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Abstract. This paper studies the Kummer–Schwarz differential equa-
tion 2ẋ

...
x − 3ẍ2 = 0 which is of special interest due to its relationship

with the Schwarzian derivative. This differential equation is transformed
into a first order differential system in R

3, and we provide a complete
description of its global dynamics adding the infinity.
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integrability, global dynamics.

1. Introduction and Statements of Main Results

The Schwarzian derivative

{x, t} =
...
x (t)
ẋ(t)

− 3
2

(
ẍ(t)
ẋ(t)

)2

, (1.1)

plays an important role in the treatment of univalent functions; see details
in [5] and references therein. Here, the dot denotes derivative with respect
to the independent variable t. When the right hand in Eq. (1.1) is taken at
zero, the resulting equation is the Kummer–Schwarz equation which is given
by

2ẋ
...
x − 3ẍ2 = 0, (1.2)

and is of special interest due to its relationship to the Schwarzian derivative
and its exceptional algebraic properties. This equation is also encountered
in the study of geodesic curves in spaces of constant curvature; Lie lists the
characteristic functions for its contact symmetries, see more results on this
differential equation in [1,4–6]. But up to now nobody has described its global
qualitative dynamics. This will be the objective of this paper.

To know the global qualitative dynamics of a differential equation is
important because, in particular it describes where born and where died all
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their orbits, if the equation has periodic orbits or not, . . . For more infor-
mation about the qualitative dynamics see for instance [3]. Moreover, when
it is possible it is interesting to describe the orbits which go or come from
the infinity, because these orbits complete the qualitative information on the
behavior of the orbits of the differential equation.

The Kummer–Schwarz equation of third order (1.2) can be written as
the following rational differential system of first order

ẋ = y, ẏ = z, ż =
3z2

2y
, (1.3)

in R
3. Rescaling the time according to dτ/dt = 2y, we obtain the equivalent

polynomial differential system (outside the plane y = 0)

x′ = 2y2, y′ = 2yz, z′ = 3z2. (1.4)

Here, the prime denotes derivative with respect to the new independent vari-
able τ . This differential system is called the Kummer–Schwarz differential
system in R

3.
We will study the flow of the polynomial differential system (1.4) in the

phase space R
3; of course, in order to describe the flow of the differential

system (1.3) we must omit the plane y = 0.
We remark that if we know the qualitative behavior of the orbits (x(τ),

y(τ), z(τ)) of the differential system (1.4), then we know the qualitative
behavior of the orbits x(t) of the Kummer–Schwarz differential equation (1.2).

As we shall see later on, Goviender and Leach [4] determined two inde-
pendent first integrals Hi = Hi(x, y, z), i = 1, 2 for the differential system
(1.4). These integrals play a main role in the study of the global dynamics of
this system. Of course, the explicit curves {H1(x, y, z) = h1}∩{H2(x, y, z) =
h2} with h1, h2 ∈ R contain the orbits of the differential system (1.4), but in
general it remains a big work to do in order to describe the global qualitative
behavior of all the orbits of the differential system. This work is the one that
we do here.

1.1. Symmetries and Reduction of the Flow to the Quadrant y ≥ 0 and
z ≥ 0

The differential system (1.4) is invariant under the following two symmetries:

S1(x, y, z) = (x,−y, z), and S2(x, y, z, τ) = (−x, y,−z,−τ).

The symmetry S1 says that the flow of system (1.4) is symmetric with respect
to the plane y = 0. Therefore, if (x(τ), y(τ), z(τ)) is a solution of (1.4), then
(x(τ),−y(τ), z(τ)) is also solution of (1.4). The symmetry S2 says that the
flow of system (1.4) is symmetric with respect to the y-axis reversing the
sense of the orbits. Therefore, if (x(τ), y(τ), z(τ)) is a solution of (1.4), then
(−x(−τ), y(τ),−z(−τ)) is also solution of (1.4). Using both symmetries in
order to describe the flow of system (1.4) in R

3 it is enough to describe the
flow of system (1.4) on the quadrant

Q = {(x, y, z) ∈ R
3 : y ≥ 0, z ≥ 0}.
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1.2. The Poincaré Compactification

It is know that a polynomial differential system in R
3 can be extended to a

unique analytic differential system on the closed ball B of radius 1 centered at
the origin of R

3, called the Poincaré ball. More precisely, the whole space R
3

is identified with the interior of B, and the infinity of R
3 is identified with the

boundary of B, i.e., with the two-dimensional sphere S
2. For more details see

[2] and [7], and the appendix of this paper. The known technique for making
such an extension is called the Poincaré compactification and it allows to
study the dynamics of a polynomial differential system in a neighborhood of
infinity. Poincaré introduced this compactification for polynomial differential
systems in R

2.

1.3. The Global Dynamics

Our main result is the description of the global dynamics of the Kummer–
Schwarz differential system (1.4) on the compactified quadrat Q of Q inside
the Poincaré ball B, see Fig. 1. More precisely, we describe all the α- and
ω-limit sets of all the orbits of the Kummer–Schwarz differential system (1.4).
For the standard definitions of orbit, α- and ω-limit sets of an orbit, and of
the Poincaré compactification, see for instance [3].

Theorem 1.1. The following statements hold for the Kummer–Schwarz dif-
ferential system (1.4).

(a) On the quadrant Q the equilibrium points are all the points of the x-axis,
including its endpoints at infinity (X− at the end of the negative x-axis
and X+ at the end of the positive x-axis), and additionally the endpoint
Z+ at infinity of the positive z-axis, see Fig. 2.

(b) On the invariant boundary y = 0 of the quadrant Q the orbits are the
half-straight lines parallel to the z-axis having α-limit an equilibrium
point of the x-axis and ω-limit the equilibrium point Z+, see Fig. 2.

z

x

y

Figure 1. The quadrant Q of the Poincaré ball B



480 J. Llibre and C. Vidal MJOM

X_

Z+

+X

Figure 2. The flow on the invariant planes y = 0 and z = 0
restricted to the quadrant Q

(c) On the invariant boundary z = 0 of the quadrant Q the orbits are the
straight lines parallel to the x-axis having α-limit the equilibrium point
X− and ω-limit the equilibrium point X+, see Fig. 2.

(d) On the infinity S
2∩Q the flow is qualitatively the one described in Fig. 3,

i.e., without taking into account the three equilibrium points Z+, X− and
X+ at the infinity of the quadrant Q all the other orbits have ω-limit at
the equilibrium point Z+, and α-limit either at X−, or at X+.

(e) The explicit solution (x(τ), y(τ), z(τ)) of the differential system (1.4)
such that (x(0), y(0), z(0)) = (x0, y0, z0) is

x(τ) = x0 +
2y2

0

z0

(
1

(1 − 3z0τ)1/3
− 1

)
,

y(τ) =
y0

(1 − 3z0τ)2/3
,

z(τ) =
z0

1 − 3z0τ
.

(1.5)

(f) Let γ be an orbit contained in the interior of the quadrant Q. Then the
α-limit of γ is the equilibrium point X− and its ω-limit is the equilibrium
point Z+.

(g) The differential system (1.4) has two independent first integrals H1 =
z2/y3 and H2 = x − 2y2/z. The set {H1 = h1} ∩ {H2 = h2} ∩ Q is an
orbit γ with endpoints at X− and Z+.

The proof of Theorem 1.1 is given in Sect. 2.
The two independent first integrals H1 and H2 of statement (g) of The-

orem 1.1 are due to Goviender and Leach [4].
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Figure 3. The flow on the infinity restricted to the quadrant Q

2. Proof of Theorem 1.1

This section is dedicated to prove the different statements of Theorem 1.1.

Proof of statement (a) of Theorem 1.1. From the equations of the differen-
tial system (1.4) it follows immediately that the x-axis is filled with equilib-
rium points, because x′ = y′ = z′ = 0 when y = z = 0. Now we shall study
the equilibriums points at the infinity of the quadrant Q using the Poincaré
compactification of R

3 described in the appendix.
We start studying the equilibrium points at the infinity located on the

local chart U1, i.e., in x > 0 and its boundary at infinity. Thus the compact-
ified differential system (1.4) in the local chart U1 is given by:

ż1 = −2z3
1 + 2z1z2, ż2 = −2z2

1z2 + 3z2
2 , ż3 = −2z2

1z3. (2.1)

At the infinity z3 = 0 of U1, i.e., in the points of the sphere S
2 system (2.1)

reduces to

ż1 = 2z1(−z2
1 + z2), ż2 = z2(−2z2

1 + 3z2). (2.2)

So, the unique equilibrium point at the infinity of U1 is the origin (0, 0, 0) of
U1. Its linear part has all its eigenvalues equal to zero. Therefore, we need
to study it using the technique of blow ups, see for more details Chapter
3 of [3]. Then, we obtain that the local phase portrait of the equilibrium
point (0, 0) of the differential system (2.2) is qualitatively the one of Fig. 4.
The equilibrium point (0, 0, 0) of U1 corresponds to the endpoint X+ of the
positive x-axis.

The local phase portrait at the equilibrium point (0, 0, 0) of V1 which
corresponds to the endpoint X− of the negative x-axis, is obtained doing
symmetry with respect to the center of the sphere S

2 and reversing the ori-
entation of the orbits because the degree of the polynomial differential system
(1.4) is 2.
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z1

z2

Figure 4. The local phase portrait of the equilibrium point
(0, 0) of the differential system (2.2)

The flow of system (1.4) in the local chart U2 is given by the differential
system

ż1 = −2z1z2 + 2, ż2 = −2z2
1z2 + 3z2

2 , ż3 = −2z2z3. (2.3)

So there are no equilibrium points at infinity in this local chart.
In the local chart U3 the system (1.4) becomes

ż1 = −3z1 + 2z2
2 , ż2 = −z2, ż3 = −3z3. (2.4)

At the infinity of U3 the point (0, 0, 0) is the unique equilibrium point, and its
linear part has the eigenvalues −1 and −3 with multiplicity two. Therefore,
by the Hartman Theorem this equilibrium point is a local attractor, and it
corresponds to the endpoint Z+ of the positive z-axis. �
Proof of statement (b) of Theorem 1.1. From the differential system (1.4) it
follows that x′ = 0 and y′ = 0 when y = 0, so the plane y = 0 and the
straight lines {y = 0} ∩ {x = constant} are invariant by the flow of system
(1.4). In other words, if an orbit of the differential system (1.4) has a point
in y = 0, or in {y = 0} ∩ {x = constant}, then the whole orbit is contained
in that plane or straight line.

In short, on the invariant boundary y = 0 of the quadrant Q the orbits
are the half-straight lines parallel to the z-axis having α-limit an equilibrium
point of the x-axis and ω-limit the equilibrium point Z+; see for more details
the proof of statement (a). �
Proof of statement (c) of Theorem 1.1. From the differential system (1.4) we
have that y′ = 0 and z′ = 0 when z = 0, so the plane z = 0 and the straight
lines {z = 0} ∩ {y = constant} are invariant by the flow of system (1.4).

In summary, on the invariant boundary z = 0 of the quadrant Q the
orbits are the straight lines parallel to the x-axis having α-limit the equi-
librium point X− and ω-limit the equilibrium point X+, see again for more
details the proof of statement (a). �
Proof of statement (d) of Theorem 1.1. From the fact that the infinity S

2 is
invariant by the compactified flow of the polynomial differential system (1.4),
and the local phase portraits at the three equilibrium points Z+, X− and X+
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at the infinity of the quadrant Q studied in the proof of statement (a), it
follows that on the infinity S

2 ∩ Q the flow is qualitatively the one described
in Fig. 3. �

Proof of statement (e) of Theorem 1.1. Let (x(τ), y(τ), z(τ)) be the solution
of the differential system (1.4) such that (x(0), y(0), z(0)) = (x0, y0, z0). From
the differential equation z′ = 3z2 it follows easily that z(τ) = z0/(1 − 3z0τ).
Substituting z = z(τ) in y′ = 2yz we obtain that y(τ) = y0/(1 − 3z0τ)2/3.
Finally, substituting y = y(τ) in x′ = 2y2 and integrating we get that

x(τ) = x0 +
2y2

0

z0

(
1

(1 − 3z0τ)1/3
− 1

)
.

�

Proof of statement (f) of Theorem 1.1. Since x′ = 2y2 > 0 and z′ = 3z2 > 0
in the interior of the quadrant Q, for every orbit γ contained in the interior of
the quadrant Q we have that its α-limit has its x-coordinate equal to −∞ and
its z-coordinate equal to 0, and its ω-limit has its x-coordinate equal to +∞
and its z-coordinate equal to +∞. Taking into account either the solution
of statement (e), or the phase portrait on the boundary of the quadrant Q
described in the statements (b), (c) and (d) we get that the α-limit of γ is
the equilibrium point X− and its ω-limit is the equilibrium point Z+. �

Proof of statement (g) of Theorem 1.1. Let H1 = z2/y3 and H2 = x−2y2/z.
Then, since

dHk

dτ
=

∂Hk

∂x
x′ +

∂Hk

∂y
y′ +

∂Hk

∂z
z′ = 0,

for k = 1, 2, we obtain that H1 and H2 are first integrals of the differential
system (1.4), i.e., they are constant on the solutions of system (1.4) where
they are defined. Since their gradients are linearly independent except at the
points of z = 0 and y = 0 which have zero Lebesgue measure, these two first
integrals are independent.

It is not difficult to show that the set {H1 = h1} ∩ {H2 = h2} ∩ Q
has a unique component. Then, from either statement (e), or statement (f)
it follows that this set is formed by an orbit γ with endpoints at X− and
Z+. �

3. The Appendix: Poincaré Compactification of R
3

In R
3 we consider the polynomial differential system

ẋ = P 1(x, y, z), ẏ = P 2(x, y, z), ż = P 3(x, y, z),

or equivalently its associated polynomial vector field X = (P 1, P 2, P 3). The
degree n of X is defined as n = max{deg(P i) : i = 1, 2, 3}.

Let S
3 = {y = (y1, y2, y3, y4) ∈ R

4 : ‖y‖ = 1} be the unit sphere in R
4,

and

S+ = {y ∈ S
3 : y4 > 0} and S− = {y ∈ S

3 : y4 < 0}
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be the northern and southern hemispheres, respectively. The tangent space
to S

3 at the point y is denoted by TyS
3. Then, the tangent hyperplane

T(0,0,0,1)S
3 = {(x1, x2, x3, 1) ∈ R

4 : (x1, x2, x3) ∈ R
3}

is identified with R
3.

We consider the central projections

f+ : R
3 = T(0,0,0,1)S

3 → S+ and f− : R
3 = T(0,0,0,1)S

3 → S−,

defined by

f+(x) =
1

Δx
(x1, x2, x3, 1) and f−(x) = − 1

Δx
(x1, x2, x3, 1),

where Δx =
(
1 +

∑3
i=1 x2

i

)1/2

. Through these central projections, R
3 can be

identified with the northern and the southern hemispheres, respectively. The
equator of S

3 is S
2 = {y ∈ S

3 : y4 = 0}. Clearly, S
2 can be identified with the

infinity of R
3.

The maps f+ and f− define two copies of X, one Df+◦X in the northern
hemisphere and the other Df− ◦ X in the southern one. Denote by X the
vector field on S

3\S
2 = S+∪S− which restricted to S+ coincides with Df+◦X

and restricted to S− coincides with Df− ◦ X.
In what follows we shall work with the orthogonal projection of the

closed northern hemisphere to y4 = 0. Note that this projection is a closed ball
B of radius one, whose interior is diffeomorphic to R

3 and whose boundary S
2

corresponds to the infinity of R
3. We shall extend analytically the polynomial

vector field X to the boundary, in such a way that the flow on the boundary
is invariant. This new vector field on B will be called the Poincaré compact-
ification of X, and B will be called the Poincaré ball. Poincaré introduced
this compactification for polynomial vector fields in R

2, and its extension to
R

m can be found in [7].
The expression for X(y) on S+ ∪ S− is

X(y) = y4

⎛
⎜⎜⎝

1 − y2
1 −y2y1 −y3y1

−y1y2 1 − y2
2 −y3y2

−y1y3 −y2y3 1 − y2
3

−y1y4 −y2y4 −y3y4

⎞
⎟⎟⎠

⎛
⎝ P 1

P 2

P 3

⎞
⎠ ,

where P i = P i (y1/|y4|, y2/|y4|, y3/|y4|). Written in this way X(y) is a vector
field in R

4 tangent to the sphere S
3.

Now we can extend analytically the vector field X(y) to the whole sphere
S

3 by

p(X)(y) = yn−1
4 X(y);

this extended vector field p(X) is called the Poincaré compactification of X.
As S

3 is a differentiable manifold, to compute the expression for p(X) we
can consider the eight local charts (Ui, Fi), (Vi, Gi) where Ui = {y ∈ S

3 : yi >
0}, and Vi = {y ∈ S

3 : yi < 0} for i = 1, 2, 3, 4; the diffeomorphisms Fi : Ui →
R

3 and Gi : Vi → R
3 for i = 1, 2, 3, 4 are the inverses of the central projections

from the origin to the tangent planes at the points (±1, 0, 0, 0), (0,±1, 0, 0),
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(0, 0,±1, 0) and (0, 0, 0,±1), respectively. We now do the computations on
U1. Suppose that the origin (0, 0, 0, 0), the point (y1, y2, y3, y4) ∈ S

3 and the
point (1, z1, z2, z3) in the tangent plane to S

3 at (1, 0, 0, 0) are collinear, then
we have

1
y1

=
z1

y2
=

z2

y3
=

z3

y4
,

and consequently

F1(y) =
(

y2

y1
,
y3

y1
,
y4

y1

)
= (z1, z2, z3)

defines the coordinates on U1.
As

DF1(y) =

⎛
⎜⎝

−y2/y2
1 1/y1 0 0

−y3/y2
1 0 1/y1 0

−y4/y2
1 0 0 1/y1

⎞
⎟⎠

and yn−1
4 =

(
z3
Δz

)n−1, the analytical field p(X) in U1 becomes

zn
3

(Δz)n−1

(−z1P
1 + P 2,−z2P

1 + P 3,−z3P
1
)
, (3.1)

where P i = P i (1/z3, z1/z3, z2/z3).
In a similar way we can deduce the expressions of p(X) in U2 and U3.

These are
zn
3

(Δz)n−1

(−z1P
2 + P 1,−z2P

2 + P 3,−z3P
2
)
, (3.2)

where P i = P i (z1/z3, 1/z3, z2/z3) in U2, and

zn
3

(Δz)n−1

(−z1P
3 + P 1,−z2P

3 + P 2,−z3P
3
)
, (3.3)

where P i = P i (z1/z3, z2/z3, 1/z3) in U3.
The expression for p(X) in U4 is zn+1

3

(
P 1, P 2, P 3

)
where the component

P i = P i (z1, z2, z3).
The expression for p(X) in the local chart Vi is the same as in Ui mul-

tiplied by (−1)n−1.
When we shall work with the expression of the compactified vector

field p(X) in the local charts we omit the factor 1/(Δz)n−1. We can do that
through a rescaling of the time.

We remark that all the points on the sphere at infinity in the coordinates
of any local chart have z3 = 0.

The orthogonal projection of the closed north hemisphere of S
3 on the

hyperplane y4 = 0 is a closed ball B of radius 1 centered at the origin of
coordinates, whose interior is diffeomorphic to R

3 = T(0,0,0,1)S
3 and whose

boundary S
2 is the infinity of R

3. This closed ball B is the Poincaré ball.
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