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On the First Stability Eigenvalue
of Constant Mean Curvature Surfaces
Into Homogeneous 3-Manifolds
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Abstract. We find out upper bounds for the first eigenvalue of the sta-
bility operator for compact constant mean curvature surfaces immersed
into certain 3-dimensional Riemannian spaces, in particular into homo-
geneous 3-manifolds. As an application we derive some consequences for
strongly stable surfaces in such ambient spaces. Moreover, we also get
a characterization of Hopf tori in certain Berger spheres.
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1. Introduction

Let ψ : Σ2→M3 be a compact surface immersed into a 3-dimensional Rie-
mannian space. We will assume that Σ is two-sided, which means that there
exists a unit normal vector field N globally defined on Σ, and will denote
by A its second fundamental form (with respect to N) and by H its mean
curvature, H = (1/2) tr(A). Every smooth function f ∈ C∞(Σ) induces a
normal variation ψt of the immersion ψ, with variational normal field fN
and first variation of the area functional A(t) given by

δfA =
dA
dt

(0) = −2
∫

Σ

fH.
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As a consequence, minimal surfaces (H = 0) are characterized as critical
points of the area functional whereas constant mean curvature (CMC) sur-
faces are critical points of the area functional restricted to smooth functions
f which satisfy the additional condition

∫
Σ
f = 0. Geometrically, such ad-

ditional condition means that the variations under consideration preserve a
certain volume function.

For such critical points, the stability of the corresponding variational
problem is given by the second variation of the area functional,

δ2fA =
d2A
dt2

(0) = −
∫

Σ

fJf,

with Jf = Δf +
(|A|2 + Ric(N,N)

)
f , where Δ stands for the Laplacian

operator on Σ and Ric denotes the Ricci curvature of M3. The surface Σ is
said to be strongly stable if δ2fA ≥ 0, for every f ∈ C∞(Σ). The operator
J = Δ + |A|2 + Ric(N,N) is called the Jacobi or stability operator of the
surface, and it is a Schrödinger operator. As it is well known, the spectrum
of J

Spec(J) = {λ1 < λ2 < λ3 < · · · }
consists of an increasing sequence of eigenvalues λk with finite multiplicities
mk and such that limk→∞ λk = +∞. Moreover, the first eigenvalue is simple
(m1 = 1) and it satisfies the following min–max characterization

λ1 = min
{− ∫

Σ
fJ(f)∫

Σ
f2

: f ∈ C∞(Σ), f �= 0
}
. (1.1)

Observe that a real number λ is an eigenvalue of J if and only if J(f)+λf = 0
for some smooth function f ∈ C∞(Σ), f �= 0. In terms of the spectrum, Σ is
strongly stable if and only if λ1 ≥ 0.

Our objective in this paper is to establish estimates for λ1 and some
characterizations for compact CMC surfaces into 3-dimensional Riemannian
spaces with sectional curvature bounded from below. In particular, we find
out upper bounds for λ1 for compact constant mean curvature surfaces into
homogeneous 3-manifolds. As an application we derive some consequences
for strongly stable surfaces in such ambient spaces. Moreover, we get also a
characterization of Hopf tori in certain Berger spheres and into the product
S

2 × S
1.

Related to our results, let us recall that in 1968, Simons [11] found out
an estimate for the first eigenvalue of J on any compact minimal hypersurface
in the standard sphere. In particular, for minimal compact surfaces in the 3-
sphere he proved that λ1 = −2 if the surface is totally geodesic and λ1 ≤ −4
otherwise. Later on, Wu [16] characterized the equality by showing that it
holds only for the minimal Clifford torus. More recently, Perdomo [9] gave a
new proof of this spectral characterization by getting an interesting formula
that relates the first eigenvalue λ1, the genus of the surface, the area and
a simple invariant. Finally, Aĺıas, Barros and Brasil [2] extended Wu and
Perdomo’s results to the case of CMC hypersurfaces in the standard sphere,
characterizing some CMC Clifford tori.
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The standard 3-sphere is a simply connected space form (the compact
one). Besides them, the most regular Riemannian 3-manifolds are the homo-
geneous ones and between them, the only compact are the Berger spheres
and their quotients. In the last years, the CMC surfaces of the homogeneous
Riemannian 3-manifolds have been deeply studied (the starting point was the
work of Abresch and Rosenberg [1]) and several stability results have been
proved (see [12] and [15]). See also [3] and [13] for other recent interesting
characterization and classification results for CMC surfaces in such ambient
spaces.

2. First Results

Let ψ : Σ2→M3 be a compact two-sided surface with constant mean curva-
ture H immersed into a 3-dimensional Riemannian space. Let us introduce
the so-called traceless second fundamental form of Σ, that is, the tensor φ
given by φ = A−HI, where I denotes the identity operator on X(Σ). Observe
that tr(φ) = 0 and |φ|2 = |A|2 − 2H2 ≥ 0, with equality if and only if Σ is
totally umbilical. For that reason φ is also called the total umbilicity tensor
of Σ. In terms of φ, the Jacobi operator is given by

J = Δ + |φ|2 + 2H2 + Ric(N,N) .

Now let us choose a first positive eigenfunction ρ ∈ C∞(Σ) of the sta-
bility operator. Thus Jρ = −λ1ρ or, equivalently,

Δρ = − (
λ1 + |A|2 + Ric(N,N)

)
ρ. (2.1)

Extending Perdomo’s ideas [9, Section 3] to our more general case, one can
compute

Δlogρ = ρ−1Δρ− ρ−2|∇ρ|2 = − (
λ1 + |A|2 + Ric(N,N)

) − ρ−2|∇ρ|2,
and integrate on Σ to find

α =
∫

Σ

ρ−2|∇ρ|2 = −λ1 Area(Σ) −
∫

Σ

(|A|2 + Ric(N,N)
)
,

where α ≥ 0 defines a simple invariant that is independent of the choice of ρ
because λ1 is simple. In other words

λ1 = − 1
Area(Σ)

⎛
⎝α+

∫

Σ

(|A|2 + Ric(N,N)
)
⎞
⎠ .

Now from the Gauss equation, we obtain a relation between the norm of the
shape operator |A|2, the sectional curvature KΣ of the tangent plane to Σ in
M3, and the Gaussian curvature K of the surface as |A|2 = 2(2H2 +KΣ −K)
and, by the Gauss–Bonnet Theorem, the above formula becomes

λ1 = −4H2 − 1
Area(Σ)

⎛
⎝α+ 8π(g − 1) +

∫

Σ

(
2KΣ + Ric(N,N)

)
⎞
⎠ . (2.2)

As a first consequence, we can establish the following result.
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Theorem 2.1. Let M3 be a 3-dimensional Riemannian space with sectional
curvature K bounded from below by a constant c. Consider Σ2 a compact
two-sided surface immersed into M3 with constant mean curvature H, and
let λ1 stand for the first eigenvalue of its Jacobi operator. Then

(i) λ1 ≤ −2(H2 + c), with equality if and only if Σ is totally umbilic in M3

and the normal direction to Σ is a direction of minimum Ricci curvature
of M3 equals 2c,

(ii) λ1 ≤ −4(H2 + c)− 8π(g− 1)/Area(Σ), where g denotes the genus of Σ.
Moreover, equality holds if and only if Σ has constant Gaussian curva-
ture, KΣ = c and the normal direction to Σ is a direction of minimum
Ricci curvature of M3 equals 2c.

Proof. Taking the constant function f = 1 as a test function in (1.1) to
estimate λ1, one easily gets that

λ1 ≤ − ∫
Σ

1J1∫
Σ

12
= −2H2 − 1

Area(Σ)

∫

Σ

Ric(N,N) − 1
Area(Σ)

∫

Σ

|φ|2

≤ −2(H2 + c) − 1
Area(Σ)

∫

Σ

|φ|2 ≤ −2(H2 + c) (2.3)

Moreover, if the equality holds then φ = 0 on Σ and Ric(N,N) = 2c. So Σ is
totally umbilic and because of 2c ≤ Ric(X,X) for all X ∈ X(M3), the normal
direction to Σ is a direction of minimum Ricci curvature of M3. Conversely,
if Σ is totally umbilic and Ric(N,N) = 2c then J = Δ + 2H2 + 2c and so
λ1 = −2H2 − 2c.

On the other hand, from (2.2) we get that

λ1 ≤ −4(H2 + c) − 8π(g − 1)/Area(Σ)

since 2KΣ + Ric(N,N) ≥ 4c and α ≥ 0, which proves the first statement of
part (ii). Moreover, if the equality holds then α = 0, KΣ = c and Ric(N,N) =
2c, so the normal direction to Σ is a direction of minimum Ricci curvature
of M3 as above. The fact that α = 0 implies ρ is constant and from (2.1) we
see that |A|2 is also constant, which means that K is constant by the Gauss
equation. Conversely, under such hypothesis we have J = Δ+4(H2+c)−2K,
hence λ1 = −4(H2+c)+2K = −4(H2+c)−8π(g−1)/Area(Σ) by the Gauss–
Bonnet formula. �

In particular, as a direct consequence of this theorem, we have the follow-
ing corollary in 3-dimensional simply connected space forms: the Euclidean
space R

3, the hyperbolic space H
3(c), and the standard sphere S

3(c); for this
last case the result was achieved before (see [2]).

Corollary 2.2. Let Σ2 be a compact two-sided surface with constant mean
curvature H immersed into a 3-dimensional simply connected space form
M3(c), and let λ1 stand for the first eigenvalue of its Jacobi operator. Then

(i) either λ1 = −2(H2 + c) (and Σ is totally umbilic in M3(c)), or



Vol. 12 (2015) On the First Stability Eigenvalue of CMC Surfaces 151

(ii) λ1 ≤ −4(H2 + c), with equality if and only if Σ2 is a Clifford torus in
S

3(c).

Proof. Since K ≡ c we have Ric(N,N) = 2c, so the normal direction of Σ is a
direction of minimum Ricci curvature of M3(c). Now, if Σ is totally umbilic
we know from Theorem 2.1 that λ1 = −2(H2 + c). Otherwise, using the fact
that the genus of a constant mean curvature non-totally umbilic surface in
M3(c) is greater than or equal to 1 we obtain λ1 ≤ −4(H2 + c). Moreover,
equality holds if and only if g = 1 and Σ has constant Gaussian curvature,
so by the Gauss–Bonnet formula it must be K = 0. This occurs only when
Σ2 is a Clifford torus in S

3(c). �
We can also derive the following consequence for strongly stable CMC

surfaces.

Corollary 2.3. Let M3 be a 3-dimensional Riemannian space with sectional
curvature K bounded from below by a constant c.

(i) There exists no strongly stable CMC surface with H2 + c > 0.
(ii) If Σ2 is a strongly stable CMC surface and H2 + c = 0 (that is, c = 0

and H = 0 or c < 0 and H2 = −c), then Σ2 is topologically either a
sphere or a torus.

(iii) If Σ2 is a strongly stable CMC surface and H2 + c < 0 (that is, c < 0
and H2 < −c), then

Area(Σ) |H2 + c| ≥ 2π(g − 1).

The proof of item (i) above is a direct application of the estimate for
λ1 given in item (i) of Theorem 2.1, while items (ii) and (iii) follow from the
estimate for λ1 given in item (ii) of Theorem 2.1.

3. Surfaces in Homogeneous 3-Manifolds

From now on, we will focus our attention on the study of compact CMC
surfaces into homogeneous Riemannian 3-manifolds whose isometry group
has dimension 4. So, if M3 is a homogeneous Riemannian 3-manifold, it is
well known that there exists a Riemannian submersion Π : M3→B2(κ), where
B2(κ) is a 2-dimensional simply connected space form of constant curvature
κ, with totally geodesic fibers and there exists a unit Killing field ξ on M3

which is vertical respect to Π. If ∇ stands for the Levi-Civita connection of
M3, we have

∇Xξ = τ(X ∧ ξ), (3.1)
for all vector fields X on M3, where ∧ is the vector product in M3 and the
constant τ is the bundle curvature (see [5] for details). As the isometry group
of M3 has dimension 4, κ − 4τ2 �= 0. We will denote such manifolds and
certain quotients by E

3(κ, τ). Depending on τ and κ, we can distinguish the
different cases (see for instance [4] or [10]):

(i) When τ = 0, E
3(κ, τ) is the product B2(κ) × R, that is, up to scaling,

the spaces S
2(κ) × R for κ > 0, and H

2(κ) × R for κ < 0, and their
quotients B2(κ) × S

1.
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(ii) When τ �= 0, E
3(κ, τ) is one of the Berger spheres S

3
b(κ, τ) for κ >

0, the Heisenberg group Nil3(τ) for κ = 0 and the universal cover
˜Sl(2,R)(κ, τ) of the Lie group Sl(2,R)(κ, τ) for κ < 0, and their quo-

tients S
3
b(κ, τ)/Zn and PSl(2,R) = Sl(2,R)(κ, τ)/Zn, n ≥ 2.

The submersion Π : E
3(κ, τ)→B2(κ) allows us to get a very interesting

example of surface. So, if γ is any regular curve in B2(κ) we know that Σ =
Π−1(γ) is a surface in E

3(κ, τ) with ξ a tangent vector field, i.e., 〈N, ξ〉 ≡ 0.
From (3.1) it follows that ξ is a parallel vector field on Σ and hence Σ is a
flat surface. We will call Π−1(γ) a Hopf surface of E

3(κ, τ). If γ is a closed
curve, Π−1(γ) is a Hopf cylinder, and additionally if Π is a circle Riemannian
submersion, Π−1(γ) is a Hopf torus. Let us observe that a Hopf torus Π−1(γ)
has constant mean curvature if and only if the curve γ has constant curvature.

In this section, we start the study of the first stability eigenvalue of
any compact CMC surface ψ : Σ2→E

3(κ, τ). According to (2.2), we have to
consider the curvature tensor of any E

3(κ, τ). It is well known (see [5]) that
the Riemannian curvature tensor R of E

3(κ, τ) is given by

〈R(X,Y )Z,W 〉 = (κ− 3τ2){〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉}
+ (κ− 4τ2){〈X, ξ〉〈Z, ξ〉〈Y,W 〉 − 〈Y, ξ〉〈Z, ξ〉〈X,W 〉
+ 〈X,Z〉〈Y, ξ〉〈ξ,W 〉 − 〈Y,Z〉〈X, ξ〉〈ξ,W 〉},

for all vector fields X, Y , Z and W on E
3(κ, τ). As a consequence, the Ricci

curvature of E
3(κ, τ) is given by

Ric(X,X) = κ− 2τ2 + 〈X, ξ〉2(4τ2 − κ), (3.2)

for every unit vector field X on E
3(κ, τ). Moreover, the sectional curvature

K of any plane P is

K(P ) = τ2 + 〈ν, ξ〉2(κ− 4τ2),

where ν is the normal to P .
A direct computation using the last two formulae shows that

2KΣ + Ric(N,N) = κ+ 〈N, ξ〉2(κ− 4τ2).

Therefore, Eq. (2.2) reduces to

λ1 = −4H2 − κ− 1
Area(Σ)

⎛
⎝α+ 8π(g − 1) + (κ− 4τ2)

∫

Σ

〈N, ξ〉2
⎞
⎠ . (3.3)

Now, as a direct application of the above equation we can get upper
bounds for λ1 for compact CMC surfaces into the different homogeneous
spaces E

3(κ, τ). Moreover, in some cases we characterize the equality.

Theorem 3.1. Let ψ : Σ2→S
2(κ) × R be a compact two-sided surface of con-

stant mean curvature H, and let λ1 stand for the first eigenvalue of its Jacobi
operator. Then

(i) λ1 ≤ −2H2, with equality if and only if Σ2 is a horizontal slice S
2(κ) ×

{t};
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(ii) λ1 < −4H2 − κ− 8π(g − 1)
Area(Σ)

.

Proof. Since τ = 0 and κ > 0 from (3.2) we know that

Ric(N,N) = κ(1 − 〈N, ξ〉2) ≥ 0,

so that (2.3) directly yields λ1 ≤ −2H2. Moreover, if the equality holds then
〈N, ξ〉2 ≡ 1 which implies that Σ2 is a totally geodesic horizontal slice.

On the other hand, since τ = 0 from (3.3), we get

λ1 = −4H2 − κ− 1
Area(Σ)

⎛
⎝α+ 8π(g − 1) + κ

∫

Σ

〈N, ξ〉2
⎞
⎠

≤ −4H2 − κ− 8π(g − 1)
Area(Σ)

,

where we are taking into account that κ > 0 and 〈N, ξ〉2 ≥ 0. In fact, equality
holds if and only if α = 0 and 〈N, ξ〉 ≡ 0. This last condition implies that
Σ2 would be a Hopf torus but that is not possible because there are no flat
compact surfaces in S

2(κ) × R (see [14]). �

As a consequence, let us note that in S
2(κ) × R if H �= 0 then λ1 < 0

(so the surface is not strongly stable) and from here we easily get that the
only constant mean curvature compact strongly stable surfaces in S

2(κ) × R

are horizontal slices S
2(κ) × {t}.

Corollary 3.2. The only strongly stable compact surfaces of constant mean
curvature in S

2(κ) × R are horizontal slices.

Theorem 3.3. Let ψ : Σ2→S
2(κ) × S

1 be a compact two-sided surface of
constant mean curvature H, and let λ1 stand for the first eigenvalue of its
Jacobi operator. Then

(i) λ1 ≤ −2H2, with equality if and only if Σ2 is a horizontal slice S
2(κ) ×

{p};
(ii) λ1 ≤ −4H2 − κ− 8π(g − 1)

Area(Σ)
and equality holds if and only if Σ2 is a

Hopf torus over a constant curvature closed curve.

Proof. The same as above but in this case for the equality in item (ii) we do
have CMC Hopf tori. Let us observe that from (3.3) the first eigenvalue for
such tori is λ1 = −4H2 − κ because of g = 1, 〈N, ξ〉 ≡ 0 and α = 0. �

Theorem 3.4. Let ψ : Σ2→H
2(κ) × R be a compact two-sided surface of

constant mean curvature H, and let λ1 stand for the first eigenvalue of its
Jacobi operator. Then

(i) λ1 < −2H2 − κ;

(ii) λ1 < −4H2 − 2κ− 8π(g − 1)
Area(Σ)

.
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Proof. In this case, since τ = 0 and κ < 0 from (3.2) we know that

Ric(N,N) = κ(1 − 〈N, ξ〉2) ≥ κ,

so that (2.3) directly yields λ1 ≤ −2H2 − κ. Moreover, the equality cannot
hold; otherwise we would have 〈N, ξ〉2 ≡ 0 which implies that Σ2 is a cylinder
which is not possible because it is compact.

On the other hand, since τ = 0, κ < 0 and 〈N, ξ〉2 ≤ 1 we have from
(3.3)

λ1 ≤ −4H2 − 2κ− 8π(g − 1)
Area(Σ)

,

and equality holds if and only if α = 0 and 〈N, ξ〉2 ≡ 1. So N = ±ξ which
implies that the surface would be a slice of H

2(κ)×R that is not compact. �

As a consequence, we derive the following result which is related to
Corollary 4.1 in [8] (it is important to realize that the notion of stability in
Corollary 4.1 of [8], as well as in Theorem C of the same reference, is that of
weakly stability although not explicitly stated).

Corollary 3.5. Let ψ : Σ2→H
2(κ) × R be a compact two-sided surface of

constant mean curvature H.

(i) There exists no strongly stable CMC surface with H2 ≥ −κ/2.
(ii) If Σ2 is a strongly stable CMC surface and H2 < −κ/2, then

Area(Σ) |2H2 + κ| > 4π(g − 1).

We study now the cases where the bundle curvature τ �= 0.

Remark 3.6. When this happens, we know that {p ∈ Σ2 : 〈N, ξ〉2(p) = 1} =
{p ∈ Σ2 : ξ(p) = ±N(p)} has empty interior because the distribution 〈ξ〉⊥

on E
3(κ, τ) is not integrable (see [14]).

We begin with the most simple case, that is, the Heisenberg group
Nil3(τ) where κ = 0.

Theorem 3.7. Let ψ : Σ2→Nil3(τ) be a compact two-sided surface of constant
mean curvature H, and let λ1 stand for the first eigenvalue of its Jacobi
operator. Then

(i) λ1 < −2(H2 − τ2);

(ii) λ1 < −4(H2 − τ2) − 8π(g − 1)
Area(Σ)

.

Proof. Since κ = 0, from (3.2) we know that

Ric(N,N) = 2τ2(2〈N, ξ〉2 − 1) ≥ −2τ2,

so that (2.3) directly yields λ1 ≤ −2H2 +2τ2. Moreover, the equality cannot
hold because by the results in [13] we know that there is no totally umbilic
surfaces in Nil3(τ).
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On the other hand, by (3.3) we get

λ1 = −4H2 − 1
Area(Σ)

⎛
⎝α+ 8π(g − 1) − 4τ2

∫

Σ

〈N, ξ〉2
⎞
⎠

≤ −4H2 + 4τ2 − 8π(g − 1)
Area(Σ)

.

If the equality holds then 〈N, ξ〉 ≡ 1 and it is not possible because of Remark
3.6. �

Corollary 3.8. Let ψ : Σ2→Nil3(τ) be a compact two-sided surface of constant
mean curvature H.

(i) There exists no strongly stable CMC surface with H2 ≥ τ2.
(ii) If Σ2 is a strongly stable CMC surface and H2 < τ2, then

Area(Σ) |H2 − τ2| > 2π(g − 1).

Now, let κ be positive, thus, E
3(κ, τ) = S

3
b(κ, τ) is a Berger sphere. For

this homogeneous Riemannian manifold it is very common to consider two
different cases based on the sign of κ − 4τ2 since the obtained results are
quite different.

Theorem 3.9. Let ψ : Σ2→S
3
b(κ, τ) be a compact two-sided surface of constant

mean curvature H, and let λ1 stand for the first eigenvalue of its Jacobi
operator.
(a) If κ− 4τ2 > 0 then

(i) λ1 < −2(H2 + τ2),

(ii) λ1 ≤ −4H2 − κ− 8π(g − 1)
Area(Σ)

and equality holds if and only if Σ2 is

a Hopf torus over a constant curvature closed curve.
(b) If κ− 4τ2 < 0 then

(i) λ1 < −2H2 − κ+ 2τ2,

(ii) λ1 < −4H2 − 2κ+ 4τ2 − 8π(g − 1)
Area(Σ)

.

Proof. (a) The proof of item (i) uses the fact that in this case

Ric(N,N) ≥ 2τ2,

which by (2.3) gives λ1 ≤ −2(H2 + τ2). Besides the equality cannot hold
because of the non-existence of totally umbilic surfaces in the Berger spheres
[13]. On the other hand, since κ− 4τ2 > 0, by (3.3) we get

λ1 ≤ −4H2 − κ− 8π(g − 1)
Area(Σ)

.

If the equality holds then Σ2 has to be a Hopf torus because of 〈N, ξ〉 ≡ 0
and reciprocally, any CMC Hopf torus satisfies the equality as we have seen
before.
(b) In this case,

Ric(N,N) ≥ κ− 2τ2,
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and (2.3) yields λ1 ≤ −2(H2 − τ2) − κ. Again, equality cannot happen since
there exist no totally umbilic surfaces. Since κ− 4τ2 < 0, by (3.3) we have

λ1 ≤ −4H2 − 2κ+ 4τ2 − 8π(g − 1)
Area(Σ)

,

and equality holds if and only α = 0 and 〈N, ξ〉2 ≡ 1 but again it is not
possible. �

The corresponding applications to strongly stable surfaces in the Berger
spheres have no sense because we know by [7] that there exist no such surfaces
in these ambient spaces. Finally, for the case κ < 0 we have the following
result.

Theorem 3.10. Let ψ : Σ2→ ˜Sl(2,R)(κ, τ) be a compact two-sided surface of
constant mean curvature H, and let λ1 stand for the first eigenvalue of its
Jacobi operator. Then

(i) λ1 < −2H2 − κ+ 2τ2,

(ii) λ1 < −4H2 − 2κ+ 4τ2 − 8π(g − 1)
Area(Σ)

.

Proof. Since κ < 0 we get κ− 4τ2 < 0, so the proof is the same that the part
(b) of the above theorem. �

Corollary 3.11. Let ψ : Σ2→ ˜Sl(2,R)(κ, τ) be a compact two-sided surface of
constant mean curvature H.

(i) There exists no strongly stable CMC surface with H2 ≥ τ2 − κ/2.
(ii) If Σ2 is a strongly stable CMC surface and H2 < τ2 − κ/2, then

Area(Σ) |H2 − τ2 + κ/2| > 2π(g − 1).

Note Added in Proof. After submission of this paper, we were informed
by Manzano that he and Pérez and Rodŕıguez have recently proved in [6,
Theorem 2] that if Σ2 is a two-sided, parabolic, complete, strongly stable
surface in E(κ, τ), then either E(κ, τ) = S

2(κ) × R and Σ is a horizon-
tal slice or H2 ≤ −κ/4 and Σ is either a vertical multigraph or a ver-
tical cylinder over a complete curve of geodesic curvature 2H in M

2(κ).
It follows from here, using also [7], that the only strongly stable compact
CMC surfaces in E(κ, τ) are the horizontal slices in S

2(κ) × R. This agrees
with our Corollary 3.2 and clearly improves our Corollaries 3.5, 3.8 and
3.11.
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Universidad de Murcia
Espinardo
30100 Murcia
Spain

e-mail: ljalias@um.es

Miguel A. Meroño

e-mail: mamb@um.es
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