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Abstract. We study oscillation of certain second-order neutral dynamic
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parison criteria are presented that can be used in cases where known
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1. Introduction

This work is concerned with oscillatory behavior of a class of second-order
neutral dynamic equations

(r(t)(x(t) + p(t)x(η(t)))Δ)Δ + q(t)x(g(t)) = 0 (1.1)

on an arbitrary time scale T, where r, p, and q are real-valued positive rd-
continuous functions on T, η, g : T → T are rd-continuous, and limt→∞ η(t) =
limt→∞ g(t) = ∞. The increasing interest in oscillatory properties of solutions
to second-order dynamic equations is motivated by their applications in the
natural sciences and engineering. We refer the reader to [2,4,5,8–16,18–36]
and the references cited therein.

A time scale T is an arbitrary nonempty closed subset of the real num-
bers R. Since we are interested in oscillatory behavior, we assume throughout
this paper that the given time scale T is unbounded above. We assume t0 ∈ T

and it is convenient to assume t0 > 0, and define the time scale interval of
the form [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. On any time scale we define the
forward and backward jump operators by

σ(t) := inf{s ∈ T|s > t} and ρ(t) := sup{s ∈ T|s < t},

where inf ∅ := sup T and sup ∅ := inf T, and ∅ denotes the empty set. A point
t ∈ T is said to be left-dense if ρ(t) = t and t > inf T, right-dense if σ(t) = t
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and t < sup T, left-scattered if ρ(t) < t, and right-scattered if σ(t) > t. The
graininess μ of the time scale is defined by μ(t) := σ(t) − t. For other details
on time scales, we refer the reader to [1,6,7,17].

By a solution of (1.1) we mean a nontrivial real-valued function x ∈
C1

rd[Tx,∞)T, Tx ∈ [t0,∞)T which has the properties that x + p ·x ◦ η and
r(x + p ·x ◦ η)Δ are defined and Δ-differentiable for t ∈ T and satisfies (1.1)
on [Tx,∞)T. The solutions vanishing in some neighbourhood of infinity will
be excluded from our consideration. As usual, a solution x of (1.1) is said
to be oscillatory if it is neither eventually positive nor eventually negative;
otherwise, it is called nonoscillatory. Equation (1.1) is called oscillatory if all
its solutions are oscillatory.

In what follows, we briefly comment on related results that motivated
our study. Agarwal et al. [4], Chen [8], Erbe et al. [10], Han et al. [15], Li et
al. [19], Şahiner [23], Saker [25], Saker et al. [28], Saker and O’Regan [29],
Wu et al. [33], Zhang et al. [34], and Zhang and Wang [36] obtained some
oscillation criteria for (1.1) in the case where

∞∫

t0

Δt

r(t)
= ∞.

However, there are very few results for oscillation of (1.1) under the assump-
tion

∞∫

t0

Δt

r(t)
< ∞. (1.2)

Thereinto, Saker [26] established some oscillation theorems for (1.1) provided
that

0 ≤ p(t) < 1, pΔ(t) ≥ 0, g(t) ≤ η(t) ≤ t, ηΔ(t) ≥ 0, (1.3)

and
∞∫

T

1
r(s)

s∫

T

q(u)(1 − p(u))

∞∫

u

Δt

r(t)
ΔuΔs = ∞, (1.4)

for some T ≥ t0. Assuming (1.2), Thandapani et al. [31] obtained some
sufficient conditions which guarantee that every solution of (1.1) is oscillatory
or tends to zero as t → ∞. Very recently, Li et al. [21] considered (1.1) in the
case T = R,

0 ≤ p(t) ≤ p0 < ∞, and η ◦ g = g ◦ η. (1.5)

The objective of this paper is to derive several new oscillation criteria for
(1.1) under the assumption that (1.2) holds and without requiring restrictive
conditions such as (1.3), (1.4), and (1.5). This paper is organized as follows.
In Sect. 2, we shall establish some oscillation theorems for (1.1). In Sect. 3,
we provide some conclusions to summarize the results obtained.
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2. Main Results

All occurring functional inequalities considered in this section are assumed
to hold eventually, that is, they are satisfied for all t large enough. In what
follows, we use the notation

z(t) := x(t) + p(t)x(η(t)) and R(t) :=

∞∫

t

Δs

r(s)
.

Theorem 2.1. Assume (1.2) and let

η(t) ≤ t, g(t) ≤ σ(t), 0 ≤ p(t) < 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume further that there exist positive real-valued
Δ-differentiable functions v, m such that

v(t)

r(t)
∫ t

t1
Δs
r(s)

− vΔ(t) ≤ 0 (2.1)

for all sufficiently large t1 and
m(t)

r(t)R(t)
+ mΔ(t) ≤ 0, 1 − p(t)

m(η(t))
m(t)

> 0. (2.2)

If the second-order dynamic equations

(ruΔ)Δ(t) + q(t)(1 − p(g(t)))
v(g(t))
vσ(t)

uσ(t) = 0 (2.3)

and

(ruΔ)Δ(t) + q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
uσ(t) = 0 (2.4)

are oscillatory, then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality,
we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈ [t0,∞)T. In view of
(1.1), we obtain

(rzΔ)Δ(t) = −q(t)x(g(t)) < 0 for t ∈ [t0,∞)T. (2.5)

Hence rzΔ is strictly decreasing, and so there exists a t1 ∈ [t0,∞)T such that
zΔ(t) > 0 or zΔ(t) < 0 for t ∈ [t1,∞)T. We consider each of the two cases
separately.

Case 1 Assume zΔ(t) > 0 for t ∈ [t1,∞)T. Then we have

x(t) = z(t) − p(t)x(η(t)) ≥ (1 − p(t))z(t). (2.6)

Hence by (2.5) and (2.6), we get

(rzΔ)Δ(t) ≤ −q(t)(1 − p(g(t)))z(g(t)).

On the other hand, we obtain

z(t) = z(t1) +

t∫

t1

r(s)zΔ(s)
r(s)

Δs ≥
⎛
⎝r(t)

t∫

t1

Δs

r(s)

⎞
⎠ zΔ(t).
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Hence,
(z

v

)Δ

(t) =
zΔ(t)v(t) − z(t)vΔ(t)

v(t)vσ(t)

≤ z(t)
v(t)vσ(t)

(
v(t)

r(t)
∫ t

t1
Δs
r(s)

− vΔ(t)

)
≤ 0,

and thus z/v is nonincreasing. We set

ω(t) :=
r(t)zΔ(t)

z(t)
. (2.7)

Then, we get

ωΔ(t) =
z(t)(rzΔ)Δ(t) − r(t)(zΔ(t))2

z(t)zσ(t)

≤ −q(t)(1 − p(g(t)))
v(g(t))
vσ(t)

− ω2(t)
r(t)

z(t)
zσ(t)

= −q(t)(1 − p(g(t)))
v(g(t))
vσ(t)

− ω2(t)
r(t)

z(t)
z(t) + μ(t)zΔ(t)

.

Thus,

ωΔ(t) + q(t)(1 − p(g(t)))
v(g(t))
vσ(t)

+
ω2(t)

r(t) + μ(t)ω(t)
≤ 0

for all large t. Therefore, we get by results of [9] that Eq. (2.3) is nonoscilla-
tory. This is a contradiction.

Case 2 Assume zΔ(t) < 0 for t ∈ [t1,∞)T. Define the function ω by (2.7).
Then ω(t) < 0 for t ∈ [t1,∞)T. By (2.5), we get

zΔ(s) ≤ r(t)
r(s)

zΔ(t), s ∈ [t,∞)T.

Integrating this from t to l, we have

z(l) ≤ z(t) + r(t)zΔ(t)

l∫

t

Δs

r(s)
, l ∈ [t,∞)T.

Letting l → ∞ in the latter inequality, we get

z(t) + r(t)zΔ(t)R(t) ≥ 0, t ∈ [t1,∞)T.

Thus, we obtain

ω(t) ≥ − 1
R(t)

. (2.8)

It follows from (2.8) that

zΔ(t)
z(t)

≥ − 1
r(t)R(t)

.
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Then, we have
( z

m

)Δ

(t) =
zΔ(t)m(t) − z(t)mΔ(t)

m(t)mσ(t)

≥ − z(t)
m(t)mσ(t)

(
m(t)

r(t)R(t)
+ mΔ(t)

)
≥ 0.

Thus, z/m is nondecreasing and so

x(t) = z(t) − p(t)x(η(t)) ≥ z(t) − p(t)z(η(t))

≥ z(t) − p(t)
m(η(t))
m(t)

z(t) =
(

1 − p(t)
m(η(t))
m(t)

)
z(t).

Differentiating ω and using (2.5), we obtain

ωΔ(t) ≤ −q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
− r(t)(zΔ(t))2

z(t)z(σ(t))

= −q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
− ω2(t)

r(t)
z(t)

z(σ(t))

= −q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
− ω2(t)

r(t)
z(t)

z(t) + μ(t)zΔ(t)

= −q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
− ω2(t)

r(t) + μ(t)ω(t)
.

Since

r(t) + μ(t)ω(t) ≥ r(t)R(t) − μ(t)
R(t)

> 0

and ω satisfies

ωΔ(t) + q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
+

ω2(t)
r(t) + μ(t)ω(t)

≤ 0

for all large t, we get by results of [9] that Eq. (2.4) is nonoscillatory. This
contradiction proves the result. �

With a proof similar to the proof of Theorem 2.1, we can obtain the
following result.

Theorem 2.2. Assume (1.2) and let

η(t) ≤ t, g(t) ≥ σ(t), 0 ≤ p(t) < 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume also that there exist positive real-valued
Δ-differentiable functions v, m such that (2.1) and (2.2) hold for all suf-
ficiently large t1. If the second-order dynamic equations

(ruΔ)Δ(t) + q(t)(1 − p(g(t)))uσ(t) = 0 (2.9)

and

(ruΔ)Δ(t) + q(t)
(

1 − p(g(t))
m(η(g(t)))
m(g(t))

)
m(g(t))
mσ(t)

uσ(t) = 0 (2.10)

are oscillatory, then (1.1) is oscillatory.
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Theorem 2.3. Assume (1.2) and let

η(t) ≥ t, g(t) ≤ σ(t), 0 ≤ p(t) < 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume further that there exists a positive real-valued
Δ-differentiable function v such that

v(t)

r(t)
∫ t

t1
Δs
r(s)

− vΔ(t) ≤ 0, 1 − p(t)
v(η(t))
v(t)

> 0 (2.11)

for all sufficiently large t1. If the second-order dynamic equations

(ruΔ)Δ(t) + q(t)
(

1 − p(g(t))
v(η(g(t)))
v(g(t))

)
v(g(t))
vσ(t)

uσ(t) = 0 (2.12)

and

(ruΔ)Δ(t) + q(t) (1 − p(g(t))) uσ(t) = 0 (2.13)

are oscillatory, then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality,
we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈ [t0,∞)T. In view of
(1.1), we obtain (2.5). Hence, rzΔ is strictly decreasing and so there exists a
t1 ∈ [t0,∞)T such that zΔ(t) > 0, or zΔ(t) < 0 for t ∈ [t1,∞)T.

Case 1 Assume zΔ(t) > 0 for t ∈ [t1,∞)T. With a proof similar to the proof
of case 1 in Theorem 2.1, we see that z/v is nonincreasing. Then, we have

x(t) = z(t) − p(t)x(η(t)) ≥
(

1 − p(t)
v(η(t))
v(t)

)
z(t).

The rest of the proof is similar to that of case 1 in Theorem 2.1.

Case 2 Assume zΔ(t) < 0 for t ∈ [t1,∞)T. We get

x(t) = z(t) − p(t)x(η(t)) ≥ (1 − p(t)) z(t).

The remainder of the proof is similar to that of case 2 in Theorem 2.1. �
With a proof similar to the proof of Theorems 2.1 and 2.3, we have the

following result.

Theorem 2.4. Assume (1.2) and let

η(t) ≥ t, g(t) ≥ σ(t), 0 ≤ p(t) < 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume also that there exist positive real-valued
Δ-differentiable functions v, m such that (2.11) holds for all sufficiently large
t1, and

m(t)
r(t)R(t)

+ mΔ(t) ≤ 0. (2.14)

If the second-order dynamic equations

(ruΔ)Δ(t) + q(t)
(

1 − p(g(t))
v(η(g(t)))
v(g(t))

)
uσ(t) = 0 (2.15)
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and

(ruΔ)Δ(t) + q(t) (1 − p(g(t)))
m(g(t))
mσ(t)

uσ(t) = 0 (2.16)

are oscillatory, then (1.1) is oscillatory.

Now, we shall establish some oscillation results for (1.1) when p(t) > 1.
We let η−1 be the inverse function of η.

Theorem 2.5. Assume (1.2), η is strictly increasing, and let

η(t) ≥ t, η(σ(t)) ≥ g(t), p(t) > 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume further that there exist positive real-valued
Δ-differentiable functions v, m such that (2.1) holds for all sufficiently large
t1, and

m(t)
r(t)R(t)

+ mΔ(t) ≤ 0, 1 − 1
p(η−1(t))

m(η−1(t))
m(t)

> 0. (2.17)

If the second-order dynamic equations

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1 − 1
p(η−1(η−1(g(t))))

)
v(η−1(g(t)))

vσ(t)
uσ(t) (2.18)

and

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1 − 1
p(η−1(η−1(g(t))))

m(η−1(η−1(g(t))))
m(η−1(g(t)))

)
uσ(t) (2.19)

are oscillatory, then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality,
we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈ [t0,∞)T. It follows
from the definition of z (see also [3, (8.6)]) that

x(t) =
1

p(η−1(t))
(
z(η−1(t)) − x(η−1(t))

)

=
z(η−1(t))
p(η−1(t))

− 1
p(η−1(t))

(
z(η−1(η−1(t)))
p(η−1(η−1(t)))

− x(η−1(η−1(t)))
p(η−1(η−1(t)))

)

≥ z(η−1(t))
p(η−1(t))

− 1
p(η−1(t))

z(η−1(η−1(t)))
p(η−1(η−1(t)))

. (2.20)

In view of (1.1), we obtain (2.5). Hence rzΔ is strictly decreasing, and so
there exists a t1 ∈ [t0,∞)T such that zΔ(t) > 0, or zΔ(t) < 0 for t ∈ [t1,∞)T.
We consider each of the two cases separately.

Case 1 Assume zΔ(t) > 0 for t ∈ [t1,∞)T. By virtue of η(t) ≥ t and (2.20),
we see that

x(t) ≥ 1
p(η−1(t))

(
1 − 1

p(η−1(η−1(t)))

)
z(η−1(t)).

1121Vol. 11 (2014)
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Hence by (2.5), we have

(rzΔ)Δ(t) ≤ − q(t)
p(η−1(g(t)))

(
1 − 1

p(η−1(η−1(g(t))))

)
z(η−1(g(t))).

On the other hand, with a proof similar to the proof of case 1 in Theorem
2.1, we find that z/v is nonincreasing. The remainder of the proof is similar
to that of case 1 in Theorem 2.1.

Case 2 Assume zΔ(t) < 0 for t ∈ [t1,∞)T. From the proof of Theorem 2.1,
we obtain that z/m is nondecreasing. It follows from (2.20) that

x(t) ≥ 1
p(η−1(t))

(
1 − 1

p(η−1(η−1(t)))
m(η−1(η−1(t)))

m(η−1(t))

)
z(η−1(t)).

The rest of the proof is similar to that of case 2 in Theorem 2.1. �
With a proof similar to the proof of Theorems 2.1 and 2.5, we establish

the following result.

Theorem 2.6. Assume (1.2), η is strictly increasing, and let

η(t) ≥ t, η(σ(t)) ≤ g(t), p(t) > 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume also that there exist positive real-valued
Δ-differentiable functions v, m such that (2.1) and (2.17) hold for all suffi-
ciently large t1. If the second-order dynamic equations

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

(
1 − 1

p(η−1(η−1(g(t))))

)
uσ(t) (2.21)

and

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1 − m(η−1(η−1(g(t))))
p(η−1(η−1(g(t))))m(η−1(g(t)))

)
m(η−1(g(t)))

mσ(t)
uσ(t) (2.22)

are oscillatory, then (1.1) is oscillatory.

Theorem 2.7. Assume (1.2), η is strictly increasing, and let

η(t) ≤ t, η(σ(t)) ≥ g(t), p(t) > 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume further that there exists a positive real-valued
Δ-differentiable function v such that

v(t)

r(t)
∫ t

t1
Δs
r(s)

− vΔ(t) ≤ 0, 1 − 1
p(η−1(t))

v(η−1(t))
v(t)

> 0 (2.23)

for all sufficiently large t1. If the second-order dynamic equations

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1− v(η−1(η−1(g(t))))
p(η−1(η−1(g(t))))v(η−1(g(t)))

)
v(η−1(g(t)))

vσ(t)
uσ(t) (2.24)
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and

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

(
1 − 1

p(η−1(η−1(g(t))))

)
uσ(t) (2.25)

are oscillatory, then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality,
we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈ [t0,∞)T. It follows
from the definition of z that (2.20) holds. In view of (1.1), we obtain (2.5).
Hence rzΔ is strictly decreasing, and so there exists a t1 ∈ [t0,∞)T such that
zΔ(t) > 0, or zΔ(t) < 0 for t ∈ [t1,∞)T.

Case 1 Assume zΔ(t) > 0 for t ∈ [t1,∞)T. With a proof similar to the proof
of case 1 in Theorem 2.1, we see that z/v is nonincreasing. By η(t) ≤ t and
(2.20), we have

x(t) ≥ 1
p(η−1(t))

(
1 − v(η−1(η−1(t)))

p(η−1(η−1(t)))v(η−1(t))

)
z(η−1(t)). (2.26)

The remainder of the proof is similar to that of case 1 in Theorem 2.1.

Case 2 Assume zΔ(t) < 0 for t ∈ [t1,∞)T. It follows from (2.20) that

x(t) ≥ 1
p(η−1(t))

(
1 − 1

p(η−1(η−1(t)))

)
z(η−1(t)). (2.27)

The rest of the proof is similar to that of case 2 in Theorem 2.1. �

Theorem 2.8. Assume (1.2), η is strictly increasing, and let

η(t) ≤ t, η(σ(t)) ≤ g(t), p(t) > 1, r(t)R(t) − μ(t) > 0

for all t ∈ [t0,∞)T. Assume also that there exist positive real-valued
Δ-differentiable functions v, m such that (2.14) and (2.23) hold for all suf-
ficiently large t1. If the second-order dynamic equations

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1 − v(η−1(η−1(g(t))))
p(η−1(η−1(g(t))))v(η−1(g(t)))

)
uσ(t) (2.28)

and

0 = (ruΔ)Δ(t) +
q(t)

p(η−1(g(t)))

×
(

1 − 1
p(η−1(η−1(g(t))))

)
m(η−1(g(t)))

mσ(t)
uσ(t) = 0 (2.29)

are oscillatory, then (1.1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality,
we assume x(t) > 0, x(η(t)) > 0, and x(g(t)) > 0 for t ∈ [t0,∞)T. It follows
from the definition of z that (2.20) holds. In view of (1.1), we obtain (2.5).
Hence rzΔ is strictly decreasing, and so there exists a t1 ∈ [t0,∞)T such that
zΔ(t) > 0, or zΔ(t) < 0 for t ∈ [t1,∞)T.
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Case 1 Assume zΔ(t) > 0 for t ∈ [t1,∞)T. With a proof similar to the proof
of case 1 in Theorem 2.1, we find that z/v is nonincreasing. From η(t) ≤ t
and (2.20), we see that (2.26) holds. The remainder of the proof is similar to
that of case 1 in Theorem 2.1.

Case 2 Assume zΔ(t) < 0 for t ∈ [t1,∞)T. From the proof of Theorem 2.1,
we obtain that z/m is nondecreasing. It follows from (2.20) that (2.27) holds.
The rest of the proof is similar to that of case 2 in Theorem 2.1. �

Remark 2.9. All our conclusions can be easily extended to a nonlinear second-
order neutral dynamic equation

(
r(t)(x(t) + p(t)x(η(t)))Δ

)Δ
+ q(t)f(x(g(t))) = 0. (2.30)

Assuming additional condition

f(y)
y

≥ k > 0 for y 
= 0 and some constant k,

the reader can verify that the results obtained in this paper hold for (2.30),
provided that we replace in the assumptions of our achievements the function
q by kq.

3. Conclusions

(i) There are many results on oscillation of equations of the form

(auΔ)Δ(t) + b(t)uσ(t) = 0, (3.1)

where t ∈ [t0,∞)T, a(t) > 0, b(t) > 0, and
∫∞

t0
Δt
a(t) < ∞; see, for

example, [13,14,16,22,30]. In particular, Hassan [16] used a generalized
Riccati transformation to obtain some Kamenev-type oscillation criteria
for (3.1), and Řehák [22] established several Hille–Nehari theorems for
oscillation of (3.1). Hence, one can obtain some classes of corollaries
from Theorem 2.1–Theorem 2.8. The details are left to the reader.

(ii) One can get some criteria for (1.1) by choosing v and m, e.g., let v(t) =∫ t

t1
Δs
r(s) and m(t) = R(t). The details are left to the reader.

(iii) We stress that the study of oscillatory properties of Eq. (1.1) in the case
(1.2) brings additional difficulties. In particular, to deal with the case
where zΔ < 0 (which is simply eliminated if

∫∞
t0

Δt
r(t) = ∞), we have

to impose additional assumptions on p. Since the sign of the derivative
zΔ is not known, our theorems for oscillation of (1.1) include a pair of
assumptions, cf. for example, (2.3) and (2.4). On the other hand, we
point out that, contrary to [21,26], we do not need conditions (1.3),
(1.4), and (1.5) in our oscillation criteria which, in some sense, is a
significant improvement compared to the results in the cited papers.
However, this improvement has been achieved at the cost of imposing
additional conditions on p.
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