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1. Introduction

Consider the oscillatory behavior of a fourth-order half-linear delay dynamic
equation with damping

(r(xΔ3
)γ)Δ(t) + p(t)(xΔ3

)γ(t) + q(t)xγ(τ(t)) = 0 (1.1)

on a time scale T unbounded above; here γ > 0 is the ratio of positive odd
integers, r, p, and q are positive real-valued rd-continuous functions defined
on T, r(t) − μ(t)p(t) �= 0, τ ∈ Crd(T, T), τ(t) ≤ t, and τ(t) → ∞ as t → ∞.

Since we are interested in oscillation, we assume throughout this paper
that the given time scale T is unbounded above and is a time scale interval
of the form [t0,∞)T := [t0,∞) ∩ T with t0 ∈ T. On any time scale we define
the forward and backward jump operators by σ(t) := inf{s ∈ T|s > t} and
ρ(t) := sup{s ∈ T|s < t}, where inf ∅ := sup T and sup ∅ := inf T, ∅ denotes
the empty set. A point t ∈ T is said to be left-dense if ρ(t) = t and t > inf T,
right-dense if σ(t) = t and t < sup T, left-scattered if ρ(t) < t, and right-
scattered if σ(t) > t. The graininess function μ : T → [0,∞) is defined by
μ(t) := σ(t)−t, and for any function f : T → R the notation fσ(t) := f(σ(t)).
For further discussion on time scales, we refer the reader to [5,6,13].

By a solution of (1.1) we mean a nontrivial real-valued function x ∈
C3

rd[Tx,∞)T, Tx ∈ [t0,∞)T which has the property r(xΔ3
)γ ∈ C1

rd[Tx,∞)T
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and satisfies (1.1) on [Tx,∞)T. The solutions vanishing in some neighbour-
hood of infinity will be excluded from our consideration. A solution x of (1.1)
is said to be oscillatory if it is neither eventually positive nor eventually neg-
ative; otherwise, it is nonoscillatory. Equation (1.1) is called oscillatory if all
its solutions are oscillatory.

Recently, there has been much activity concerning oscillatory and as-
ymptotic behavior of different classes of dynamic equations on time scales. We
refer the reader to the books [2,5,6,17], the papers [1,3,4,7–12,14–16,18–20],
and the references cited therein. Saker et al. [18] considered a second-order
dynamic equation with damping

(rxΔ)Δ(t) + p(t)xΔσ

(t) + q(t)f(xσ(t)) = 0.

Erbe et al. [7] studied a class of second-order delay dynamic equations with
a nonlinear damping

(r(xΔ)γ)Δ(t) + p(t)(xΔσ

(t))γ + q(t)f(x(τ(t))) = 0.

Erbe et al. [8] investigated a third-order dynamic equation

xΔ3
(t) + q(t)x(t) = 0.

Agarwal et al. [1], Hassan [12], and Li et al. [15] considered a third-order
nonlinear delay dynamic equation

(
a((rxΔ)Δ)γ

)Δ
(t) + f(t, x(τ(t))) = 0.

Grace et al. [9] studied a fourth-order dynamic equation

xΔ4
(t) + q(t)xγ(σ(t)) = 0.

Monotone and oscillatory behavior of solutions of a fourth-order dynamic
equation

(a(xΔ2
)α)Δ

2
(t) + q(t)xβ(σ(t)) = 0

with the property that

x(t)
∫ t

t0

∫ s

t0
a−1/α(τ)ΔτΔs

→ 0 as t → ∞

were established by Grace et al. [10]. Grace et al. [11] considered a fourth-
order dynamic equation

xΔ4
(t) + q(t)xγ(t) = 0.

Li et al. [16] studied oscillation of unbounded solutions to a fourth-order delay
dynamic equation

(rxΔ3
)Δ(t) + q(t)x(τ(t)) = 0

under the assumption
∫∞

t0
r−1(t)Δt < ∞ and obtained some comparison

theorems. Zhang et al. [20] investigated a fourth-order dynamic equation

(rxΔ3
)Δ(t) + q(t)f(x(σ(t))) = 0

in the case where
∫∞

t0
r−1(t)Δt < ∞.



Vol. 11 (2014) Fourth-Order Delay Dynamic Equations 465

So far, there are few results on oscillatory behavior of (1.1). Hence the
aim of this paper is to give some oscillation criteria for this equation.

2. Main Results

In what follows, all functional inequalities are assumed to hold eventually,
that is, they are satisfied for all sufficiently large t. We begin with the follow-
ing lemma.

Lemma 2.1 (See [5, Theorem 2.33]). Assume 1 + μ(t)p(t) �= 0 and fix t0 ∈ T.
Then ep(·, t0) is a solution of the initial value problem

yΔ = p(t)y, y(t0) = 1.

Lemma 2.2. Assume x is an eventually positive solution of (1.1). If
∞∫

t0

(
e−p/r(t, t0)

r(t)

)1/γ

Δt = ∞, (2.1)

then there are only the following two possible cases for t ∈ [t1,∞)T, where
t1 ∈ [t0,∞)T sufficiently large:

(1) x(t) > 0, xΔ(t) > 0, xΔΔ(t) > 0, xΔ3
(t) > 0, (r(xΔ3

)γ)Δ(t) < 0;
(2) x(t) > 0, xΔ(t) > 0, xΔΔ(t) < 0, xΔ3

(t) > 0, (r(xΔ3
)γ)Δ(t) < 0.

Proof. Let x be an eventually positive solution of (1.1). Then there exists a
t1 ∈ [t0,∞)T such that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. From (1.1),
we have

(r(xΔ3
)γ)Δ(t) + p(t)(xΔ3

)γ(t) = −q(t)xγ(τ(t)) < 0 (2.2)

for t ∈ [t1,∞)T. Hence, we obtain by (2.2) and Lemma 2.1 that
(

r(xΔ3
)γ

e−p/r(·, t0)

)Δ

=
(r(xΔ3

)γ)Δe−p/r(·, t0) − r(xΔ3
)γeΔ

−p/r(·, t0)
e−p/r(·, t0)eσ

−p/r(·, t0)

=
(r(xΔ3

)γ)Δ + p(xΔ3
)γ

eσ
−p/r(·, t0)

< 0.

Thus, r(xΔ3
)γ/e−p/r(·, t0) is decreasing. Then xΔ, xΔΔ, and xΔ3

are of con-
stant sign eventually. We claim that xΔ3

> 0. If not, there exist a constant
M > 0 and t2 ∈ [t1,∞)T such that

r(t)(xΔ3
)γ(t)

e−p/r(t, t0)
≤ −M < 0, t ∈ [t2,∞)T.

That is,

xΔ3
(t) ≤ −M1/γ

(
e−p/r(t, t0)

r(t)

)1/γ

, t ∈ [t2,∞)T.
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Integrating this from t2 to t, we get

xΔΔ(t) ≤ xΔΔ(t2) − M1/γ

t∫

t2

(
e−p/r(s, t0)

r(s)

)1/γ

Δs.

Hence, we have limt→∞ xΔΔ(t) = −∞, and then limt→∞ x(t) = −∞, which
is a contradiction. If

xΔΔ > 0,

then xΔ > 0 due to xΔ3
> 0. If

xΔΔ < 0,

then xΔ > 0 by x > 0. The proof is complete. �

Lemma 2.3. Assume x is a solution of (1.1) which satisfies case (1) of Lemma
2.2. Then

xΔΔ(t) ≥
⎛

⎝r1/γ(t)

t∫

t1

Δs

r1/γ(s)

⎞

⎠xΔ3
(t). (2.3)

If there exist a function φ ∈ C1
rd([t0,∞)T, (0,∞)) and a t2 ∈ [t1,∞)T such

that

φ(t)

r1/γ(t)
∫ t

t1
Δs

r1/γ(s)

− φΔ(t) ≤ 0, t ∈ [t2,∞)T, (2.4)

then xΔΔ/φ is a nonincreasing function on t ∈ [t2,∞)T, and

xΔ(t) ≥
⎛

⎝ 1
φ(t)

t∫

t2

φ(s)Δs

⎞

⎠xΔΔ(t) for t ∈ [t2,∞)T. (2.5)

Further, if there exist a function ϕ ∈ C1
rd([t0,∞)T, (0,∞)) and a t3 ∈ [t2,∞)T

such that

ϕ(t)
1

φ(t)

∫ t

t2
φ(s)Δs

− ϕΔ(t) ≤ 0, t ∈ [t3,∞)T, (2.6)

then xΔ/ϕ is a nonincreasing function on t ∈ [t3,∞)T, and

x(t) ≥
⎛

⎝ 1
ϕ(t)

t∫

t3

ϕ(s)Δs

⎞

⎠xΔ(t) for t ∈ [t3,∞)T. (2.7)

Proof. From xΔΔ > 0, xΔ3
> 0, and (r(xΔ3

)γ)Δ < 0, we have

xΔΔ(t) = xΔΔ(t1) +

t∫

t1

(r(xΔ3
)γ)1/γ(s)

r1/γ(s)
Δs ≥

⎛

⎝r1/γ(t)

t∫

t1

Δs

r1/γ(s)

⎞

⎠xΔ3
(t).
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Thus,
(

xΔΔ

φ

)Δ

(t)=
xΔ3

(t)φ(t)−xΔΔ(t)φΔ(t)

φ(t)φσ(t)
≤ xΔΔ(t)

φ(t)φσ(t)

⎛

⎝ φ(t)

r1/γ(t)
∫ t
t1

Δs
r1/γ(s)

−φΔ(t)

⎞

⎠ ≤ 0.

Therefore, xΔΔ/φ is a nonincreasing function on [t2,∞)T. Then, we obtain

xΔ(t) = xΔ(t2) +

t∫

t2

xΔΔ(s)
φ(s)

φ(s)Δs ≥
⎛

⎝ 1
φ(t)

t∫

t2

φ(s)Δs

⎞

⎠xΔΔ(t).

Hence,
(

xΔ

ϕ

)Δ

(t) =
xΔΔ(t)ϕ(t) − xΔ(t)ϕΔ(t)

ϕ(t)ϕσ(t)
≤ xΔ(t)

ϕ(t)ϕσ(t)

(
ϕ(t)

1
φ(t)

∫ t
t2

φ(s)Δs
− ϕΔ(t)

)

≤ 0.

Thus, xΔ/ϕ is a nonincreasing function on [t3,∞)T. So we have

x(t) = x(t3) +

t∫

t3

xΔ(s)
ϕ(s)

ϕ(s)Δs ≥
⎛

⎝ 1
ϕ(t)

t∫

t3

ϕ(s)Δs

⎞

⎠xΔ(t).

This completes the proof. �

Remark 2.4. The functions φ and ϕ are existent, e.g., by letting φ(t) :=∫ t

t1
r−1/γ(s)Δs and ϕ(t) :=

∫ t

t2
φ(s)Δs.

In the following, we use the notation (d(t))+ := max{0, d(t)}.

Theorem 2.5. Let (2.1) hold and γ ≥ 1. Assume that there exists a positive
function α ∈ C1

rd([t0,∞)T, R) such that for all sufficiently large t1 ∈ [t0,∞)T,
for some t2 ∈ [t1,∞)T, t3 ∈ [t2,∞)T, and t4 ∈ [t3,∞)T,

lim sup
t→∞

t∫

t4

[
ασ(s)q(s)f(s, t2, t3) − γγ

(γ + 1)γ+1

Dγ+1(s)
Cγ(s)

]
Δs = ∞, (2.8)

where φ and ϕ are defined as in Lemma 2.3, and

f(s, t2, t3) :=

⎛

⎜
⎝

1
ϕ(τ(s))φ(σ(s))

τ(s)∫

t3

ϕ(u)Δu

τ(s)∫

t2

φ(u)Δu

⎞

⎟
⎠

γ

,

C(t) := γ

(
φ(t)

φ(σ(t))

)γ
ασ(t)

α(γ+1)/γ(t)r1/γ(t)
,

D(t) :=
[
αΔ(t)
α(t)

−
(

φ(t)
φ(σ(t))

)γ
ασ(t)p(t)
α(t)r(t)

]

+

.

If there exist positive functions β, ς ∈ C1
rd([t0,∞)T, R) such that

ς(t)
t − t1

− ςΔ(t) ≤ 0 for t large enough, (2.9)
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and

lim sup
t→∞

t∫

t2

{
βσ(ξ)

ς(ξ)
ς(σ(ξ))

g(ξ) − ς(σ(ξ))((βΔ(ξ))+)2

4βσ(ξ)ς(ξ)

}
Δξ = ∞, (2.10)

where

g(ξ) :=

∞∫

ξ

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs,

then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We
may assume without loss of generality that there exists a t1 ∈ [t0,∞)T such
that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding as in the proof of
Lemma 2.2, we get (2.2) and then x satisfies either (1) or (2).

Assume (1). Define the function ω by

ω(t) := α(t)
r(t)(xΔ3

)γ(t)
(xΔΔ)γ(t)

, t ∈ [t1,∞)T. (2.11)

Then ω(t) > 0 for t ∈ [t1,∞)T and

ωΔ(t) = αΔ(t)
r(t)(xΔ3

)γ(t)
(xΔΔ)γ(t)

+ ασ(t)

(
r(xΔ3

)γ

(xΔΔ)γ

)Δ

(t),

which implies that

ωΔ(t) = αΔ(t)
r(t)(xΔ3

)γ(t)
(xΔΔ)γ(t)

+ ασ(t)
(r(xΔ3

)γ)Δ(t)
(xΔΔ)γ(σ(t))

−ασ(t)
r(t)(xΔ3

)γ(t)((xΔΔ)γ)Δ(t)
(xΔΔ)γ(t)(xΔΔ)γ(σ(t))

. (2.12)

By virtue of Pötzsche chain rule [5, Theorem 1.90], we have

((xΔΔ)γ)Δ(t) = γxΔ3
(t)

1∫

0

[
hxΔΔ(σ(t)) + (1 − h)xΔΔ(t)

]γ−1dh

≥ γ(xΔΔ)γ−1(t)xΔ3
(t), γ ≥ 1. (2.13)

Substituting (2.13) into (2.12), we find

ωΔ(t) ≤ αΔ(t)
r(t)(xΔ3

)γ(t)
(xΔΔ)γ(t)

+ ασ(t)
(r(xΔ3

)γ)Δ(t)
(xΔΔ)γ(σ(t))

−γασ(t)
r(t)(xΔ3

)γ+1(t)
(xΔΔ)γ+1(t)

(
xΔΔ(t)

xΔΔ(σ(t))

)γ

.
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From (2.2), (2.11), and the above inequality, we obtain

ωΔ(t) ≤ αΔ(t)
α(t)

ω(t) − ασ(t)p(t)
α(t)r(t)

(xΔΔ)γ(t)
(xΔΔ)γ(σ(t))

ω(t)

−ασ(t)q(t)
xγ(τ(t))

(xΔΔ)γ(σ(t))

−γασ(t)
ω(γ+1)/γ(t)

α(γ+1)/γ(t)r1/γ(t)

(
xΔΔ(t)

xΔΔ(σ(t))

)γ

. (2.14)

In view of (2.5), (2.7), and the fact that xΔΔ/φ is a nonincreasing function,
we have

xγ(τ(t))
(xΔΔ)γ(σ(t))

=
(

x(τ(t))
xΔΔ(τ(t))

xΔΔ(τ(t))
xΔΔ(σ(t))

)γ

≥

⎛

⎜
⎝

1
ϕ(τ(t))

τ(t)∫

t3

ϕ(s)Δs

⎞

⎟
⎠

γ⎛

⎜
⎝

1
φ(τ(t))

τ(t)∫

t2

φ(s)Δs

⎞

⎟
⎠

γ

×
(

φ(τ(t))
φ(σ(t))

)γ

=

⎛

⎜
⎝

1
ϕ(τ(t))φ(σ(t))

τ(t)∫

t3

ϕ(s)Δs

τ(t)∫

t2

φ(s)Δs

⎞

⎟
⎠

γ

(2.15)

and
(

xΔΔ(t)
xΔΔ(σ(t))

)γ

≥
(

φ(t)
φ(σ(t))

)γ

. (2.16)

Substituting (2.15) and (2.16) into (2.14), we get

ωΔ(t) ≤ − ασ(t)q(t)

⎛

⎜
⎝

1
ϕ(τ(t))φ(σ(t))

τ(t)∫

t3

ϕ(s)Δs

τ(t)∫

t2

φ(s)Δs

⎞

⎟
⎠

γ

+
[
αΔ(t)
α(t)

−
(

φ(t)
φ(σ(t))

)γ
ασ(t)p(t)
α(t)r(t)

]

+

ω(t)

− γασ(t)
(

φ(t)
φ(σ(t))

)γ
ω(γ+1)/γ(t)

α(γ+1)/γ(t)r1/γ(t)
.

Set

A := C(t), B := D(t), and y := ω(t).

Using the inequality

By − Ay(γ+1)/γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
, A > 0,

we get

ωΔ(t) ≤ −ασ(t)q(t)f(t, t2, t3) +
γγ

(γ + 1)γ+1

Dγ+1(t)
Cγ(t)

.
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Integrating the above inequality from t4 (t4 ∈ [t3,∞)T) to t, we obtain
t∫

t4

[
ασ(s)q(s)f(s, t2, t3) − γγ

(γ + 1)γ+1

Dγ+1(s)
Cγ(s)

]
Δs ≤ ω(t4) − ω(t) ≤ ω(t4),

which contradicts (2.8).
Assume (2). Define the function ν by

ν(t) := β(t)
xΔ(t)
x(t)

, t ∈ [t1,∞)T. (2.17)

Then ν(t) > 0 for t ∈ [t1,∞)T and

νΔ(t) = βΔ(t)
xΔ(t)
x(t)

+ βσ(t)
xΔΔ(t)
x(σ(t))

− βσ(t)
xΔ(t)xΔ(t)
x(t)x(σ(t))

. (2.18)

Hence by (2.17) and (2.18), we have

νΔ(t) =
βΔ(t)
β(t)

ν(t) + βσ(t)
xΔΔ(t)
x(σ(t))

− βσ(t)
β2(t)

x(t)
x(σ(t))

ν2(t). (2.19)

Since x > 0, xΔ > 0, and xΔΔ < 0, we obtain

x(t) = x(t1) +

t∫

t1

xΔ(s)Δs ≥ (t − t1)xΔ(t).

Thus,
(

x

ς

)Δ

(t) =
xΔ(t)ς(t) − x(t)ςΔ(t)

ς(t)ςσ(t)
≤ x(t)

ς(t)ςσ(t)

(
ς(t)

t − t1
− ςΔ(t)

)
≤ 0.

Hence x/ς is nonincreasing eventually, and so

x(t)
x(σ(t))

≥ ς(t)
ς(σ(t))

,
x(τ(t))
x(t)

≥ ς(τ(t))
ς(t)

. (2.20)

Hence by (2.19) and (2.20), we see that

νΔ(t) ≤ βΔ(t)
β(t)

ν(t) + βσ(t)
xΔΔ(t)
x(σ(t))

− ς(t)
ς(σ(t))

βσ(t)
β2(t)

ν2(t). (2.21)

On the other hand, we get by (1.1) that

r(z)(xΔ3
)γ(z) − r(t)(xΔ3

)γ(t) +

z∫

t

q(s)xγ(τ(s))Δs ≤ 0.

It follows from xΔ > 0 and (2.20) that

r(z)(xΔ3
)γ(z) − r(t)(xΔ3

)γ(t) + xγ(t)

z∫

t

q(s)
(

ς(τ(s))
ς(s)

)γ

Δs ≤ 0.

Letting z → ∞ in the above inequality, we obtain

−r(t)(xΔ3
)γ(t) + xγ(t)

∞∫

t

q(s)
(

ς(τ(s))
ς(s)

)γ

Δs ≤ 0
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due to limz→∞ r(z)(xΔ3
)γ(z) = l1 ≥ 0. That is,

xΔ3
(t) ≥ x(t)

⎡

⎣ 1
r(t)

∞∫

t

q(s)
(

ς(τ(s))
ς(s)

)γ

Δs

⎤

⎦

1/γ

.

Therefore,

−xΔΔ(z) + xΔΔ(t) + x(t)

z∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs ≤ 0.

Letting z → ∞ in the last inequality and using limz→∞(−xΔΔ(z)) = l2 ≥ 0,
we have

xΔΔ(t) + x(t)

∞∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs ≤ 0.

Thus, we get by (2.20) that

xΔΔ(t)
x(σ(t))

≤ − x(t)
x(σ(t))

∞∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs

≤ − ς(t)
ς(σ(t))

∞∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs. (2.22)

Substituting (2.22) into (2.21), we obtain

νΔ(t) ≤ − βσ(t)
ς(t)

ς(σ(t))

∞∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs

+
(βΔ(t))+

β(t)
ν(t) − ς(t)

ς(σ(t))
βσ(t)
β2(t)

ν2(t),

which yields

νΔ(t) ≤ − βσ(t)
ς(t)

ς(σ(t))

∞∫

t

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs

+
ς(σ(t))((βΔ(t))+)2

4βσ(t)ς(t)
.
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Integrating the latter inequality from t2 (t2 ∈ [t1,∞)T) to t, we have

t∫

t2

⎧
⎪⎨

⎪⎩
βσ(ξ)

ς(ξ)
ς(σ(ξ))

∞∫

ξ

⎡

⎣ 1
r(s)

∞∫

s

q(v)
(

ς(τ(v))
ς(v)

)γ

Δv

⎤

⎦

1/γ

Δs

− ς(σ(ξ))((βΔ(ξ))+)2

4βσ(ξ)ς(ξ)

⎫
⎪⎬

⎪⎭
Δξ ≤ ν(t2) − ν(t) ≤ ν(t2),

which contradicts (2.10). The proof is complete. �

Remark 2.6. The function ς is existent, e.g., by letting ς(t) := t − t1.

Now we establish an oscillation result for (1.1) in the case where γ ≤ 1.

Theorem 2.7. Let (2.1) hold and γ ≤ 1. Assume that there exists a positive
function α ∈ C1

rd([t0,∞)T, R) such that for all sufficiently large t1 ∈ [t0,∞)T,
for some t2 ∈ [t1,∞)T, t3 ∈ [t2,∞)T, and t4 ∈ [t3,∞)T,

lim sup
t→∞

t∫

t4

[
ασ(s)q(s)f(s, t2, t3) − γγ

(γ + 1)γ+1

Dγ+1(s)
Eγ(s)

]
Δs = ∞, (2.23)

where φ and ϕ are defined as in Lemma 2.3, f and D are as in Theorem 2.5,
and

E(t) := γ
φ(t)

φ(σ(t))
ασ(t)

α(γ+1)/γ(t)r1/γ(t)
.

If there exist positive functions β, ς ∈ C1
rd([t0,∞)T, R) such that (2.9) and

(2.10) hold, then (1.1) is oscillatory.

Proof. Suppose that (1.1) has a nonoscillatory solution x on [t0,∞)T. We
may assume without loss of generality that there exists a t1 ∈ [t0,∞)T such
that x(t) > 0 and x(τ(t)) > 0 for t ∈ [t1,∞)T. Proceeding as in the proof of
Lemma 2.3, we get (2.2) and then x satisfies either (1) or (2).

Assume (1). Define the function ω by (2.11). Then we obtain (2.12).
From Pötzsche chain rule [5, Theorem 1.90], we see that

((xΔΔ)γ)Δ(t) = γxΔ3
(t)

1∫

0

[
hxΔΔ(σ(t)) + (1 − h)xΔΔ(t)

]γ−1dh

≥ γ(xΔΔ)γ−1(σ(t))xΔ3
(t), γ ≤ 1. (2.24)

It follows from (2.12) and (2.24) that

ωΔ(t) ≤ αΔ(t)
r(t)(xΔ3

)γ(t)
(xΔΔ)γ(t)

+ ασ(t)
(r(xΔ3

)γ)Δ(t)
(xΔΔ)γ(σ(t))

−γασ(t)
r(t)(xΔ3

)γ+1(t)
(xΔΔ)γ+1(t)

xΔΔ(t)
xΔΔ(σ(t))

.

The rest of the proof is similar to that of Theorem 2.5, and hence is omitted.
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Assume (2). The remainder of the proof is the same as that of Theorem
2.5. This completes the proof. �

3. Examples and Discussions

Below, we present two examples to show applications of the main results.

Example 3.1. Consider a fourth-order differential equation with damping
(

1
t
x′′′(t)

)′
+

1
t3

x′′′(t) +
λ

t5
x

(
t

2

)
= 0, t ≥ 1. (3.1)

Here, γ = 1, λ > 0 is a constant, r(t) = 1/t, p(t) = 1/t3, q(t) = λ/t5, and
τ(t) = t/2. Set φ(t) =

∫ t

t1
sds = (t2 − t1

2)/2, ϕ(t) =
∫ t

t2
(s2 − t1

2)/2ds =
(t3 − t2

3)/6 − t1
2(t − t2)/2, ς(t) = t − t1, α(t) = t2, and β(t) = t. Then (2.1)

holds,

t2

3
≤ φ(t) ≤ t2

2
,

t3

7
≤ ϕ(t) ≤ t3

6
for t large enough,

f(s, t2, t3) =
1

ϕ(τ(s))φ(σ(s))

τ(s)∫

t3

ϕ(u)Δu

τ(s)∫

t2

φ(u)Δu ≥ s2

672
,

and

C(t) =
1
t
, D(t) =

2t − 1
t2

.

Thus, (2.8) holds if λ > 672 and (2.10) holds if λ > 6. Therefore by Theorem
2.5, we see that equation (3.1) is oscillatory if λ > 672.

Example 3.2. Consider a fourth-order delay dynamic equation with damping
(

1
t
xΔ3

(t)
)Δ

+
1

2t2
xΔ3

(t) + x

(
t

2

)
= 0, (3.2)

where t ∈ T := 2Z := {2k : k ∈ Z}∪{0}. Let γ = 1, r(t) = 1/t, p(t) = 1/(2t2),
and q(t) = 1. Then it is not difficult to verify that condition (2.1) is satisfied.
On the other hand, letting φ(t) =

∫ t

t1
sΔs, ϕ(t) =

∫ t

t2
φ(s)Δs, ς(t) = t −

t1, α(t) = 1, and β(t) = 1, then all assumptions of Theorem 2.7 hold. Hence,
equation (3.2) is oscillatory.

Remark 3.3. One can define the function

ω(t) := α(t)
r(t)(xΔ3

)γ(t)
(xΔ)γ(t)

or

ω(t) := α(t)
r(t)(xΔ3

)γ(t)
xγ(t)

in the proof of case (1) in Theorem 2.5 or Theorem 2.7, and then obtain other
different classes of criteria for oscillation of (1.1).
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Remark 3.4. From the method given in this paper, one can obtain some
Philos-type oscillation criteria for (1.1). The details are left to the reader.
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