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Properties (t) and (gt) for Bounded Linear
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Abstract. In this paper we introduce and study the properties (t) and
(gt), which extend properties (w) and (gw). We establish for a bounded
linear operator defined on a Banach space several sufficient and nec-
essary conditions for which property (t) and property (gt) hold. We
also relate these properties with Weyl’s type theorems. We show that
if T is a bounded linear operator acting on a Banach space X , then
property (gt) holds for T if and only if property (gw) holds for T and
σ(T ) = σa(T ). Analogously, we show that property (t) holds for T if
and only if property (w) holds for T and σ(T ) = σa(T ). We also study
the properties (t) and (gt) for the operators satisfying the single valued
extension property. Moreover, these properties are also studied in the
framework of polaroid operators.
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1. Introduction and Preliminary

Throughout this paper, X denotes an infinite-dimensional complex Banach
space, L (X ) the algebra of all bounded linear operators on X . For T ∈
L (X ), let T ∗, ker(T ), �(T ), σ(T ), σa(T ) and σs(T ) denote the adjoint,
the null space, the range, the spectrum, the approximate point spectrum and
the surjectivity spectrum of T respectively. Let α(T ) and β(T ) be the nul-
lity and the deficiency of T defined by α(T ) = dim ker(T ) and β(T ) =
co dim �(T). Let SF+(X ) = {T ∈ L (X ) : α(T ) < ∞ and �(T ) is closed}
and SF−(X ) = {T ∈ L (X ) : β(T ) < ∞} denote the semigroup of upper
semi-Fredholm and lower semi-Fredholm operators on X respectively. An
operator T ∈ L (X ) is said to be semi-Fredholm if T is either upper semi-
Fredholm or lower semi-Fredholm. If both α(T ) and β(T ) are finite, then T
is called Fredholm operator. If T is semi-Fredholm operator then index of T
is defined by ind (T ) = α(T ) − β(T ).

A bounded linear operator T acting on a Banach space X is Weyl
if it is Fredholm of index zero and Browder if T is Fredholm of finite as-
cent and descent. Let C denote the set of complex numbers and let σ(T )
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denote the spectrum of T . The Weyl spectrum σw(T ) and Browder spec-
trum σb(T ) of T are defined by σw(T ) = {λ ∈ C : T − λ is not Weyl} and
σb(T ) = {λ ∈ C : T − λ is not Browder } respectively. For T ∈ L (X ),
SF−

+(X ) = {T ∈ SF+(X ) : ind(T ) ≤ 0}. Then the upper Weyl spec-
trum of T is defined by σSF−

+
(T ) = {λ ∈ C : T − λ /∈ SF−

+(X )}. Let
Δ(T ) = σ(T )\σw(T ) and Δa(T ) = σa(T )\σSF−

+
(T ). Following Coburn [18],

we say that Weyl’s theorem holds for T ∈ L (X ) if Δ(T ) = E0(T ), where
E0(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λ) < ∞}. Here and elsewhere in this
paper, for K ⊂ C, isoK is the set of isolated points of K.

According to Rakočević [24], an operator T ∈ L (X ) is said to satisfy
a-Weyl’s theorem if σa(T )\σSF−

+
(T ) = E0

a(T ), where

E0
a(T ) = {λ ∈ iso σa(T ) : 0 < α(T − λ) < ∞}.

It is known from [24] that an operator satisfying a- Weyl’s theorem sat-
isfies Weyl’s theorem, but the converse does not hold in general.

For T ∈ L (X ) and a non negative integer n define T[n] to be the re-
striction T to �(Tn) viewed as a map from �(Tn) to �(Tn)(in particular
T[0] = T ). If for some integer n the range space �(Tn) is closed and T[n]

is an upper (resp., lower) semi-Fredholm operator, then T is called upper (
resp., lower) semi-B-Fredholm operator. In this case index of T is defined
as the index of semi-B-Fredholm operator T[n]. Moreover, if T[n] is a Fred-
holm operator then T is called a B-Fredholm operator. An operator T is
said to be B-Weyl operator if it is a B-Fredholm operator of index zero. Let
σBW(T ) = {λ ∈ C : T − λ is not B-Weyl}.

Recall that the ascent, a(T ), of an operator T ∈ L (X ) is the smallest
non negative integer p such that ker(T p) = ker(T p+1) and if such integer does
not exist we put a(T ) = ∞. Analogously the descent, des(T ), of an operator
T ∈ L (X ) is the smallest non negative integer q such that �(T q) = �(T q+1)
and if such integer does not exist we put d(T ) = ∞.

According to Berkani [13], an operator T ∈ L (X ) is said to be Drazin
invertible if it has finite ascent and descent. The Drazin spectrum of T is
defined by σD(T ) = {λ ∈ C : T − λ is not Drazin invertible}. Define the
set LD(X ) = {T ∈ L (X ) : a(T) < ∞ and �(Ta(T)+1) is closed} and
σLD(T ) = {λ ∈ C : T −λ /∈ LD(X )}. Following [14], an operator T ∈ L (X )
is said to be left Drazin invertible if T ∈ LD(X ). We say that λ ∈ σa(T ) is
a left pole of T if T − λ ∈ LD(X ), and that λ ∈ σa(T ) is a left pole of T
of finite rank if λ if λ is a left pole of T and α(T − λ) < ∞ [14, Definition
2.6]. Let πa(T ) denotes the set of all left poles of T and let π0

a(T ) denotes
the set of all left poles of finite rank. It follows from [14, Theorem 2.8] that
if T ∈ L (X ) is left Drazin invertible, then T is upper semi-B-Fredholm of
index less than or equal to 0.

We say that Browder’s theorem holds for T ∈ L (X ) if Δ(T ) = π0(T ),
where π0(T ) is the set of all poles of T of finite rank and that a-Browder’s
theorem holds for T if Δa(T ) = π0

a(T ). Let Δg(T ) = σ(T )\σBW(T ). Fol-
lowing [13], we say that generalized Weyl’s theorem holds for T ∈ L (X ) if
Δg(T ) = E(T ), E(T ) is the set of all eigenvalues of T which are isolated in
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σ(T ), and that generalized Browder’s theorem holds for T if Δg(T ) = π(T ),
where π(T ) is the set of poles of T . It is proved in [10, Theorem 2.1] that
generalized Browder’s theorem is equivalent to Browder’s theorem.

Let SBF−
+(X ) denote the class of all upper semi-B-Fredholm opera-

tors such that ind(T ) ≤ 0. The upper B-Weyl spectrum σSBF−
+
(T ) of T

is defined by σSBF−
+
(T ) = {λ ∈ C : T − λ /∈ SBF−

+(X)}. Let Δg
a(T ) =

σa(T )\σSBF−
+
(T ). We say that T ∈ L (X ) satisfies generalized a-Weyl’s the-

orem, if σa(T )\σSBF−
+
(T ) = Ea(T ), where Ea(T ) is the set of all eigenvalues

of T which are isolated in σa(T ) and that T ∈ L (X ) satisfies generalized
a-Browder’s theorem if Δg

a(T ) = πa(T ) [14, Definition 2.13]. It is proved
in [10, Theorem 2.2] that generalized a-Browder’s theorem is equivalent to
a-Browder’s theorem.

Following [23], we say that T ∈ L (X ) satisfies property (w) if Δa(T ) =
E0(T ). The property (w) has been studied in [1,5,23]. In Theorem 2.8 of [5],
it is shown that property (w) implies Weyl’s theorem, but the converse
is not true in general. We say that T ∈ L (X ) satisfies property (gw) if
Δg

a(T ) = E(T ). Property (gw) has been introduced and studied in [11].
Property (gw) extends property (w) to the context of B-Fredholm theory,
and it is proved in [11] that an operator possessing property (gw) satisfies
property (w) but the converse is not true in general. According to [16], an
operator T ∈ L (X ) is said to possess property (gb) if Δg

a(T ) = π(T ), and
is said to possess property (b) if Δa(T ) = π0(T ). It is shown in Theorem 2.3
of [16] that an operator possessing property (gb) satisfies property (b) but the
converse is not true in general. Following [8], we say an operator T ∈ L (X )
is said to be satisfies property (R) if π0

a(T ) = E0(T ). In Theorem 2.4 of [8], it
is shown that T satisfies property (w) if and only if T satisfies a-Browder’s
theorem and T satisfies property (R).

The single valued extension property plays an important role in local
spectral theory, see the recent monograph of Laursen and Neumann [21] and
Aiena [1]. In this article we shall consider the following local version of this
property, which has been studied in recent papers, [5,20] and previously by
Finch [19]. Following [19] we say that T ∈ L (X ) has the single-valued ex-
tension property (SVEP) at point λ ∈ C if for every open neighborhood Uλ

of λ, the only analytic function f : Uλ −→ X which satisfies the equa-
tion (T − μ)f(μ) = 0 is the constant function f ≡ 0. It is well-known that
T ∈ L (X ) has SVEP at every point of the resolvent ρ(T ) := C\σ(T ). More-
over, from the identity Theorem for analytic function it easily follows that
T ∈ L (X ) has SVEP at every point of the boundary ∂σ(T ) of the spectrum.
In particular, T has SVEP at every isolated point of σ(T ). In [20, Proposition
1.8], Laursen proved that if T is of finite ascent, then T has SVEP.

Theorem 1.1. [2, Theorem 1.3] If T ∈ SF±(X) the following statements are
equivalent:

(i) T has SVEP at λ0;
(ii) a(T − λ0I) < ∞;
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(iii) σa(T ) does not cluster at λ0;
(iv) H0(T − λ0I) is finite dimensional.

By duality we have

Theorem 1.2. If T ∈ SF±(X) the following statements are equivalent:
(i) T ∗ has SVEP at λ0;
(ii) d(T − λ0I) < ∞;
(iii) σs(T ) does not cluster at λ0.

In this paper we shall consider properties which are related to Weyl
type theorem for bounded linear operators T ∈ L (X ), defined on a complex
Banach space X . These properties, that we call property (t), means that
the isolated points of the spectrum σ(T ) of T which are eigenvalues of finite
multiplicity are exactly those points λ of the spectrum for which T − λ is an
upper semi-Fredholm with index less than or equal to 0 (see Definition 2.1)
and we call property (gt), means that the isolated points of the spectrum
σ(T ) of T which are eigenvalues are exactly those points λ of the spectrum
for which T − λ is an upper semi-B-Fredholm with index less than or equal
to 0 (see Definition 2.1). Properties (t) and (gt) are related to a variant of
Weyl type theorems. We shall characterize properties (t) and (gt) in several
ways and we shall also describe the relationships of it with the other variants
of Weyl type theorems. Our main tool is localized version of the SVEP. Also,
we consider the properties (t) and (gt) in the frame of polaroid type operators.

2. Properties (t) and (gt)

Let Δ+(T ) = σ(T )\σSF−
+
(T ) and Δg

+(T ) = σ(T )\σSBF−
+
(T ).

Definition 2.1. Let T ∈ L (X ). We say that T satisfies
(i) property (t) if Δ+(T ) = E0(T ).
(ii) property (gt) if Δg

+(T ) = E(T ).

Theorem 2.2. Let T ∈ L (X ). If T satisfies property (gt), then T satisfies
property (t).

Proof. Suppose that T satisfies property (gt), then Δg
+(T ) = E(T ). If λ ∈

Δ+(T ), then λ ∈ Δg
+(T ) = E(T ). Since λ ∈ isoσ(T ) and T − λ is semi-

Fredholm, then α(T − λ) < ∞. So λ ∈ E0(T ) and Δ+(T ) ⊆ E0(T ). To show
the opposite inclusion, let λ ∈ E0(T ) be arbitrary. Then λ is an eigenvalue
isolated in σ(T ). Since T satisfies property (gt), it follows that λ ∈ Δg

+(T )
and T −λ is a semi-B-Fredholm operator. As α(T −λ) is finite, then it follows
from Lemma 2.2 of [11] that T − λ is semi-Fredholm of index less than or
equal to 0. Hence λ ∈ Δ+(T ). Therefore, Δ+(T ) = E0(T ), i.e., T satisfies
property (t). �

The converse of the Theorem 2.2 is not true in general as shown by the
following example.
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Example 2.3. Let Q be defined for each x = {ξi} ∈ 
1(N) by

Q(ξ1, ξ2, · · · ) = (0, α1ξ2, α2ξ3, · · · , αk−1ξk, · · · ),
where {αi} is a sequence of complex numbers such that 0 < |αi| ≤ 1 and

∞∑

i=1

|αi| < ∞.

Define T on X = 
1(N) ⊕ 
1(N) by T = Q ⊕ 0. Then σ(T ) = σa(T ) =
{0} , E(T ) = {0} , E0(T ) = ∅. It follows from Example 3.12 of [14] that �(Tn)
is not closed for all n ∈ N. This implies that σSF−

+
(T ) = σSBF−

+
(T ) = {0}.

We then have Δg
+(T ) = ∅ �= E(T ) = {0} and Δ+(T ) = E0(T ). Hence T

satisfies property (t), but T does not satisfy property (gt).

Theorem 2.4. Let T ∈ L (X ). Then the following assertions hold.

(i) If T satisfies property (t), then T satisfies property (w).
(ii) If T satisfies property (gt), then T satisfies property (gw).

Proof. (i) Assume that T satisfies property (t), then Δ+(T ) = E0(T ). Let
λ ∈ Δa(T ). Then λ ∈ Δ+(T ) = E0(T ) and so Δa(T ) ⊆ E0(T ). Conversely,
let λ ∈ E0(T ), then since λ ∈ isoσ(T ) and 0 < α(T − λ) < ∞ we know
that T and T ∗ have SVEP at λ. From the equality σ(T )\σSF−

+
(T ) = E0(T )

we see that λ /∈ σSF−
+
(T ) and hence T − λ ∈ SF+(X ). The SVEP for T

and T ∗ at λ by Remark 1.2 of [5] implies that a(T − λ) = d(T − λ) < ∞.
From Theorem 3.4 of [1] we then obtain that α(T − λ) = β(T − λ) < ∞,
so λ ∈ π0(T ) ⊆ π0

a(T ) ⊆ Δa(T ). Therefore, Δa(T ) = E0(T ), i.e., T satisfies
property (w).
(ii) Assume that T satisfies property (gt), then Δg

+(T ) = E(T ). Let λ ∈
Δg

a(T ). Then λ ∈ Δg
+(T ) = E(T ) and so Δg

a(T ) ⊆ E(T ). Conversely, let
λ ∈ E(T ), then since λ ∈ isoσ(T ) and 0 < α(T − λ) we know that T and
T ∗ have SVEP at λ. From the equality σ(T )\σSBF−

+
(T ) = E(T ) we see that

λ /∈ σSBF−
+
(T ) and hence T − λ ∈ SBF+(X ) The SVEP for T and T ∗ at

λ by Remark 1.2 of [5] implies that a(T − λ) = d(T − λ) < ∞. Hence
λ ∈ π(T ) ⊆ πa(T ) ⊆ Δg

a(T ). Therefore, Δg
a(T ) = E(T ), i.e., T satisfies

property (gw). �

The following example shows the converse of the previous theorem does
not hold in general.

Example 2.5. Consider the operator T = R⊕S that defined on X = 
2(N)⊕

2(N), where R is the right unilateral shift operator and S(x1, x2, · · · ) =
(x2/2, x3/3, · · · ). Then σ(T ) = D(0, 1), where D(0, 1) is the unit disc of
C. Hence, isoσ(T ) = ∅ and so, E0(T ) = E(T ) = ∅. Moreover, σa(T ) =
σSF−

+
(T ) = σSBF−

+
(T ) = C(0, 1) ∪ {0} , where C(0, 1) is the unit circle of C.

Since Δa(T ) = ∅ = E0(T ) and Δg
a(T ) = E(T ), then T satisfies both prop-

erty (w) and property (gw). On the other hand, since Δ+(T ) �= E0(T ) and
Δg

+(T ) �= E(T ), then T does not satisfy property (t) nor the property (gt).
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Theorem 2.6. Let T ∈ L (X ). Then the following are equivalent.
(i) T satisfies property (gt) if and only if T satisfies property (gw) and

σ(T ) = σa(T ).
(ii) T satisfies property (t) if and only if T satisfies property (w) and σ(T ) =

σa(T )

Proof. (i) If T satisfies property (gt), then T satisfies property (gw) by The-
orem 2.4, i.e., Δg

+(T ) = Δg
a(T ) = E(T ) and so σ(T ) = σa(T ). Conversely,

assume that T satisfies property (gw) and σ(T ) = σa(T ). Then

E(T ) = σa(T )\σSBF−
+
(T ) = σ(T )\σSBF−

+
(T ).

Hence T satisfies property (gt).
(ii) If T satisfies property (t), then T satisfies property (w) by Theorem 2.4,
i.e., Δ+(T ) = Δa(T ) = E0(T ) and so σ(T ) = σa(T ). Conversely, assume that
T satisfies property (w) and σ(T ) = σa(T ). Then

E0(T ) = σa(T )\σSF−
+
(T ) = σ(T )\σSF−

+
(T ).

Hence T satisfies property (t). �

As a consequence of Theorem 2.4 and [5, Theorem 2.7, Theorem 2.8],
we have

Proposition 2.7. Suppose that T ∈ L (X ) satisfies property (t), then
(i) T satisfies a-Browder’s theorem and π0

a(T ) = E0(T ).
(ii) T satisfies Weyl’s theorem.

Also, as a consequence of Theorem 2.4, [11, Theorem 2.4] and [11, The-
orem 2.6], we have

Proposition 2.8. Suppose that T ∈ L (X ) satisfies property (gt), then
(i) T satisfies generalized Weyl’s theorem.
(ii) T satisfies generalized a-Browder’s theorem and πa(T ) = E(T ).

Theorem 2.9. Let T ∈ L (X ). Then the following are equivalent.
(i) T satisfies property (gt);
(ii) T satisfies property (t) and E(T ) = πa(T ).

Proof. (i)⇒(ii) Assume that T satisfies property (gt), then T satisfies prop-
erty (t) by Theorem 2.2. If λ ∈ E(T ), then λ ∈ isoσ(T ) and since T satisfies
property (gt), then T − λ is semi-B-Fredholm operator with ind(T − λ) ≤ 0.
From Theorem 4.2 of [12] we deduce that λ ∈ πa(T ). By Proposition 2.8, T
satisfies generalized a-Browder’s theorem, then πa(T ) = Δg

a(T ) ⊆ Δg
+(T ) =

E(T ). Therefore, E(T ) = πa(T ).
(ii)⇒(i) Assume that T satisfies property (t) and E(T ) = πa(T ). Then T
satisfies property (w) and σ(T ) = σa(T ) and hence by Theorem 2.7 of [5] it
then follows that T satisfies a-Browder theorem. As we know from Theorem
2.2 of [10] that a-Browder’s theorem is equivalent to generalized a-Browder’s
theorem. Hence we have πa(T ) = Δg

a(T ) = Δg
+. But E(T ) = πa(T ). Hence T

satisfies property (gt). �
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Theorem 2.10. Let T ∈ L (X ). Then the following are equivalent.
(i) T satisfies property (gt) if and only if T satisfies property generalized

Weyl’s theorem and σBW(T ) = σSBF−
+
(T ).

(ii) T satisfies property (t) if and only if T satisfies Weyl’s theorem and
σw(T ) = σSF−

+
(T )

Proof. (i) If T satisfies property (gt), then T satisfies generalized Weyl’s theo-
rem and σBW(T ) = σSBF−

+
(T ) by Proposition 2.8. Conversely, if T generalized

Weyl’s theorem and σBW(T ) = σSBF−
+
(T ). Then

E(T ) = σ(T )\σBW(T ) = σ(T )\σSBF−
+
(T ).

Hence Δg
+(T ) = E(T ), i.e., T satisfies property (gt).

(ii) If T satisfies property (t), then T satisfies Weyl’s theorem and σw(T ) =
σSF−

+
(T ) by Proposition 2.7. Conversely, if T Weyl’s theorem and σw(T ) =

σSF−
+
(T ). Then

E0(T ) = σ(T )\σw(T ) = σ(T )\σSF−
+
(T ).

Hence Δ+(T ) = E(T ), i.e., T satisfies property (t). �

The following example shows generalized a-Weyl’s theorem and gener-
alized Weyl’s theorem do not imply property (gt). It shows also that a-Weyl’s
theorem and Weyl’s theorem do not imply property (t).

Example 2.11. Let R be the unilateral right shift operator defined on the
Hilbert space 
2(N). Define T On the Banach space X = 
2(N) ⊕ 
2(N) by
T = 0 ⊕ R. Then σ(T ) = σw(T ) = σBW(T ) = D(0, 1) is the closed disc
in C. Hence isoσ(T ) = ∅ and so E0(T ) = E(T ) = ∅. So, Δg(T ) = E(T )
and Δ(T ) = E0(T ), i.e., T satisfies generalized Weyl’s theorem and Weyl’s
theorem. Moreover, σa(T ) = σSF−

+
(T ) = C(0, 1) ∪ {0} , σSBF−

+
(T ) = C(0, 1),

where C(0, 1) is the unit circle in C. So, E0
a(T ) = {0} and Ea(T ) = {0} .

Hence Δg
a(T ) = Ea(T ) and Δa(T ) = E0

a(T ), i.e., T satisfies generalized a-
Weyl’s theorem and a-Weyl’s theorem. But T does not satisfy property (gt)
or property (t), since Δg

+(T ) �= E(T ) and Δ+(T ) �= E0(T ).

The next result shows that the equivalence of property (R), property
(t), property (b), property (w), Weyl’s theorem and a-Weyl’s theorem is true
whenever we assume that T ∗ has SVEP at the points λ /∈ σSF−

+
(T ).

Theorem 2.12. Let T ∈ L (X ). If T ∗ has SVEP at every λ /∈ σSF−
+
(T ). Then

property (w), property (b), property (R), property (t), Weyl’s theorem and
a-Weyl’s theorem are equivalent for T .

Proof. We conclude from Theorem 2.10 and Theorem 2.19 of [8] that

σ(T ) = σa(T ), σw(T ) = σb(T ) = σSF−
+
(T ) = σub(T ),

and

π0(T ) = E0(T ), π0
a(T ) = E0

a(T ), E0(T ) = π0
a(T ).
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Hence

π0(T ) = Δ(T ) = Δ+(T ) = E0(T ) = Δa(T ) = E0
a(T )

= σa(T )\σub(T ) = π0
a(T ).

Therefore, then property (w), property (b), property (R), property (t), Weyl’s
theorem and a-Weyl’s theorem are equivalent for T . �

Theorem 2.13. Let T ∈ L (X ). If T has SVEP at every λ /∈ σSF+
−
(T ). Then

property (w), property (b), property (R), property (t), Weyl’s theorem and
a-Weyl’s theorem are equivalent for T ∗.

Proof. We conclude from Theorem 2.10 and Theorem 2.20 of [8] that

σ(T ∗) = σ(T ) = σs(T ) = σa(T ∗), σw(T ∗) = σw(T )

σw(T ∗) = σb(T ) = σSF+
−
(T ) = σlb(T ) = σub(T ∗),

and

π0(T ∗) = E0(T ∗), π0
a(T ∗) = E0

a(T ∗), E0(T ∗) = π0
a(T ∗).

Hence

π0(T ∗) = Δ(T ∗) = Δ+(T ∗) = E0(T ∗) = Δa(T ∗) = E0
a(T ∗)

= σa(T ∗)\σub(T ∗) = π0
a(T ∗).

Therefore, then property (w), property (b), property (R), property (t),
Weyl’s theorem and a-Weyl’s theorem are equivalent for T ∗. �

Theorem 2.14. Suppose that T ∗ has SVEP at every λ /∈ σSBF−
+
(T ). Then the

following assertions are equivalent:

(i) E(T ) = π(T );
(ii) Ea(T ) = πa(T );
(iii) E(T ) = πa(T ).

Consequently, property (gw), property (gb), property (gt), generalized
a-Weyl’s theorem and generalized Weyl’s theorem are equivalent for T .

Proof. Suppose that T ∗ has SVEP at every λ /∈ σSBF−
+
(T ). We prove first

the equality σSBF−
+
(T ) = σBW(T ). If λ /∈ σSBF−

+
(T ) then T − λ is an upper

semi-B-Fredholm operator and ind(T − λ) ≤ 0. As T ∗ has SVEP, then it
follows from Corollary 2.8 of [15] that T − λ is a B-Weyl operator and so
λ /∈ σBW(T ). Therefore, σSBF−

+
(T ) ⊆ σBW(T ). Since the other inclusion is

always verified, we have the equality. Now we prove that σD(T ) = σBW(T ).
Since σSBF−

+
(T ) ⊆ σSF−

+
(T ) is always verified, then T ∗ has SVEP at every

λ /∈ σSF−
+
(T ). This implies that T satisfies Browder’s theorem. As we know

from Theorem 2.1 of [10] that Browder’s theorem is equivalent to generalized
Browder’s theorem, we have σBW(T ) = σD(T ). On the other hand, as T ∗ has
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SVEP at every λ /∈ σSF−
+
(T ), then σ(T ) = σa(T ). From this we deduce that

E(T ) = Ea(T ) and

πa(T ) = σa(T )\σSBF−
+
(T ) = σ(T )\σD(T ) = π(T ),

from which the equivalence of (i), (ii) and (iii) easily follows. To show the
last statement observed that the SVEP of T ∗ at the points λ /∈ σSBF−

+
(T ) en-

tails that generalized a-Browder’s theorem (and hence generalized Browder’s
theorem) holds for T , see [17, Corollary 2.7]. Therefore,

π(T ) = Δg(T ) = E(T ) = Δg
+(T ) = Δg

a(T ) = Ea(T ).

That is, property (gt), property (gb), property (gw), generalized a-
Weyl’s theorem and generalized Weyl’s theorem are equivalent for T . �

Dually, we have

Theorem 2.15. Suppose that T has SVEP at every λ /∈ σSBF+
−
(T ). Then the

following assertions are equivalent:

(i) E(T ∗) = π(T ∗);
(ii) Ea(T ∗) = πa(T ∗);
(iii) E(T ∗) = πa(T ∗).

Consequently, property (gb), property (gw), generalized a-Weyl’s theorem and
generalized Weyl’s theorem are equivalent for T ∗.

Proof. Suppose that T has SVEP at every λ /∈ σSBF+
−
(T ). We prove first

the equality σSBF−
+
(T ∗) = σBW(T ∗). If λ /∈ σSBF+

−
(T ) then T − λ is a

lower semi-B-Fredholm operator and ind(T − λ) ≥ 0. As T has SVEP,
then it follows from Theorem 2.5 of [15] that T − λ is a B-Weyl opera-
tor and so λ /∈ σBW(T ). As σBW(T ) = σBW(T ∗). Then λ /∈ σBW(T ∗).
So σBW(T ∗) ⊆ σSBF+

−
(T ). As σSBF+

−
(T ) = σSBF−

+
(T ∗), then σBW(T ∗) ⊆

σSBF−
+
(T ∗). Since the other inclusion is always verified, it then follows that

σBW(T ∗) = σSBF−
+
(T ∗). Now we show that σBW(T ∗) = σD(T ∗). Since we

have always σSBF+
−
(T ) ⊆ σSF+

−
(T ), then T has SVEP at every λ ∈ σSF+

−
(T ).

Hence T ∗ satisfies generalized Browder’s theorem. So σD(T ∗) = σBW(T ∗). Fi-
nally, we have σBW(T ∗) = σSBF−

+
(T ∗) = σD(T ∗) and σ(T ∗) = σa(T ∗), from

which we obtain E(T ∗) = Ea(T ∗) and π(T ∗) = πa(T ∗). The SVEP at every
λ ∈ σSBF+

−
(T ) ensure by Corollary 2.7 of [17] that generalized a-Browder’s

theorem holds for T ∗. Hence

π(T ∗) = Δg(T ∗) = E(T ∗) = Δg
+(T ∗) = Δg

a(T ∗) = Ea(T ∗).

That is, property (gb), property (gt), property (gw), generalized a-Weyl’s
theorem and generalized Weyl’s theorem are equivalent for T ∗. �



738 M. H. M. RASHID MJOM

3. Properties (t) and (gt) for polaroid type operators

In this section we study the properties (t) and (gt) for classes of operators
for which the isolated points of the spectrum are poles of the resolvent.

Definition 3.1. ([7, Definition 2.5]) A bounded operator T ∈ L (X ) is said
to be left polaroid if every isolated point of σa(T ) is a left pole of the resolvent
of T . T ∈ L (X ) is said to be right polaroid if every isolated point of σs(T )
is a right pole of the resolvent of T . T ∈ L (X ) is said to be polaroid if every
isolated point of σ(T ) is a pole of the resolvent of T .

It is well known that λ is a pole of the resolvent of T if and only if λ is
a pole of the resolvent of T ∗. Since σ(T ) = σ(T ∗) we then have

T is polaroid if and only if T ∗ is polaroid. (3.1)

Definition 3.2. ([7, Definition 2.9]) A bounded operator T ∈ L (X ) is said
to be a-polaroid if every λ ∈ isoσa(T ) is a pole of the resolvent of T .

Since a pole is always a left pole we have

T is a-polaroid =⇒ T is left polaroid, (3.2)

but the converse of implication (3.2) is not true in general, see [7, Ex-
ample 2.10]. Moreover, it follows from [9, Theorem 2.5] that

if T is either left or right polaroid =⇒ T is polaroid. (3.3)

However, we note that the implication (3.3) cannot be reversed, see [7,
Example 2.7].

Since isoσ(T ) ⊆ σa(T ) for every T ∈ L (X ) and the boundary of σ(T )
is contained in σa(T ), from which we easily obtain:

if T is a-polaroid =⇒ T is polaroid, (3.4)

while in general the converse is not true.
From Corollary 2.45 of [1] we know that if T ∗ has SVEP, then σ(T ) = σa(T ).
Therefore, if T ∗ has SVEP then

T is a-polaroid if and only if T is polaroid. (3.5)

If T has SVEP, we know that σ(T ∗) = σa(T ∗). Therefore, if T has
SVEP, then

T ∗ a-polaroid ⇔ T ∗ polaroid ⇔ T polaroid. (3.6)

Theorem 3.3. Suppose that T is a-polaroid and σ(T ) = σa(T ). Then the
following assertions hold.

(i) T satisfies a-Weyl’s theorem if and only if T satisfies property (t).
(ii) T satisfies generalized a-Weyl’s theorem if and only if T satisfies prop-

erty (gt).
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Proof. (i) Note first that if T is a-polaroid then E0
a(T ) = π0(T ). In fact, if

λ ∈ E0
a(T ) then λ is isolated in σa(T ) and hence a(T − λ) = d(T − λ) < ∞.

Moreover, α(T − λ) < ∞, so by Theorem 3.4 of [1] it follows that β(T − λ)
is also finite, thus λ ∈ π0(T ). This shows E0

a(T ) ⊆ π0(T ). Since the other
inclusion is always verified, we have E0

a(T ) = π0(T ).
Now, if T satisfies a-Weyl’s theorem then Δa(T ) = E0

a(T ) = π0(T ), and
since Weyl’s theorem holds for T by Theorem 2.4 of [5] that π0(T ) = E0(T ).
Therefore,

E0(T ) = E0
a(T ) = Δa(T ) = σa(T )\σSF−

+
(T ) = σ(T )\σSF−

+
(T ).

That is, T satisfies property (t).
Conversely, if T satisfies property (t) then Δ+(T ) = E0(T ). Since by

Proposition 2.7 T satisfies Weyl’s theorem we also have by Theorem 2.4 of [5]
that E0(T ) = π0(T ) = E0

a(T ). Hence

E0
a(T ) = E0(T ) = Δ+(T ) = σ(T )\σSF−

+
(T ) = σa(T )\σSF−

+
(T ).

That is, T satisfies a-Weyl’s theorem.
(ii) Note first that if T is a-polaroid then Ea(T ) = π(T ). In fact, if λ ∈ Ea(T )
then λ is isolated in σa(T ) and hence a(T − λ) = d(T − λ) < ∞. Therefore,
λ ∈ π(T ). This shows Ea(T ) ⊆ π(T ). Since we have always π(T ) ⊆ Ea(T ),
and so Ea(T ) = π(T ).
Now, if T satisfies generalized a-Weyl’s theorem then Δg

a(T ) = Ea(T ) =
π(T ), and since generalized Weyl’s theorem holds for T by Corollary 2.1
of [10] that π(T ) = E(T ). Therefore,

E(T ) = Ea(T ) = Δg
a(T ) = σa(T )\σSBF−

+
(T ) = σ(T )\σSBF−

+
(T ).

That is, T satisfies property (gt).
Conversely, if T satisfies property (gt) then Δg

+(T ) = E(T ). Since by
Proposition 2.8 T satisfies generalized Weyl’s theorem we also have by Corol-
lary 2.1 of [10] that E(T ) = π(T ) = Ea(T ). Hence

Ea(T ) = E(T ) = Δg
+(T ) = σ(T )\σSBF−

+
(T ) = σa(T )\σSBF−

+
(T ).

That is, T satisfies generalized a-Weyl’s theorem. �

Theorem 3.4. Suppose that T ∈ L (X ) is polaroid.
(i) If T ∗ has SVEP, then property (t) holds for T .
(ii) If T has SVEP, then property (t) holds for T ∗.

Proof. (i) Since T ∗ has SVEP, then it follows from [1, Corollary 2.45] that
σ(T ) = σa(T ), σub(T ) = σSF−

+
(T ), see also [3, Theorem 1.5]. Since T is po-

laroid and T ∗ has SVEP, then by equivalence 3.5, we have T is a-polaroid and
so π0(T ) = π0

a(T ) = E0(T ) = E0
a(T ), see proof of Theorem 3.3. Therefore,

E0(T ) = π0
a(T ) = σa(T )\σub(T ) = σ(T )\σSF−

+
(T ).

That is, T satisfies property (t).
(ii) The SVEP for T implies by Corollary 2.45 of [1] that σ(T ∗) = σ(T ) =
σa(T ∗) and σlb(T ) = σub(T ∗) = σSF+

−
(T ) = σSF−

+
(T ∗). Since T ∗ is polaroid
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by equivalence 3.1 and T has SVEP, then T ∗ is a-polaroid and so π0(T ∗) =
π0

a(T ∗) = E0(T ∗) = E0
a(T ∗). Therefore,

E0(T ∗) = π0
a(T ∗) = σa(T ∗)\σub(T ∗) = σ(T ∗)\σSF−

+
(T ∗).

That is, T ∗ satisfies property (t). �
Theorem 3.5. Suppose that T ∈ L (X ) is polaroid.

(i) If T ∗ has SVEP, then property (gt) holds for T .
(ii) If T has SVEP, then property (gt) holds for T ∗.

Proof. (i) Since T ∗ has SVEP, then it follows from [1, Corollary 2.45] that
σ(T ) = σa(T ) and from the proof of Theorem 2.14 we then have σLD(T ) =
σSBF−

+
(T ). Since T is polaroid and T ∗ has SVEP, then by equivalence 3.5,

we have T is a-polaroid and so π(T ) = πa(T ) = E(T ) = Ea(T ), see proof of
Theorem 3.3. Therefore,

E(T ) = πa(T ) = σa(T )\σLD(T ) = σ(T )\σSBF−
+
(T ).

That is, T satisfies property (gt).
(ii) The SVEP for T implies by Corollary 2.45 of [1] that σ(T ∗) = σ(T ) =
σa(T ∗) and from the proof of Theorem 2.15 we then have σLD(T ∗) =
σSBF−

+
(T ∗). Since T ∗ is polaroid by equivalence 3.1 and T has SVEP, then

T ∗ is a-polaroid and so π(T ∗) = πa(T ∗) = E(T ∗) = Ea(T ∗). Therefore,

E(T ∗) = πa(T ∗) = σa(T ∗)\σLD(T ∗) = σ(T ∗)\σSBF−
+
(T ∗).

That is, T ∗ satisfies property (gt). �
Let Hnc(σ(T )) denote the set of all analytic functions, defined on an

open neighborhood of σ(T ), such that f is non-constant on each of the
components of its domain. Define, by the classical calculus, f(T ) for every
f ∈ Hnc(σ(T )).

Theorem 3.6. Suppose that T is polaroid and f ∈ Hnc(σ(T )).
(i) If T ∗ has SVEP, then property (t) holds for f(T ), or equivalently prop-

erty (w), property (R), property (b), Weyl’s theorem, a-Weyl’s theorem
hold for f(T ).

(ii) If T has SVEP, then property (t) holds for f(T ∗), or equivalently prop-
erty (w), property (R), property (b), Weyl’s theorem, a-Weyl’s theorem
hold for f(T ∗).

Proof. (i) It follows from Lemma 3.11 of [7] that f(T ) is polaroid. By The-
orem 2.40 of [1], we have f(T ∗) has SVEP, hence from equivalence 3.5 we
conclude that f(T ) is a-polaroid and hence it then follows by Theorem 3.4
that property (t) holds for f(T ) and this by Theorem 2.12 is equivalent to say-
ing that property (w), property (R), property (b), Weyl’s theorem, a-Weyl’s
theorem hold for f(T ).
(ii) From the equivalence 3.1 we know that T ∗ is polaroid and hence by
Lemma 3.11 of [7] that f(T ∗) is polaroid. By Theorem 2.40 of [1], we have
f(T ) has SVEP, hence from equivalence 3.6 we conclude that f(T ∗) is a-
polaroid and hence it then follows by Theorem 3.4 that property (t) holds
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for f(T ∗) and this by Theorem 2.13 is equivalent to saying that property
(w), property (R), property (b), Weyl’s theorem, a-Weyl’s theorem hold for
f(T ∗). �

Theorem 3.7. Suppose that T is polaroid and f ∈ Hnc(σ(T )).
(i) If T ∗ has SVEP, then property (gt) holds for f(T ), or equivalently

property (gw), property (gb), generalized Weyl’s theorem, generalized
a-Weyl’s theorem hold for f(T ).

(ii) If T has SVEP, then property (gt) holds for f(T ∗), or equivalently
property (gw), property (gb), generalized Weyl’s theorem, generalized
a-Weyl’s theorem hold for f(T ∗).

Proof. (i) It follows from Lemma 3.11 of [7] that f(T ) is polaroid. By The-
orem 2.40 of [1], we have f(T ∗) has SVEP, hence from equivalence 3.5 we
conclude that f(T ) is a-polaroid and hence it then follows by Theorem 3.5
that property (gt) holds for f(T ) and this by Theorem 2.12 is equivalent to
saying that property (gw), property (gb), generalized Weyl’s theorem, gener-
alized a-Weyl’s theorem hold for f(T ).
(ii) From the equivalence 3.1 we know that T ∗ is polaroid and hence by
Lemma 3.11 of [7] that f(T ∗) is polaroid. By Theorem 2.40 of [1], we have
f(T ) has SVEP, hence from equivalence 3.6 we conclude that f(T ∗) is a-
polaroid and hence it then follows by Theorem 3.5 that property (gt) holds
for f(T ∗) and this by Theorem 2.13 is equivalent to saying that property
(gw), property (gb), generalized Weyl’s theorem, generalized a-Weyl’s theo-
rem hold for f(T ∗). �

An important T -invariant subspace in local spectral theory is the quasi-
nilpotent part of T, defined as

H0(T ) :=
{

x ∈ X : lim
n→∞ ‖Tnx‖ 1

n = 0
}

.

we have also

H0(T − λ) closed ⇒ T has SVEP atλ. (3.7)

In the case of Hilbert space operators the SVEP for the dual T ∗ and
the SVEP for the Hilbert adjoint T ′ are equivalent. Consequently, for Hilbert
space operators in the statements of Theorem 3.6, T ∗ may be replaced by T ′.

The condition of being polaroid may be characterized by means of the
quasi-nilpotent part: T is polaroid if and only if there exists p := p(T −λ) ∈ N

such that:

H0(T − λ) = ker(T − λ)p for all λ ∈ iso σ(T ), (3.8)

see [4]. The class of polaroid operators having SVEP is very large. An in-
teresting class of polaroid operators is given by the H(p)-operators, where
an operator T ∈ L (X ) is said to belong to the class H(p) if there exists a
natural p := p(λ) such that:

H0(T − λ) = ker(T − λ)p for all λ ∈ C. (3.9)
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From the implication 3.7 it is obvious that every operator T which belongs
to the class H(p) has SVEP. Moreover, from (3.8) we also see that every
H(p) operator T is polaroid. The class H(p) has been introduced by Oudghiri
in [22]. Property H(p) is satisfied by every generalized scalar operator (see [21]
for definition and properties of this class), and in particular the property
H(p) is satisfied by algebraically w-hyponormal [27], algebraically wF (p, r, q)
operators [26], algebraically (p, k)-quasihyponormal operators [28] or quasi-
class (A, k) operators [25].

Theorem 3.8. Suppose that T ∈ L (X ) and f ∈ Hnc(σ(T )). Then the fol-
lowing assertions hold:

(i) If T ∗ has SVEP and T is left polaroid, then property (t) holds for f(T ),
or equivalently, property (w), Weyl’s theorem and a-Weyl’s theorem hold
for f(T ).

(ii) If T has SVEP and T is right polaroid, then property (t) holds for f(T ∗),
or equivalently, property (w), Weyl’s theorem and a-Weyl’s theorem hold
for f(T ∗).

Proof. (i) Let λ ∈ isoσ(T ). Since T ∗ has SVEP, it then follows by Corollary
2.45 of [1] that σ(T ) = σa(T ), so λ ∈ isoσa(T) and hence a left pole for T .
In particular, T − λ is left Drazin invertible and hence a(T − λ) < ∞. By [6,
Theorem 2.5] we know that λ − T is semi-B-Fredholm, i.e., there exists a
natural number n ∈ N such that �(T − λ)n is closed and the restriction
T − λ|�(T−λ)n is semi-Fredholm, in particular T − λ is quasi-Fredholm. The
SVEP for T ∗ implies that d(T − λ) < ∞. Hence λ is a pole of the resolvent
of T . This proves that T is polaroid. By Lemma 3.11 of [7], f(T ) is polaroid
and since by [1, Theorem 2.40], f(T ∗) has SVEP, the assertion follows now
from part (i) of Theorem 3.6.
(ii) Suppose that T has SVEP and T is right polaroid. The SVEP of T entails
σs(T ) = σ(T ), see Corollary 2.5 of [1]. Let λ ∈ isoσ(T ). Then λ ∈ σs(T ) and
hence is a right pole of T . Therefore, d(T −λ) < ∞. On the other hand, since
T −λ is right Drazin invertible, then T −λ is semi B-Fredholm, in particular
T − λ is quasi-Fredholm. The SVEP for T at λ entails that a(t − λ) < ∞.
Consequently, λ is a pole of the resolvent of T and hence T is polaroid. By
Lemma 3.11 of [7], f(T ∗) is polaroid and since f(T ) has SVEP, the assertion
follows now from part (ii) of Theorem 3.6. �

Similar to the proof of Theorem 3.8, we can prove the following result.

Theorem 3.9. Suppose that T ∈ L (X ) and f ∈ Hnc(σ(T )). Then the follow-
ing assertions hold:

(i) If T ∗ has SVEP and T is left polaroid, then property (gt) holds for
f(T ), or equivalently, property (gw), generalized Weyl’s theorem and
generalized a-Weyl’s theorem hold for f(T ).

(ii) If T has SVEP and T is right polaroid, then property (gt) holds for
f(T ∗), or equivalently, property (gw), generalized Weyl’s theorem and
generalized a-Weyl’s theorem hold for f(T ∗).
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