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Abstract. We study the eigenstructure of a one-parameter class of opera-
tors Uf of Bernstein—Durrmeyer type that preserve linear functions and
constitute a link between the so-called genuine Bernstein—Durrmeyer
operators U, and the classical Bernstein operators B,. In particular,
for p — oo (respectively, o = 1) we recapture results well-known in the
literature, concerning the eigenstructure of B, (respectively, U,). The
last section is devoted to applications involving the iterates of Uf2.
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1. Introduction

Denote by C0, 1] the space of continuous, real-valued functions on [0, 1] and
by II,, the space of polynomials of degree at most n € Ny :={0,1,2...}.

Definition 1.1. Let o > 0 and n € Ny, n > 1. Define the operator U2: C[0, 1] —
I, by

Ugf) Z pnk: )

ko—1 _ \(n—k)p—1
‘Z thilg gy 0
+£(0 )(1*@ + f(1)a", (1.1)

f e Clo,1],z € [0,1] and B(-,-) is Euler’s Beta function. The fundamental
functions p, ; are defined by

pn,k(:r):(Z)xk(l—m)"_k, 0<k<n, kneNy zel0,1].

Y Birkhauser
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For p =1 and f € C0,1], we obtain

Uﬂﬁ@:Uﬂﬁ@:Owﬂ /f Yonsnr(£)dt | pus(a)

+(1—$) f( )+$"f( ) (1.2)

where U, are the “genuine” Bernstein-Durrmeyer operators (see [9]), while
for o — oo, for each f € C[0,1] the sequence UZ(f, ) converges uniformly to
the Bernstein polynomial

}jf( )%m 7). (1.3)

The Ug were introduced in [10] by Paltanea and further investigated in [7]
and [8], where also the latter convergence was shown. In the present article
the eigenstructure of U2 will be investigated. We show that the eigenstructure
of Ug is similar to that of the classical Bernstein operators, described in [4],
and covers it for o — oco. Moreover, for o = 1 we recapture and extend the
known results concerning the eigenstructure of U,,. In the last section we
investigate the iterates of UZ.

2. The Images of the Monomials

In what follows we will use the rising factorial function defined by

()j=z(x+1)---(z+5—-1), j=12,..., (v)o:=1
Basic properties of the functionals Fi,k: C[0,1] — R are the following
F o (em) = Ezg ., 0<k<n,andey,(z)=2",z¢€[0,1], form > 0.
" (2.1)
This implies
Ug(eo) =0, Ug(er) =er. (2.2)

More generally we have

Theorem 2.1. The images of the monomials under U2 can be written as

Ul(em) = ;T)l (no)' By (e)) (2.3)
where the coefficients cgm), 7=0,1,...,m, are given by the elementary sym-
metric sums:

cgm) =1, cgfl”) =0,
m(m —1)

cgm) — 1+2+...+(m_1):#’
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A =1.241-34 - +1-(m—1) 4234+ (m—2)- (m—1),

Proof.

Ul(em,x) = Z F x(em)Pn, k()

Z ko(ko+1)--- (ko +m — 1)pn k()

(”Q)m —
(n@)m Z[Cém)(k.g)m +c1m)(k9)m 1 "+C£;n21kg]pn,k(m)
1 m n m . B
= {C(() )Qm Zk’mpn,k(x)'f'cg )QWL 1 Zk'm 1pn,k(x)+
(ne)m k=0 k=0
n
+C£r7Ln—)19 Z k’pn,k(l')}
— 1 (m) m_m k™ (m) m—1_m—1
- o {5 s
km— 1 m n k
x Z m— Cm—1Pn, k(x) '<m >1'I‘LQ Z pn,k(z)}
" k=0""
1 (m) nm (m) m—1_m—1
= o) g Bn(em,z) +ci™ o™ '™ B (em—1,T) + - -
m
em >11’LQB el,x)}
1 o)
T (no)' Bn(er, ).
(nQ)ml —~ Cm—1 .

The operator U2 reproduces linear polynomials, which are therefore
eigenfunctions corresponding to the eigenvalue 1.

3. Diagonalisation and Description of the Eigenfunctions

We shall use the Stirling numbers of second kind S(k, j) defined by
k
=Y S(kja(e—1)---(z—j+1).
=0
The following identity holds (see [3], Theorem A [1b], p. 204):

j12<> 1774k 0<j <k (3.1)

Consider the eigenfunction equation

ugpl’) = A"l (3.2)
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with respect to the basis of monomials {eg,e1,...,e,}. Since U2 is degree
reducing, we have to solve an upper triangular system. This will be done in
the proof of the next theorem.

Theorem 3.1. The operator UZ can be represented in diagonal form
Uef = ZAQ W (f),  for all f € C[0, 1, (3.3)

with \™ k and pg k its eigenvalues and eigenfunctions and u the dual func-

(7)

tionals to Dy, The eigenvalues are given by

£\ (n-=1)n-2)---(n-k+1) oFn!

= = 34
or =0 (ng+1)(ng+2)~-~(n,g+k—1) o=t 3
and they satisfy
=200 =20 > a0 > Al > s Al s o
The eigenfunction for )\(n) 18 a polynomial of degree k given by
u k
Z (G, k,n)a? = a* — 590’“_1 + lower order terms, (3.5)
=0
where the coeﬁciczents can be computed using the recurrence formula
(k,k,n) =1,
c?(k—1,kn) = _k
b ) 27
. (no)k
c(k—j,k,n):= —— -
(=) = it — k1), — (e k)]
j—lkzce an) (i) o
xz Z e Sk =), i=2,... k.
i=0 l=k—j -
(3.6)

Proof. The eigenvalues of U2 are determined from the upper triangular sys-
tem of equations (3.2). They can be found on the diagonal and are equal to
the coefficients of the terms with the highest degree of U2(e,,). As we have
seen before, for 0 < m < n, we can write

{ )mzkmpk +Cl lekm lpnk
m 1Qkank }

Ul(em,x) = (n0)m

and because

Z E™ pr e ( n(n—1)(n—2)---(n —m+1)z™ + terms of lower degree
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the eigenvalues are given by

1
A — (i —1)(n—2)---(n—m+1
= gyl = D=2 )
_ o™ - nl
(no)m(n —m)!’
The linear polynomials are eigenfunctions for the eigenvalues )‘S?O) = )‘5)7,11) =1,

for which pg’g( )=1 p(n)( ) = x — & are clearly a basis which satisfies (3.5)
and (3.6).

It remains to consider the 1-dimensional A,
of exact degree k = 2,3, .

We shall plug into (2 3)

(n )—elgenspace of polynomials

n(em, T Za (J,m,n)x (3.7)

where
a(j,m,n)=m, 0<j<m<n, (3.8)
as it was considered in [4] and we obtain
Ul(em, ) 3 N z (no) lzl:a (r,l,n)z". (3.9)
r=0
Express the eigenfunctlonb in the form
P (@) Zc" (s,k,n)z°, c2(k,k,n) = 1. (3.10)

Then the eigenfunction equation (3.2) gives

k k 1
s, k,n
)\(;,2 E c(ryk,n)a” = E 7( 2 ) gs)l (no) g (r,l,n)x

r=0 s=0 ( =0
k
ELLL) S T
= cy lng a(r,l,n)x
s=0 (’I’LQ r=0 l=r
k (s, k n)
=ZZ ch ((ne)'a(r, 1, n)a"
r=0 s=r l=r

Equating the coefficients of 2" above gives for 0 < r < k:

k
(n) _ CQ(Sa k’ Tl) (s)
Aprel(rkym) = 3 — = S, (neYalr,L,n).

s=r l=r
Into this we make first the substitution s = k — ¢ and subsequently r = k — j
to obtain
J . k—1
(n) . cg(k. ) kv Tl) (k—1) .
Aok = k,n) = ; B lzk:j cuii(no)a(k — j,1,m).
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which, for k > 1, can be solved for ¢¢(k — j, k,n) to give

1

k=j = c@(k zkn)
C(k — j,k,n) = A(")—(ng)ak—',k—',n>
(k =3, k,n) <g,k (ng)k,j( gk —j,n) 2. (no)y

< > et o) alk - j,1n)
=k

k=3 S(k—j,k—j)~n!>_

k—j nF=Ii(n—k+ j)!

- ) k—i )
c@(k—1i,k,n) (k—i) ; Sk = j)n!
X 4 . 'ckfifl(ng) TL%TL*]@#’])'

B (Q_k_j [(ng)k(i —k)! (719)k—j(71 k +j)!])_1
X
i=0

c(k—ik,n) = i 4 SUk—7])
S A Ch_;i 10—

(n0)k—i l_zk:j PR (= k)
_ (n —k + 5)!(no)y,

"o (n—k+1); — (ne+k—j);]

Xj 1cﬁ’( —@kn «— o= 1 Sk —j)

k—i—1Q T R
— _ Nl (n—k+3j)!

From here we get easily the Egs. (3.6). In particular, for j = 1 we get
Cgk) + Cék)gk(k;l) _ Kk
(n—k+1)o—(no+k—1) 2

(k—=1,kn)= (3.11)

because cék) =1and cgk) =1424--+(k—-1) = @ and S(k—1,k—1) =1,
S(k,k —1) = 22D, O

Theorem 3.2. The dual functional /‘(97,112 € span{f — Fij(f);j =0,1,...,n}
defined on C[0,1] satisfies
uénlz(pé 7)) =05 1,k=0,1,...,n,

and is given by
n
,ugf) =ZU9 j, k,n)F (f), k=0,1,...,n, (3.12)
7=0

where the (n+1) X (n—i— ) matriz of coefficients V := [v(j, k,n)|7 . _, is the

inverse of P := [Ff,j D n7, N izo-

Proof. The biorthogonality condition ,uénlz (pg?) = 0, follows easily from

(3.2) and (3.3). Using (3.12) it can be written as
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ST EL 08 ve G k) = ik,

=0
iie., PV =1 andsoV =P~ O

Theorem 3.3. The eigenfunctions and the dual functionals satisfy the equa-
tions

P (@) = (=) (1 — ), u)(f) = (~)*(foR), (3.13)

where R(x) = 1 — x is reflection about the point % The eigenfunctions of
degree >2 can be factored as follows:

p\a.(x) = z(z — V)g(x — 1/2),

» ‘ (3.14)
Pp2ji1 = z(x—1/2)(x — V)g(z —1/2), 7=1,2,....
In each case q is an even momnic polynomial.
Proof. From (1.1) it follows that
US(foR)=(USf)oR, (3.15)

so that
ULy o R) = (Ugpy) o R = X))} o ).
and p( "o Ris a )\(Q g—elgenfunctlon For k = 0,1 the property (3.13) of p(n)

(n )

is 0bv1ous and for k > 2 the eigenfunction p, ; o R must be a scalar multiple

of p (the eigenspace is 1-dimensional). By equating the coefficients of x*
ylelds
Pl = (~1*pgl o R. (3.16)

So pgflz is even (odd) about the point 1/2 when k is even (odd). In particular,

the zeros of p(;f,z are symmetric about 1/2. Moreover, (3.15) implies that

)\Eflzpénlzuénlz (.f ) _ )\ ( ) ° R)u(gnlz(f)
- Ae’ -1 Fpyng (f),

and equating the coefficients of p( ")

() = (1) g (f o R). (3.17)
Taking j = k in (3.6) and using S(m,0) = 0,m > 1, we obtain ¢?(0, k,n) = 0,
k> 2.

Thus, for k > 2, x = 0 is a zero of p( ") and by the symmetry property so
is x = 1. Further, when k is odd the symmetry property of the zeros implies

in the preceding relation we get

that z = 1/2 must be a zero of p , which proves (3.14). This completes the
proof. O
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4. Asymptotics of the Eigenfunctions

We show that for each o > 0 and k > 0 the sequence (p( ]3;)n>1 is convergent.

Theorem 4.1. For 0 < j <k,

lim_c2(j, k,n) = ¢*(j, k), (4.1)
where
k—j .
N 1 (k+1—i)(k—1i )
C(0.1) = —5. ¢ e GO 4
i=1

the empty product is interpreted as 1. This means that pénlz converges uni-

formly on [0,1] to p; € Iy as n — oo, where

k
pi(x) ::gc*(j7k) —xk—gxk 1—|—ka_2—-~ . (4.3)

Proof. Noticing that pgfg () =1= pf)(x),pgfl) () =z —1/2 = pi(x), it is
sufficient to prove the result for k£ > 2. This will be done using induction
on j in order to prove that lim,_ ., c?(k — j,k,n) exists and is given by
(4.2). Since ¢?(k,k,n) = 1, this result holds for j = 0. Suppose it is true for
lim,, o ®(k —i,k,n),i=0,...,5 — 1, where 0 < j < k. Since for all j > 0,

i . _ i(2k—4—1) ._
o" J[gj(n—k+1)j—(ng+k'fj)j]:fgk 1(g+1)%n3 1

+ lower order powers of n,

taking the limit as n — oo on both sides of the last equality in (3.6) and
using the induction hypothesis gives

k
. . 0
lim c?(k—j,k,n) =— . , _
n—o00 oF1(o+ 1)J(2k*2J*1) oh—i+1

etk —j+ 1, k)T ki (k — j k — §)
t (k= j+1, k)T b= g (h—j 41, k—j)].

But ¢ff 7t = 1, = 12 (k) = Sk )k - g+ 1),
S5~k —3) = Lond 05—+ 1k —5) = (4) =}k )k~ +1)
so we get
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. . 20
1 ok —j4,k =
nl_)rréoc( j,k,n) (0+1)pF—i+l (j—2k+1)

(k .])(]; J+ )C*(k—j+1,k)Qk_j+l

_ 208 e+ (k= )k -5 +1) .

+

k—j+1,k
20" (0 + 1)j(j — 2k + 1) *(k—j+1k)
(k=) (k—j+1) .

= (h—j+1k
3G —2k+1) c(k=j+1k)

k== D)y k=) (k—i+1)
JG—2k+1) L i -2k +1)

li[ (k—i+1)

bl z—2k:+1) ’

which completes the induction. O

5. The Structure of the Dual Functionals

In the first part of this section we provide a recurrence relation for calculating
the coefficients v2(j, k,n) of the dual functional ,uénlz, ie.,

Z’()Qj,k‘n (f), k=0,1,...,n.
7=0

Let n > 1 be fixed. For each j € {0,1,...,n} there exists a unique polynomial

lénj) of degree < n satisfying

Fey =4y, (5.1)

)

Its coefficients can be determined from a system of linear equations with non-
zero determinant. Indeed, consider the positive linear functionals F7 ;: C[0,1]

— R, o > 0, and search the polynomials l("-) € II,, of the form l(”? =
cjoeo + ¢jier + -+ - + ¢jnen so that Ff (l(n)) = §;;. For a fixed j we have
Fﬁl(lénj)) = CjoF,f,i(eo) + clef’i( 1)+ + anFn’i(en) = 0§, ; which can be
written as a system of linear equations:

cjoly oeo) + i by gler) + -+ + cjnFyg g(en) = o,

cjoly 1(eo) + i By y(en) + - +ejn g 1 (en) = 01

CJOF n(€0) +ciiFg (e1) + -+ kg, (en) = dn .
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We claim that

Fﬁ,o(eo) Frf,O(el) Fso( n)
A= Ffz),l(eo) F5,1(61) F:fl( n) £0.
F’rg,n(eo) Frg,n(el) T Frg,n(en)
We have seen that F, ;(en) = ((:Li’))m , so the determinant becomes
L (02): (00)s (00)n
(ne)r  (ne)2 (n@)n
L Oon (e (o
A= (no)1  (no)2 (no)n
; o (o) (n0)n
(ne)r (o) (n@)n
Elementary manipulations of the determinant yield that
1 0.0 (0-0)? (00"
Ao 1 1o (0 ()"
(no)1(no)s - - - (no) S e
1L ne (no)* - (no"
1 . .
= Il G-e—i-o#0,

(no)1(ne)z -~ (no)n ;=

which means that ZSLJ) is uniquely determined. We have by (1.1),
UStg)) = Y F il on s

and by (3.3) and (3.12),

Uty Z%’?ﬁpﬁf ve(i, k) FE(157).
1=0

By using (5.1) and (3.10) we get successively

Pnj(@) = Z%MH%%Wjﬂmu

k=0
n k
(T.L>xj(1—:r) ZA”ZCQSknazU(g,k n),
J k=0 ¢ 5=0
n—j n n
(?)xﬂ (—1)i(n ]) ZZA(R)CQ s, L,n)v(4,l,n)x®
=0 s=0 l=s

MJOM

’n7
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For i = n — j — k, equating the coefficients of "% we get

(—1nik (") (" B ”) = 3 Aee(n — k,Ln)oe(j, 1)
J l=n—k 7
Setting now s =n — [, we get

) k—1
(—1)n_j_k (?) (n ; J) = Z Aé?,{fsvg(j, n—s,n)c(n—k,n—s,n)

s=0

-|—)\( kU °(j,n — k,n).
For k = 0 this reduces to
Ug(j7n7n) = (_1)n_j%7 (53)

while for k =1,...,n we get

(=D)" I (n0)n—k

v? n—kn)= .
(.7 ) g”fk]'(’n 7] _ k)'
_ n@n k 0e(i _ 0 ok B
Z nQn < (]7’”‘ S,TZ)C (n ,n S,?’l).
(5.4)

Now (5.3) and (5.4) constitute the required recurrence.
In the sequel we shall study the limits of the dual functionals, acting

on polynomials, as n — oo. Consider the linear functionals pj: C[0,1] — R
defined by

FO+r@) .

po(f) = 5 pi(f) = f(1)—f(0),
1
1/2k
pe(f) =5 (- ) 0)+f(1) —k [ f(z 2$—1)d k=2,
() )=+ [ s

where (P](1,1)<x))j20 are the Jacobi polynomials, orthogonal with respect to
the weight (1 —¢)(1 4 t) on the interval [—1,1].

These functionals were introduced in [4], where it was proved that they
are limits of the dual functionals in the setting of Bernstein operators. We
shall obtain a similar result for the operators UZ.

Theorem 5.1. Let k > 0 and o > 0 be fixed. For every f € 1I,

lim w3 (f) = i (f). (5.5)

n—oo

Proof. First we prove that for each j > 0,

lim p$(f) = pi(f), f el (5.6)

n—oo' &7
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So, let f € II,;. Because Ug2 is degree reducing and lim,, .. U2f = f (see
[7,8]), we have

UL = Ejﬁﬁﬁuﬁ — /= E:mm ), n— oo

The last equality is a consequence of (4.18) in [4]. Since the above convergence
takes place in the finite-dimensional space I, we may consider the coefficients
of 27 in order to obtain

AU () — s (f).

Together with )\Sf} — 1, this leads to (5.6).

We shall prove by induction on r > 0 that
lim ) (f) = pi(f), forallk >0, f € My, (5.7)

o,k

and this will complete the proof of (5.5).
For r = 0, (5.7) is a consequence of (5.6). Suppose that (5.7) is also true
for 1,...,r —1, and let f € llx4,. As before, we have

k+r k+r

Ugs = Z A pougd () = f = sz wi(f
By considering the coefficients of 2* as n — co we get

g (1) Zké”liﬂcg bk i mul ()

— () + Z (K, k4 i) pi i (f)- (5.8)

i=1
We know that for alli =1,...,r,

)\(”)

) = 1Pk, k+i,m) — ¢ (ke + ).

By the induction hypothesis, u(gtl,zﬂ(f) — pp i (f), i =1,...,7. Now (5.8)
implies

AR () = i (),

and so u( )(f) — w}(f). This concludes the induction. O

6. Applications to Iterates of U2
By Theorem 3.1,

Ue)if = 2<A<">>pg”,2u;”,2<f> fec1,i=12.... (6.1
k=0
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The linear function By (f;x) = f(0)(1 — )+ f(1)z is the uniform limit of the
overiterated operator images (U2)'f, as i — oo according to Remark 3.2 in
[8]. More generally we have

Corollary 6.1. Suppose (g;);>1 is a sequence of polynomials with g;(0) = 0
and

lim gj()\énlz) =G(o,k,n), k=0,1,...,n.
J—00 ’
Then

Jim (g;(U2))f = }:G@knmﬁéﬁﬁ) (6.2)
k=0

the convergence being uniform.

Proof. By using (6.1) we get

(9;(U2)f = }j% AP (f), Fecoal, j=12.... (63)
k=0
Letting j — oo yields (6.2). O

Lemma 6.2. Suppose that j, is a sequence of positive integers with

Tim. ‘% =t, (6.4)
then
nlLII;O(A(n )In 67@(%+1)t, for allk, 0<t < oo, (6.5)
and
lim AN =0, forallk >2, t= (6.6)
Proof. Let

Yn = (/\E:le )jn ot

n n
() (Do (1)) e
n 2 0 n

lim (AU))7» =" = lim y,, = 1. (6.7)

n—oo ’ n—oo

Therefore
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But
1 —nt E—1 —nt
- {1 2) " (1452
1 nt kE—1 nt
)
n n
e e taal (6.8)
Combining (6.7) and (6.8) gives (6.5). For t — oo we obtain (6.6). O

Corollary 6.3. Suppose that
lim Jn _ t.
n—oo M

Then for 0 <t < oo,

S

. . _k(k=1) 1 -
lim U2y f = ez G (f)

n—oo

=
i
o

MGG (), for allf €T, (69)

St

i
(=)

and fort = oo

1
lim (UZY"f=Bif =) piui(f), forall f €11 (6.10)
k=0

The convergence in (6.9) and (6.10) is uniform.

Proof. Suppose that f € Il,. Since U2 is degree reducing, (6.1) gives
2 = OGP ) 0z

Take the limit as n — oo in the above and use Lemma 6.2, Theorem 4.1
and Theorem 5.1 to obtain (6.10) and the first equality in (6.9). The second
equality in (6.9) follows from (4.19) in [4]. O

Remark 6.4. (1) For o — oo, each result of this article has a corresponding
one in [4], concerning the Bernstein operators B,,.

(2) For o = 1 we cover some results concerning the eigenstructure of the
genuine Bernstein—Durrmeyer operators, scattered in the literature; see,
e.g., [5,6,9] and the references therein.

(3) The Markov semigroup approximated by suitable iterates of B, was
deeply investigated; see [1, Section 6], [2,4,11,12], and the references
therein. The semigroup approximated by iterates of U,, was studied in
[5,6]. The uniform asymptotic relation given in Theorem 5.2 in [§]

lim n(U2F(r) ~ f() = & (- a)f" (), f € 0?0,1),

n—oo 2Q

opens the way for studying the Markov semigroup approximated by

iterates of U2, but this will be the subject of a forthcoming paper.
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