~! for all z € R, and
ali(x) =eaFs(x)q, eaFy(y)=eaq 'Fily), z,y€S.

Moreover, eaFs(x) = eaFy(x) = 0, e3Fa(x) = esF3(x) = 0, e4F1(z) =
eaFy(z) =0, esFy(x) = esF3(x) =0 for allxz € S.
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As an application of the above theorem, Eremita generalized the re-
sult of Bresar [4] concerning the structure of a-biderivations. The natural
question here is, whether the analogue result holds true also for generalized
a-biderivations. Corollary 1 answers this question in the affirmative. Namely,
if D: R xR — R is a biadditive map and G : R X R — R a generalized
a-biderivation with the associated biadditive map D, then, by Lemma 5, we
have G(zla yl)z[x27 yQ] = [Ot(l’l)7 Ol(yl)}Oé(Z)D(’IQ, yQ) for all T1,Y1,22,Y2,2 €
R. Let us define maps Fy, Fy, F5,Fy : R x R — R by Fi(z,y) = G(z,y),
th(a:,y) = [z,y], F3(z,y) = [a(z),a(y)], and Fy(z,y) = D(z,y), z,y € R.
Then

Fi(z1,91)2F2(22,y2) = F3(x1,y1)o(2) F3(22,2)

and, by Theorem 2, there exist €1, €2, €3, €4, €5 € Idem(C) and an invertible
q € Qg such that €;¢; = 0,0 # j, €1 +ea+est+est+es = 1, e1a(z) = e1qzq~! for
all z € R, and 1G(z,y) = e1D(z,y) = e1q[z,y| for all z,y € R. Moreover,
&[R,R]=0,i=2,3,5and ¢,D(R,R) = ¢;,G(R,R) =0, j = 2,4,5. Setting
Y1 = €1, Y2 = €3 + €4 + €5, and 3 = €3, we have the next corollary.

Corollary 1. Let R be a semiprime ring and D : R X R — R a biadditive
map. Suppose that G : R X R — R is a generalized a-biderivation with the
associated biadditive map D. Then there exist v1,72,7v3 € Idem(C) and an
invertible g € Qg such that v;v; =0, 1 # j, m+7v2+73 =1, and

(1) ma(x) =vigeq" for allz € R,

(2) mG(z,y) = nD(x,y) = nqlz,y] for all z,y € R,

(3) 2G(x,y) =vD(z,y) =0 for allz,y € R,

(4) the ring vsR is commulative.
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